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A B S T R A C T

The Pickup and Delivery Problem has received increasing attention as a result of the recent growth of third-
party delivery companies, and electric vehicles (EVs) are becoming a preferable choice for such large delivery
systems due to their environmental benefits. The EVs, however, have limited energy capacity; thus, intra-route
facilities are required to recharge them. These facilities can also be visited to transfer requests to other vehicles.
In this study, we introduce a novel pickup and delivery problem with electric vehicles and transfers. The
traditional constraint that each request should be handled by a single vehicle, is relaxed in this problem with
transfers, and additionally, we incorporate other practical considerations such as multi-depots, time-windows,
and EVs’ battery and carrying capacity constraints. We develop a mixed-integer linear programming model
encompassing all these constraints. To address the computational difficulty of the problem, we propose a
hybrid heuristic combining Simulated Annealing (SA) and Large Neighborhood Search (LNS). Experimental
results reveal that for small instances where CPLEX can find optimal solutions, our heuristic finds them about
90% faster.
1. Introduction

The Pickup and Delivery Problem (PDP) aims to schedule vehicles
by assigning them to requests and determining their routes. Vehicles
depart from their depots, serve requests by visiting nodes, and return
to their origin nodes. Each request consists of a pickup and a delivery
node. Pickup nodes must be visited before their associated delivery
nodes. The problem arises in many applications such as third-party de-
livery companies, e.g., Doordash and Walmart+. Arslan, Agatz, Kroon,
and Zuidwijk (2019) address the difficulties faced by logistic service
providers in the era of online sales. The authors claim that providing
cost-effective delivery systems is one of the fundamental challenges.

E-commerce revenue in the U.S. was $431.6 billion in 2020. The
amount is expected to increase to $563.4 billion in the next five
years (Statista, Research Department, 2021). One particular concern
with this growth is its impact on the environment. Sundstrom and
Binding (2012) state that recently electric vehicles (EVs) usage has been
increased rapidly because of societal concerns about environmental is-
sues and the availability of renewable power sources. Chen, Kockelman,
and Hanna (2016) explain how the use of EVs and shared-vehicles
might be an important factor to satisfy the standards of air quality
and carbon-emissions. Interested readers can find more information on
EVs and their environmental impact in McKinnon, Browne, Whiteing,
and Piecyk (2015). Converting to alternative fuel vehicles not only
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benefits the society in the long run, but also reduces the operational
cost by 39%–60% in the short term (Sahin, Yilmaz, Ust, Guneri, &
Gulsun, 2009). Amazon has invested in 100,000 EVs, of which 10,000
vehicles are planned to be on the road by 2022 and all 100,000 by
2030 (Meisenzahl, 2021).

Lin, Zhou, and Wolfson (2016) highlight several challenges of EVs,
including the fact that they have a shorter service range compared
to conventional vehicles. In order to stay operational, EVs must be
recharged during their daily tasks. The charging services are provided
at facilities, known as intermediate stops or intra-route facilities in the
literature. Schneider, Stenger, and Goeke (2014) explain and provide
examples of a few different types of intermediate stops. Additionally,
some authors have mainly been interested in the optimal placement
of charging stations that eventually provides insightful inputs for our
problem network (He, Venkatesh, & Guan, 2012; Li, Huang, & Mason,
2016).

In our research context, we study a novel Pickup and Delivery Prob-
lem. There are requests to be picked up and delivered, involving a set
of EVs and depots. Depots are the origin and final nodes for vehicles,
and each vehicle may use a different depot. In the original PDP settings,
a single vehicle serves a request, e.g., food and package, by picking it
up and delivering it. However, intra-route facilities allow vehicles to
exchange requests so that a request can be carried by more than one
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Fig. 1. Example for transferring requests with an intra-route facility.

vehicle (PDP-T). A vehicle picks up a request from its origin node and
may drop it at an intra-route facility. Later, another vehicle picks up the
request from the facility and delivers the request to its final destination.
Note that, pickup and delivery nodes are associated with each other
(ellipses in Fig. 1). Therefore, a delivery node cannot be fulfilled by any
random commodity that is already picked. For further reading about
paired/unpaired nodes, we refer readers to Parragh, Doerner, and Hartl
(2008).

The PDP-T aims to meet the demand at each node by devising
routing schedules for vehicles and simultaneously satisfying the pre-
determined constraints, e.g., time-windows and vehicles’ capacities and
batteries. An example can be seen in Fig. 1. There are three requests 𝑟1,
𝑟2, 𝑟3 (blue ellipses), one intra-route facility (triangle), and two depots
(rectangular), with a total of nine nodes. There are two vehicles 𝑣1
and 𝑣2, represented by the solid and the dashed routes, respectively.
𝑝1 and 𝑑1 together define one of the requests (𝑟1). This paper will refer
to them as pairs or associated nodes. Moreover, 𝑟1 and 𝑟2 are handled
by a single vehicle - 𝑣1 and 𝑣2, respectively; however, 𝑟3 is transported
to the intra-route facility by 𝑣1, and 𝑣2 delivers 𝑟3 to its final destination
after picking it up from the facility. Note that, ‘‘intra-route facilities’’
and ‘‘transfer nodes’’ are interchangeable terms in this paper.

1.1. Related literature

The third-party delivery systems can be studied under the PDP, a
variant of the Vehicle Routing Problem (VRP). The main difference is
that in the PDP, the pickup node must be visited before its associated
delivery node. Several VRP surveys including Braekers, Ramaekers,
and Van Nieuwenhuyse (2016), Golden, Raghavan, and Wasil (2008),
Lin, Choy, Ho, Chung, and Lam (2014), Montoya-Torres, López Franco,
Nieto Isaza, Felizzola Jiménez, and Herazo-Padilla (2015) acknowledge
the PDP in their state-of-arts.

After the PDP was introduced by Mosheiov (1994) and Savelsbergh
and Sol (1995), it has been extensively studied under many names
and with many variations: e.g., the VRP with simultaneous pickup
and deliveries (Chen & Wu, 2006), the PDP with time-windows (PDP-
TW) by Li and Lim (2003) and Ropke and Pisinger (2006), and the
Dial-a-Ride (Borndorfer, Grotschel, Klostermeiner, & Kuttner, 1997).
For further information about the PDP variants, we refer readers to
these studies: Irnich (2000), Dondo, Méndez, and Cerdá (2008), Ben
Alaia, Dridi, Bouchriha, and Borne (2013), and Furtado, Munari, and
Morabito (2017). To the extent of our knowledge, Berbeglia, Cordeau,
Gribkovskaia, and Laporte (2007), Berbeglia, Cordeau, and Laporte
(2010), Koç, Laporte, and Tükenmez (2020), Parragh et al. (2008)
are the most recent surveys conducted on the PDP. In the rest of
this section, we will discuss the recent publications on the PDP with
transfers.
2
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Fig. 2. Transfer case example.

Cortés, Matamala, and Contardo (2010) propose a node-based
mixed-integer linear programming (MILP) model for the PDP-T with
time windows (PDP-TWT). They treat each transfer node as two sepa-
rate nodes: ‘‘start’’ and ‘‘final’’. While visiting a transfer node, vehicles
must enter the associated start node (passengers get off the vehicle if
they need) and proceed to the associated final node to collect passen-
gers before leaving the final node. In addition to their MILP model,
they develop a branch-and-cut method with Benders Decomposition.
The approach is tested against a generic MILP solver regarding the com-
putational runtime. They suggest that their extra variables (separating
a transfer into two nodes) can be promising for novel customer-based
objective functions.

Masson, Lehuede, and Peton (2013) provide an Adaptive Large
Neighborhood Search (ALNS) algorithm for the PDP-T. They test the
algorithm with a real-life case (i.e., people with disabilities) and high-
light that transfer nodes can improve the objective value up to 9%. They
discuss the computational runtime of the problem and provide insights
on why decision makers should tolerate it.

Masson, Lehuédé, and Péton (2014) examine the Dial-a-Ride prob-
lem with transfers, which is a variant of the PDP-T. They develop an
ALNS metaheuristic to reduce the computational runtime and point out
that transfers can help to improve the objective value by 8% on real-life
instances.

Rais, Alvelos, and Carvalho (2014) formulate a new generic MILP
model for the PDP-T and, then, specify the model by taking into account
real-life problems, such as time-windows and separable requests. Using
existing benchmark instances, they demonstrate the importance of the
transfer operation by comparing their study with the PDP (without
transfer). However, we have found that this model has room for im-
provement: specifically, some cases of transfer scenarios are identified
but not represented by the model. The constraint given below is from
Rais et al. (2014):
∑

𝑗∶𝑗𝑖∈
𝑦𝑘𝑟𝑗𝑖 +

∑

𝑗∶𝑖𝑗∈
𝑦𝑙𝑟𝑖𝑗 ≤ 𝑠𝑘𝑙𝑗𝑟 + 1 ∀𝑖 ∈  ,∀𝑟 ∈ ,∀𝑘, 𝑙 ∈  ∶ 𝑘 ≠ 𝑙

Binary variable 𝑦𝑘𝑟𝑖𝑗 gets 1 if request 𝑟 is transported from node 𝑖 to
node 𝑗 by vehicle 𝑘, and another binary variable 𝑠𝑘𝑙𝑗𝑟 gets 1 if request 𝑟 is
transferred from vehicle 𝑘 to 𝑙 at transfer node 𝑗. The constraint implies
that if request 𝑟 visits transfer node 𝑖 with vehicle 𝑘, and the same
equest 𝑟 leaves the same transfer node with vehicle 𝑙, then it means
hat the request is transferred. The inequality follows a correct logic;
owever, it overlooks the case of when more than one vehicle visits
he same two transfer nodes. An example is given in Fig. 2. Assume
hat, 𝑝1 is transferred through 𝑡2. In this case, the request enters and
eaves 𝑡1 with vehicle 𝑣1 (𝑦𝑣1𝑟1𝑝1𝑡1

= 1), and the same request also visits
1 with vehicle 𝑣2 (𝑦𝑣2𝑟1𝑡1𝑑1

= 1). While this given scenario is a possibility,
he above constraint would indicate that the example is infeasible due
o 𝑠𝑣1𝑣2𝑡1𝑟1

= 0. Thus, our correction to the constraint will be presented in
ection 2.1.

Danloup, Allaoui, and Goncalves (2018) introduce the first genetic
lgorithm (GA) for the PDP-T. They compare the GA with a large
eighborhood search (LNS) metaheuristic. Both algorithms are evalu-
ted on existing benchmark instances. Their results suggest that GA
utperforms LNS for the PDP-T.

Peng, Al Chami, Manier, and Manier (2019) consider the selective

DP-T. In the selective PDP, carriers have the flexibility of not serving
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specific customers. They propose a multi-objective mathematical model
and test it on new benchmark instances. Due to long computational
runtimes for large instances, they develop a multi-objective Particle
Swarm Optimization (PSO) algorithm. They highlight that their algo-
rithm generates good solutions regarding computational runtimes and
the gap between the PSO and the mathematical model.

Sampaio, Savelsbergh, Veelenturf, and Woensel (2020) also develop
an ALNS metaheuristic for the PDP-T. They show that transferring
requests would significantly impact the total distance when drivers are
occupied with too many requests. Note that, they apply the same MILP
model from Rais et al. (2014).

Thus far, all the studies reviewed in this section do not consider EVs,
that come with battery constraints. Hou et al. (2016) formulate a MILP
model and proposes a dispatch algorithm for a ride-sharing problem
with electric taxis and transfers. The objective function is to maximize
the number of passengers, and they test the algorithm on a case study
for Shanghai. In their study, passengers are only allowed to transfer
to another vehicle once. Although they mention charging vehicles, the
mathematical model does not include any constraints on charging EVs.
The transfer constraint in this study is the same as Rais et al. (2014)’s.

1.2. Our contributions

The PDP-TWT with multi-depot and capacitated EVs is considered
in this paper. To the best of our knowledge, we are the first to combine
PDP-TWT with capacitated EVs and partial charging. Although conven-
tional vehicles are often used by delivery companies nowadays, EVs
are expected to be the primary vehicle in the near future (Meisenzahl,
2021). Moreover, many papers do not include partial charging, but Ke-
skin and Çatay (2016) highlight the practical impact of it. Observe
that, the problem can be applied in drone deployments due to similar
battery constraints and can be investigated in both long-haul and in-city
logistics contexts.

We formulate a MILP model for this novel problem and develop a
hybrid metaheuristic approach. They are tested with 371 instances, and
several computational experiments are conducted to give insights to
readers.

In the next section, the problem definition and the mathematical
model will be presented. Section 3 includes our heuristic approach with
several sub-algorithms. The computational experiments are shown in
Section 4. We conclude our paper with a discussion in Section 5.

2. Problem definition

In our problem context,  and  indicate the set of all nodes
and all requests, respectively. Each request 𝑖 ∈  is associated with
wo nodes (pickup and delivery), and each node has a load 𝐿𝑖. Pickup
odes have positive loads, while delivery nodes have negative. 𝑝(𝑟)

and 𝑑(𝑟) respectively represent the pickup and the delivery node of
the corresponding request 𝑟. A request 𝑟 must be picked up from its
origin node 𝑝(𝑟) and delivered to its destination node 𝑑(𝑟) during the
time period [𝐸𝑝(𝑟), 𝑇𝑑(𝑟)] (Table 1).

We are given a fleet of EVs,  . Each vehicle 𝑘 ∈  starts its
oute from its depot 𝑜(𝑘) ∈  and ends at the same node 𝑜′(𝑘) ∈ .
he origin and the destination depots are the exact same location
ut represented by two separate nodes. A heterogeneous fleet of EVs
s considered in this research. Therefore, vehicles may have different
apacities, batteries, and ranges per an-hour-charging. It is assumed
hat the vehicles leave their depot fully charged.

The transfer nodes (intra-route facilities) are indicated by  , and the
lacement of these facilities is not a part of this study. Moreover, we
ssume that the facilities have unlimited chargers for EVs and capacity
or storing requests between drop-off and pick-up times. Note that, EVs
an be recharged partially instead of full-charge.

The mathematical model is presented in the next subsection. Table 1
ncludes all sets and parameters while Table 2 shows all decision
ariables used in the model.
3
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Table 1
Sets and parameters.
 : Set of all nodes
 : Set of depots (includes final depots),  ⊂ 
 : Set of transfer nodes,  ⊂ 
 : Set of requests
 : Set of vehicles
𝑐𝑖𝑗 : The cost of traveling from node 𝑖 ∈  to node 𝑗 ∈ 
𝑡𝑖𝑗 : The distance between nodes 𝑖 ∈  and 𝑗 ∈ 
𝑄𝑘 : The capacity of vehicle 𝑘 ∈ 
𝐵𝑘 : The mileage that vehicle 𝑘 ∈  can travel with a full battery
𝐻𝑘 : The mileage that vehicle 𝑘 ∈  can travel with 1-minute charge
𝐿𝑖 : The load of node 𝑖 ∈ 
𝐸𝑖 : The earliest time that a vehicle can arrive to node 𝑖 ∈ 
𝑇𝑖 : The latest time that a vehicle can arrive to node 𝑖 ∈ 
𝑀 : A large number

Table 2
Decision variables.
𝑥𝑘𝑖𝑗 : binary variable, gets 1 if vehicle 𝑘 ∈  directly travels from

node 𝑖 ∈  to
node 𝑗 ∈ 

𝑦𝑘𝑟𝑖𝑗 : binary variable, gets 1 if request 𝑟 ∈  is carried by vehicle
𝑘 ∈  between
nodes 𝑖 ∈  and 𝑗 ∈ 

𝑧𝑘𝑙𝑖𝑟 : binary variable, gets 1 if request 𝑟 ∈  is transferred between
vehicles 𝑘 ∈ 
and 𝑙 ∈  at transfer node 𝑖 ∈ 

𝑝𝑘𝑖 : vehicle 𝑘 ∈  ’s charging duration at transfer node 𝑖 ∈ 
𝑎𝑘𝑖 : arrival time of vehicle 𝑘 ∈  in node 𝑖 ∈ 
𝑑𝑘
𝑖 : departure time of vehicle 𝑘 ∈  from node 𝑖 ∈ 

𝑏𝑘𝑖 : remaining battery (mileage) of vehicle 𝑘 ∈  when it arrives to
node 𝑖 ∈ 

2.1. Mathematical model

minimize
∑

𝑖∈

∑

𝑗∈∶𝑖≠𝑗

∑

𝑘∈
𝑐𝑖𝑗𝑥

𝑘
𝑖𝑗 (1)

subject to

∑

𝑗∈

𝑥𝑘𝑖𝑗 = 1 ∀𝑘 ∈  , 𝑖 = 𝑜(𝑘) (2)

∑

𝑗∈

𝑥𝑘𝑖𝑗 =
∑

𝑗∈

𝑥𝑘𝑗𝑙 ∀𝑘 ∈  , 𝑖 = 𝑜(𝑘), 𝑙 = 𝑜′(𝑘) (3)

∑

𝑗∈

𝑥𝑘𝑖𝑗 =
∑

𝑗∈

𝑥𝑘𝑗𝑖 ∀𝑖 ∈  ⧵ {𝑜(𝑘), 𝑜′(𝑘)}, 𝑘 ∈  (4)

∑

𝑗∈

∑

𝑘∈
𝑦𝑘𝑟𝑖𝑗 = 1 ∀𝑟 ∈ , 𝑖 = 𝑝(𝑟) (5)

∑

𝑗∈

∑

𝑘∈
𝑦𝑘𝑟𝑗𝑖 = 1 ∀𝑟 ∈ , 𝑖 = 𝑑(𝑟) (6)

∑

𝑗∈

∑

𝑘∈
𝑦𝑘𝑟𝑖𝑗 =

∑

𝑗∈

∑

𝑘∈
𝑦𝑘𝑟𝑗𝑖 ∀𝑖 ∈  , 𝑟 ∈  (7)

∑

𝑗∈

𝑦𝑘𝑟𝑖𝑗 =
∑

𝑗∈

𝑦𝑘𝑟𝑗𝑖 ∀𝑖 ∈  ⧵ { , 𝑝(𝑟), 𝑑(𝑟)}, 𝑘 ∈  , 𝑟 ∈  (8)

𝑘𝑟
𝑖𝑗 ≤ 𝑥𝑘𝑖𝑗 ∀𝑖, 𝑗 ∈  , 𝑘 ∈  , 𝑟 ∈  ∶ 𝑖 ≠ 𝑗 (9)
𝑘
𝑖 + 𝑡𝑖𝑗 − 𝑎𝑘𝑗 ≤ 𝑀(1 − 𝑥𝑘𝑖𝑗 ) ∀𝑖, 𝑗 ∈  , 𝑘 ∈  ∶ 𝑖 ≠ 𝑗 (10)
𝑘
𝑖 ≤ 𝑑𝑘

𝑖 ∀𝑖 ∈  ⧵ { }, 𝑘 ∈  (11)
𝑘
𝑖 + 𝑝𝑘𝑖 ≤ 𝑑𝑘

𝑖 𝑖 ∈  , 𝑘 ∈  (12)
𝑘
𝑖 ≥ 𝐸𝑖 ∀𝑘 ∈  , 𝑟 ∈ , 𝑖 = 𝑝(𝑟) (13)
𝑘
𝑖 ≤ 𝑇𝑖 ∀𝑘 ∈  , 𝑟 ∈ , 𝑖 = 𝑑(𝑟) (14)
∑

𝑗∈

(𝑦𝑘𝑟𝑗𝑖 − 𝑦𝑘𝑟𝑖𝑗 ) +
∑

𝑗∈

(𝑦𝑙𝑟𝑖𝑗 − 𝑦𝑙𝑟𝑗𝑖)

≤ 1 + 𝑧𝑘𝑙𝑖𝑟 ∀𝑖 ∈  , 𝑘, 𝑙 ∈  , 𝑟 ∈  ∶ 𝑘 ≠ 𝑙 (15)
𝑘 𝑙 𝑘𝑙

𝑖 − 𝑑𝑖 ≤ 𝑀(1 − 𝑧𝑖𝑟 ) ∀𝑖 ∈  , 𝑘, 𝑙 ∈  , 𝑟 ∈  ∶ 𝑘 ≠ 𝑙 (16)
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∑

𝑟∈
𝐿𝑖𝑦

𝑘𝑟
𝑖𝑗 ≤ 𝑄𝑘𝑥

𝑘
𝑖𝑗 ∀𝑖, 𝑗 ∈  , 𝑘 ∈  ∶ 𝑖 ≠ 𝑗 (17)

𝑏𝑘𝑗 ≤ 𝑏𝑘𝑖 − 𝑡𝑖𝑗

+𝑀(1 − 𝑥𝑘𝑖𝑗 ) ∀𝑖 ∈  ⧵ { }, 𝑗 ∈  ⧵ {𝑜(𝑘)}, 𝑘 ∈  (18)
𝑏𝑘𝑗 ≤ 𝑏𝑘𝑖 − 𝑡𝑖𝑗

+𝑀(1 − 𝑥𝑘𝑖𝑗 ) +𝐻𝑘 𝑝𝑘𝑖 ∀𝑖 ∈  , 𝑗 ∈  ⧵ {𝑜(𝑘)}, 𝑘 ∈  (19)

𝑏𝑘𝑖 = 𝐵𝑘 ∀𝑘 ∈  , 𝑖 = 𝑜(𝑘) (20)

𝑏𝑘𝑖 +𝐻𝑘 𝑝𝑘𝑖 ≤ 𝐵𝑘 𝑖 ∈  , 𝑘 ∈  (21)
𝑘
𝑖 ≤ (𝐵𝑘∕𝐻𝑘)

∑

𝑗∈

𝑥𝑘𝑗𝑖 𝑖 ∈  , 𝑘 ∈  (22)

𝑘
𝑖𝑗 , 𝑦

𝑘𝑟
𝑖𝑗 ∈ {0, 1} ∀𝑖, 𝑗 ∈  , 𝑘 ∈  , 𝑟 ∈  ∶ 𝑖 ≠ 𝑗 (23)

𝑘𝑙
𝑖𝑟 ∈ {0, 1} ∀𝑖 ∈  , 𝑘, 𝑙 ∈  , 𝑟 ∈  ∶ 𝑘 ≠ 𝑙 (24)
𝑘
𝑖 , 𝑑

𝑘
𝑖 , 𝑏

𝑘
𝑖 , 𝑝

𝑘
𝑡 ≥ 0 ∀𝑖 ∈  , 𝑡 ∈  , 𝑘 ∈  (25)

The objective function minimizes the total cost (1) that occurs as a
esult of the traveled distance. Constraints (2) ensure that all vehicles
eave their depot, and each vehicle has one and only one route. All
ehicles must return to the depot in (3). It is possible that a vehicle
an directly travel from the origin depot to the destination depot, which
ould incur zero cost to the system. If a vehicle enters a node (except

or the vehicle’s origin and destination depots), then the vehicle has
o leave the node in constraints (4). In constraint sets (5) and (6), all
equests are picked up and delivered, respectively. If a request visits
transfer node, it must leave the transfer node either with the same

ehicle or with another vehicle in (7). If a request enters a node that
s not its pickup, its delivery, or a transfer node, then the request must
eave that node with the same vehicle in (8). Constraints (9) connect
wo variables, and if a vehicle does not directly travel from node 𝑖 to
, it cannot carry a request through arc (𝑖, 𝑗). Constraints (10) explain
he relationship between departure and arrival times: the arrival time to
he successor node (𝑗) must be greater than or equal to the summation
f the departure time from the predecessor node (𝑖) and the travel time
etween nodes 𝑖 and 𝑗. Constraints (11) ensure that for all vehicles
nd at all nodes, the departure time of a vehicle cannot be earlier than
ts arrival time. The departure time from a transfer node is calculated
onsidering recharging duration in (12). The time-window constraints
or pickup and delivery nodes are captured in constraints (13) and (14).
onstraints (15) are the modified constraints (see Section 1.1), and they
nsure that the corresponding 𝑧 variable will be one if and only if the
equest enters the transfer node with vehicle 𝑘 and leaves the node
ith vehicle 𝑙 — at the same time it does not leave the node with
ehicle 𝑘 and does not enter with vehicle 𝑙. Referring to Fig. 2, when
he constraint is written for 𝑡1, 𝑣1, 𝑣2, and 𝑟1, the decision variables
et values as follows: 𝑦𝑣1𝑟1𝑝1𝑡1

= 1, 𝑦𝑣1𝑟1𝑡1𝑡2
= 1, 𝑦𝑣2𝑟1𝑡2𝑡1

= 1, and 𝑦𝑣2𝑟1𝑡1𝑑1
= 1.

hus, 𝑧𝑣1𝑣2𝑡1𝑟1
may get zero, unlike Rais et al. (2014)’s constraint. If a

equest is transferred between vehicles at a transfer node, then the
rrival time of the pickup vehicle to the node must be earlier than
he departure time of the delivery vehicle in (16). Constraints (17)
ssure that vehicle capacities are never exceeded. Constraints (18) and
19) calculate battery levels (remaining mileage) after leaving a regular
nd a transfer node, respectively. All vehicles leave their depots fully
harged in (20). Vehicles cannot be charged more than their battery
apacities in (21). Vehicles must visit a transfer node to be recharged
n (22). We assume that recharging EVs is a linear function of time (Jun,
ee, & Yih, 2021). Constraints (23) and (24) require the given variables
o be binary. Constraints (25) declare positive continuous variables.

.2. Valid inequalities

In order to improve the runtime of the MILP model, we introduce
set of problem-specific valid inequalities. Constraints (26) eliminate

he transits from a delivery node to its associated pickup node for all
4

a

equest and all vehicles — precedence constraints. Remember that, a
equest must be picked up first and then delivered.

𝑘
𝑖𝑗 ≤ 0 ∀𝑟 ∈ , 𝑘 ∈  , 𝑖 = 𝑑(𝑟), 𝑗 = 𝑝(𝑟) (26)

If there are arcs whose distance is longer than a vehicle can travel
with a full battery (𝑡𝑖𝑗 > 𝐵𝑘 ∶ 𝑖, 𝑗 ∈  , 𝑘 ∈  : 𝑖 ≠ 𝑗), the vehicle cannot
directly transit between those nodes without recharging. The parameter
𝛾𝑘𝑖𝑗 gets zero if the above situation exists. Thereby, some variables would
be initially set to zero by Constraints (27).

𝑥𝑘𝑖𝑗 ≤ 𝛾𝑘𝑖𝑗 ∀𝑖, 𝑗 ∈  , 𝑘 ∈  ∶ 𝑖 ≠ 𝑗 (27)

Constraints (28) and (29) ensure that no vehicle enters an origin
depot and leaves a destination depot. Here, 𝐷+ indicates all origin
depots while 𝐷− shows all destination depots. Recall that, a vehicle
starts its route from an origin depot and ends at a destination depot.

𝑥𝑘𝑖𝑗 ≤ 0 ∀𝑖 ∈  , 𝑗 ∈ +, 𝑘 ∈  ∶ 𝑖 ≠ 𝑗 (28)

𝑥𝑘𝑖𝑗 ≤ 0 ∀𝑖 ∈ −, 𝑗 ∈  , 𝑘 ∈  ∶ 𝑖 ≠ 𝑗 (29)

Intuitively, due to the objective function, a vehicle will not pass
through arc (𝑗, 𝑖) if it travels from node 𝑖 to node 𝑗 — Constraints (30).

𝑥𝑘𝑖𝑗 + 𝑥𝑘𝑗𝑖 ≤ 1 ∀𝑖, 𝑗 ∈  , 𝑘 ∈  ∶ 𝑖 ≠ 𝑗 (30)

Order matching constraint (a valid inequality) for the PDP is pro-
posed by Ruland and Rodin (1997). The constraint is stated in Eq. (31).

𝑥𝑘𝑖𝑗 + 𝑥𝑘𝑖𝑙 + 𝑥𝑘𝑙𝑚 ≤ 2 ∀𝑘 ∈  , 𝑟1, 𝑟2 ∈  ∶ 𝑖 = 𝑝(𝑟1), 𝑗 = 𝑑(𝑟1), (31)

𝑙 = 𝑝(𝑟2), 𝑚 = 𝑑(𝑟2)

Although the runtimes of the mathematical model are improved
ith the valid inequalities, for large instances (more than seven re-
uests), it is not possible to obtain a feasible solution in 24 h — the
etails are discussed in Section 4. In order to tackle this, we devise a
etaheuristic approach, that is explained in the next section.

. Heuristic approach

The PDP-TW is classified as NP-Hard (Lau & Liang, 2002) and is
peculiar case of our problem, where no requests are transferred.

hereby, we can conclude that the PDP-TWT is also an NP-Hard prob-
em. The time to solve these problems exactly increases exponentially
ith the number of variables, and so an efficient heuristic method is
eeded to provide a good solution.

Metaheuristic algorithms are used for their efficacy in finding good
olutions within a reasonable time (Gandomi, Yang, Talatahari, & Alavi,
013). They start from an initial solution or a solution pool and aim to
mprove the given solution(s) throughout the search process. In this
tudy, we use a hybrid metaheuristic, which benefits from particular
dvantages of sub-heuristics. In order to find an initial solution, a
onstruction heuristic is devised. The idea behind the construction
euristic is assigning requests to either a single vehicle or two vehicles
y using transfer nodes. These are commonly used methods in the
iterature to generate initial solutions for the PDP-T, e.g., Danloup et al.
2018), Sampaio et al. (2020). It is important to note that obtaining a
easible solution in our problem context is time-consuming due to the
trict constraints.

The main flow of the proposed heuristic approach can be seen in
ig. 3. It starts with the construction heuristic that contains two sub-
lgorithms. Then, the hybrid heuristic improves the given solution by
tilizing eight neighborhoods, two of which are explained in separate

lgorithms (Algorithms 5 and 6).
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Fig. 3. Flow diagram of algorithms.

Fig. 4. Solution representation.

.1. Solution representation

In this heuristic approach, a solution is represented by an array
hat contains || sub arrays. Each sub array defines the corresponding
ehicle’s route. A 3-vehicle-3-request example can be seen in Fig. 4.
ehicle 1 (𝑣1) leaves its origin depot 𝑜(1), handles request 1 by picking

t up and delivering it, and returns to its destination depot 𝑜′(1). 𝑣2
nd 𝑣3 work together to deliver request 3: 𝑣2 picks it up and drops off
t transfer facility 𝑡, and then 𝑣3 picks the request from the facility and

delivers it to the final destination. Note that, throughout this paper, the
words ‘‘vehicle’’ and ‘‘route’’ may be used interchangeably as vehicles
are defined by their routes.

3.2. Constructing an initial solution

In order to construct an initial solution, a heuristic approach that
does not guarantee a feasible solution is proposed. Preliminary tests
suggest that searching for a feasible solution in the construction step
aggravates computational runtimes and does not improve the average
final solution quality.

In the construction phase, the request set () is divided into two
subsets based on the distance between associated pickup and delivery
nodes of each request: singles and doubles. These sets describe how
requests will be assigned to vehicles: either by Algorithm 2 or Algo-
rithm 3. If the distance between associated pickup and delivery nodes is
less than a predetermined value, then the request is assigned to singles.
Otherwise, it is allocated to doubles. Fig. 5 demonstrates an instance of
how single and double vehicle assignments work. Assume that, request
3 (𝑝3 and 𝑑3) is the request to be assigned. 𝑝3 and 𝑑3 are on the same
route in the single insertion, while they are separated into two vehicles
by using transfer 𝑡 in the double insertion.
5

Algorithm 1 Construction Heuristic
1: singles ← {}
2: doubles ← {}
3: 𝑆 ← initial solution where routes include only depots
4: maxDist ← distance between the farthest nodes
5: 𝑝(𝑟) ← pickup node of request 𝑟
6: 𝑑(𝑟) ← delivery node of request 𝑟
7: 𝑑𝑟

𝑝(𝑟)𝑑(𝑟) ← distance between 𝑝(𝑟) and 𝑑(𝑟)
8: for all 𝑟 ∈  do
9: if 𝑑𝑟

𝑝(𝑟)𝑑(𝑟) < maxDist/2 then
10: singles ← singles ∪ {𝑟}
11: else
12: doubles ← doubles ∪ {𝑟}
13: for all 𝑟 ∈ singles do
14: 𝑆 ← Algorithm 2(𝑆, 𝑟)
15: for all 𝑟 ∈ doubles do
16: 𝑆 ← Algorithm 3(𝑆, 𝑟)
17: return 𝑆

Algorithm 2 Insert into Single Vehicle
Require: Request 𝑟, Solution 𝑆
1: 𝑜𝑏𝑗∗ ∶ best objective found so far
2: ̃𝑜𝑏𝑗 ∶ objective of current solution
3: 𝑆∗ ∶ best solution found so far
4: 𝑆̃ ∶ current solution
5: 𝑜𝑏𝑗∗ ← +∞
6: 𝑅𝑣 ← route of vehicle 𝑣
7: for all 𝑣 ∈  do
8: for 0 ≤ 𝑖 ≤ |𝑅𝑣| do
9: for 𝑖 + 1 ≤ 𝑗 ≤ |𝑅𝑣| do

10: Add 𝑝(𝑟) in 𝑅𝑣 at index 𝑖
11: Add 𝑑(𝑟) in 𝑅𝑣 at index 𝑗
12: 𝑆̃ ← 𝑆
13: ̃𝑜𝑏𝑗 ← calculate_objective(𝑆̃)
14: if ̃𝑜𝑏𝑗 < 𝑜𝑏𝑗∗ then
15: 𝑜𝑏𝑗∗ ← ̃𝑜𝑏𝑗
16: 𝑆∗ ← 𝑆̃
17: Remove 𝑝(𝑟) and 𝑑(𝑟) from 𝑅𝑣
18: 𝑗++
19: 𝑖++
20: return 𝑆∗

The requests in the singles set are assigned to vehicles by Algorithm
2 first. Then, Algorithm 3 places the requests in the doubles. Algorithm
3 is executed later; thereby, the routes are not updated by singles’
assignments after transfer insertions. Algorithm 2 starts with a partial
solution and a request, and then inserts the associated pickup and deliv-
ery nodes of the request into the same vehicle with the lowest cost. The
requests inserted by Algorithm 2 are not transferred (Fig. 5(a)). Similar
to the single insertion algorithm, Algorithm 3 inserts the requests with
the lowest cost by considering transfers and precedence constraints.

3.3. Feasibility check

In the literature, a solution’s feasibility is controlled by either a
MILP model or an algorithm. However, MILP models are computa-
tionally expensive to run at each iteration. Thus, in the improvement
phase, we use an algorithm with 𝑂(| |

2
||2) complexity. The al-

orithm checks time-windows, precedence constraints, and vehicles’
attery and capacity. Precedence constraints ensure that for all re-
uests, the pickup node is visited before its associated delivery node, or
f a request is transferred, the transfer node is visited after the pickup
ode and before the delivery node. While checking time-windows
onstraints, transfer times and precedence relationships are considered
n the calculation.
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Fig. 5. Examples of single and double insertions.
Algorithm 3 Insert into Two Vehicles
Require: Request 𝑟, Solution 𝑆
1: 𝑜𝑏𝑗∗ ∶ best objective found so far
2: ̃𝑜𝑏𝑗 ∶ objective of current solution
3: 𝑆∗ ∶ best solution found so far
4: 𝑜𝑏𝑗∗ ← +∞
5: 𝑅𝑣 ← route of vehicle 𝑣
6: for all 𝑡 ∈  do
7: for all 𝑣1 ∈  do
8: for all 𝑣2 ∈  do
9: if 𝑣1 ≠ 𝑣2 then

10: Remove 𝑡 from 𝑅𝑣1 and 𝑅𝑣2 if exists
11: for 0 ≤ 𝑖 ≤ |𝑅𝑣1 | do
12: for 𝑖 + 1 ≤ 𝑗 ≤ |𝑅𝑣1 | do
13: for 0 ≤ 𝑖2 ≤ |𝑅𝑣2 | do
14: for 𝑖2 + 1 ≤ 𝑗2 ≤ |𝑅𝑣2 | do
15: Add 𝑝(𝑟) in 𝑅𝑣1 at index 𝑖
16: Add 𝑡 in 𝑅𝑣1 at index 𝑗
17: Add 𝑡 in 𝑅𝑣2 at index 𝑖2
18: Add 𝑑(𝑟) in 𝑅𝑣2 at index 𝑗2
19: ̃𝑜𝑏𝑗 ← calculate_objective(𝑆)
20: if ̃𝑜𝑏𝑗 < 𝑜𝑏𝑗∗ then
21: 𝑜𝑏𝑗∗ ← ̃𝑜𝑏𝑗
22: 𝑆∗ ← 𝑆
23: Remove 𝑝(𝑟), 𝑡, 𝑑(𝑟) from 𝑅𝑣1 and 𝑅𝑣2 accordingly
24: return 𝑆∗

3.4. Improvement phase

A hybrid metaheuristic is used to improve the initial solution.
The word hybrid is used, as the metaheuristic combines some ele-

ents of Simulated Annealing (SA) and Large Neighborhood Search (LNS)
algorithms. The SA main structure is applied in the metaheuristic.

The hybrid metaheuristic takes four arguments: a solution from the
construction phase (𝑆), an initial temperature (𝑡), a cooling schedule
(𝑐), and a maximum non-improved iteration number (𝑀𝐼). Until 𝑀𝐼
is reached, a new solution is generated by one of the neighborhoods
in each iteration. As a given initial solution’s feasibility is uncertain,
until the algorithm finds the first feasible solution, it accepts infeasible
solutions, does not count non-improved iterations and does not update
the current objective value. In case a better feasible solution is found,
the new solution is accepted, and the best and the current solutions are
updated. If the new solution is not better than the previous solution, but
feasible, it is accepted with a probability, and the algorithm increases
the non-improved iteration counter by one. The temperature is adjusted
with the cooling schedule. If the temperature drops to a certain degree,
it is raised back to the initial temperature. The steps can be seen in
Algorithm 4. Note that, at every iteration, the generated solution is
cleaned by a primitive sub-algorithm that removes unused transfer
nodes from the routes.
6

Algorithm 4 Hybrid Heuristic
Require: Solution 𝑆, temperature 𝑡, cool-

ing schedule 𝑐 ∈ (0, 1), maximum
iteration number 𝑀𝐼

1: 𝑖 ← 0
2: 𝑡 ← 𝑡
3: 𝜌 ← 1∕8 (8 refers to number of

neighborhood definitions, it is 7 when
there is 1 transfer node in instance)

4: 𝑆𝑛: neighbor solution
5: 𝑆𝑐 : current solution
6: 𝑆∗: best solution
7: 𝑆𝑐 ← 𝑆
8: 𝑜𝑏𝑗∗ , 𝑜𝑏𝑗𝑐 , 𝑜𝑏𝑗𝑛 ← +∞
9: while true do

10: 𝜎 ← random number (𝜎 ∈ [0, 1])
11: if 𝜎 ≤ 𝜌 then
12: 𝑆𝑛 ← P-Swap-Single(𝑆𝑐 )
13: else if 𝜎 ≤ 2𝜌 then
14: 𝑆𝑛 ← D-Swap-Single(𝑆𝑐 )
15: else if 𝜎 ≤ 3𝜌 then
16: 𝑆𝑛 ← MergeDP(𝑆𝑐 )
17: else if 𝜎 ≤ 4𝜌 then
18: 𝑆𝑛 ← P-Swap-Two(𝑆𝑐 )
19: else if 𝜎 ≤ 5𝜌 then
20: 𝑆𝑛 ← D-Swap-Two(𝑆𝑐 )
21: else if 𝜎 ≤ 6𝜌 then
22: 𝑆𝑛 ← Small-Destroy-Repair(𝑆𝑐 )
23: else if 𝜎 ≤ 7𝜌 then

24: 𝑆𝑛 ← T-Insert(𝑆𝑐 )
25: else
26: 𝑆𝑛 ← T-Update(𝑆𝑐 )
27: if 𝑆𝑛 is feasible then
28: 𝑜𝑏𝑗𝑛 ← calculate_objective(𝑆𝑛)
29: if 𝑜𝑏𝑗𝑛 < 𝑜𝑏𝑗𝑐 then
30: 𝑆𝑐 ← 𝑆𝑛

31: 𝑜𝑏𝑗𝑐 ← 𝑜𝑏𝑗𝑛

32: if 𝑜𝑏𝑗𝑛 < 𝑜𝑏𝑗∗ then
33: 𝑆∗ ← 𝑆𝑛

34: 𝑜𝑏𝑗∗ ← 𝑜𝑏𝑗𝑛

35: else
36: 𝛼 ← a random number: 𝛼 ∈

[0, 1]

37: if 𝛼 ≤ 𝑒−
(

𝑜𝑏𝑗𝑛−𝑜𝑏𝑗𝑐

𝑡

)

then
38: 𝑆𝑐 ← 𝑆𝑛

39: 𝑜𝑏𝑗𝑐 ← 𝑜𝑏𝑗𝑛

40: 𝑖++
41: else
42: if 𝑖 = 0 then
43: 𝑆𝑐 ← 𝑆𝑛

44: else
45: 𝑖++
46: 𝑡 ← 𝑡 × 𝑐
47: if 𝑡 < 𝑡 then
48: t ← 𝑡
49: if 𝑖 = 𝑀𝐼 then
50: return 𝑆∗

Fig. 6. Swapping two pickup nodes in a vehicle.

3.4.1. Neighborhoods
Within the hybrid heuristic, eight different neighborhood defini-

tions are implemented. The neighbor selection is performed by the
roulette wheel method, where all neighborhoods have an equal prob-
ability. Turkeš et al. (2020) share a metadata analysis on the adap-
tive layer of ALNS and argues its effectiveness with regard to the
solution quality. Thus, we do not implement adaptive probabilities.
Neighborhood definitions are as follows:

P-Swap-Single. Two pickup nodes on the same route are swapped. An
example can be seen in Fig. 6, where 𝑝1 and 𝑝2 are swapped. The
neighborhood first identifies routes with more than one pickup node.
Then, it randomly chooses one of the vehicles and two pickup nodes
within the vehicle’s route.

D-Swap-Single. Two delivery nodes on the same route are swapped, and
it has the same rules as P-Swap-Single, but for delivery nodes.

MergeDP. It chooses a delivery node which is not on the same route
with its associated pickup node. Then, the delivery node is inserted
into the same route as its associated pickup node. The neighborhood
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Fig. 7. Inserting the delivery node into the same route.
Fig. 8. Exchanging two pickup nodes’ vehicles.
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irst finds all of the transferred requests and randomly selects one of
hem. The pickup node’s vehicle stays the same, and the delivery node
s inserted at the lowest cost considering that the delivery node must be
isited later than its associated pickup node. An example can be seen
n Fig. 7, where 𝑑3 is removed from 𝑣1’s route and placed after 𝑝3 on
𝑣2’s route.

P-Swap-Two. Two pickup nodes exchange their routes. However, trans-
fer decisions and their associated delivery nodes are elaborated within
the neighborhood while exchanging routes. An example is illustrated
in Fig. 8. Assume that, currently 𝑝2 and 𝑑2 are on the same route (𝑣1),

hile request 3 (𝑝3 and 𝑑3) is transferred. After the exchange, 𝑝3 will
be on the same route with its associated delivery node so that 𝑝3 is
inserted with the lowest cost before 𝑑3. However, 𝑝2 will be separated
from 𝑑2. Therefore, 𝑝2 is inserted before the transfer node. Note that,
the neighborhood does not force them to be inserted with each other’s
locations, i.e., 𝑝3 to 𝑝2’s location in 𝑣1.

Initially, the neighborhood creates a list of pickup nodes for all
vehicles and randomly chooses one pickup node from two different
routes (𝑝1 and 𝑝2). Assume that, their associated delivery nodes are
labeled as 𝑑1 and 𝑑2, respectively. The neighborhood checks if both
pickup nodes are in the same vehicle as their associated node before
exchanging. The pickup nodes are removed from their current routes
while storing transfer nodes’ indexes on both routes. Transfer nodes
might be necessary later in the algorithm.

If 𝑝1 and 𝑑1 are on the same route before the exchange, then the
new route of 𝑝1 must contain a transfer node. If the new route already
has one, 𝑝1 is inserted before the transfer node with the lowest cost.
Otherwise, the neighborhood checks if 𝑑2 is on the same (new) route
with 𝑝1. If this is the case, a transfer node, from 𝑝1’s original route or
another from  , is used. 𝑝1 is placed before 𝑑2, and the selected transfer
node is inserted just after 𝑝1. If 𝑑2 is not on the same route, then 𝑝1 is
placed with the lowest cost, and a transfer node is inserted just after it.

If 𝑝1 and 𝑑1 currently are not on the same route, a transfer node
may be needed. Thereby, the neighborhood checks if they will be on the
same route after the exchange. 𝑝1 is inserted with the lowest cost before
𝑑1 if they will be. Otherwise, the same procedure from the previous
paragraph applies.

The neighborhood repeats the same process for 𝑝2. The details are
given in Algorithm 5.

D-Swap-Two. Two delivery nodes exchange their routes. A similar
procedure from P-Swap-Two applies for delivery nodes. However, Al-
gorithm 5 will be slightly different for this neighborhood as delivery
nodes must be visited later than their associated pickup nodes or the
transfer node used for exchange.

Small-Destroy-Repair. It is from Large Neighborhood Search (LNS). It
randomly selects one request and removes the associated pickup and
delivery node from their current routes. Note that, the pickup and
delivery nodes can be on the same route as well as on different routes.
Thereafter, inserting criteria are decided that could be either single
7
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Fig. 9. Remove and insert a request.

nsertion or double insertion by transferring. If the request is currently
ransferred (not transferred), it will be transferred (not transferred)
gain with a probability after the insertion. The neighborhood’s details
an be seen in Algorithm 6. Fig. 9 demonstrates an example, where
equest 2 (𝑝2 and 𝑑2) is to be inserted — it could be either transferred
above) or handled by a single vehicle (below).

-Insert. A transfer node is inserted into two routes. The reason for
pplying T-insert is to be able to generate two routes that can be
tilized later by exchanging requests among these vehicles. Vehicles
re randomly selected among the ones whose route does not contain a
ransfer node. However, the transfer node selection and the insertion
re performed by aiming for the lowest cost.

-Update. This neighborhood could only be selected if the problem
nstance contains more than one transfer node. First, the neighbor-
ood finds the routes with transfer nodes. Then, one transfer node is
andomly chosen from the set  , and the transfer nodes within the
elected routes are replaced by the new transfer node. This procedure is
pplied to ensure that each route has the same transfer node; thereby,
ynchronization between vehicles would be easier, and it lets the
lgorithm search a different region of the solution space.

. Computational experiments

In this section, the proposed heuristic approach is tested against the
ILP formulation in terms of objective values and runtimes. The MILP
odel is utilized to evaluate the value of including transfer decisions

nd the valid inequalities’ impact on the runtimes. The hybrid heuristic
s compared with a single neighborhood definition and also analyzed
ith a relaxed version of tight constraints.
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Algorithm 5 P-Swap-Two
Require: Solution 𝑆
1: 𝑃𝑣 ← pickup nodes in vehicle 𝑣
2: same1, same2, transfer1, transfer2 ← false
3: 𝑅𝑣 ← route of vehicle 𝑣 in solution S
4: 𝑑𝑛 ← associated delivery node of pickup node 𝑛
5: 𝑖(𝑥) ← index of node 𝑥
6: if ∑𝑣∈∶|𝑃𝑣 |>0

𝑣 > 1 then
7: Randomly select two vehicles (𝑣1 and 𝑣2)
8: Randomly select one pickup node from each route (𝑝1 and 𝑝2)
9: if {𝑝1, 𝑑1} ∈ 𝑅𝑣1 then
0: same1 ← true
1: if {𝑝2, 𝑑2} ∈ 𝑅𝑣2 then
2: same2 ← true
3: 𝑅𝑣1 ← 𝑅𝑣1 ⧵ 𝑝1
4: 𝑅𝑣2 ← 𝑅𝑣2 ⧵ 𝑝2
5: if 𝑅𝑣1 contains 𝑡 ∈  then
6: transfer1 ← true
7: 𝑡1 ← 𝑡
8: if 𝑅𝑣2 contains 𝑡 ∈  then
9: transfer2 ← true
0: 𝑡2 ← 𝑡
1: if same1 then
2: if transfer2 then
3: 𝑅𝑣2 ← 𝑅𝑣2 ∪ 𝑝1 ∶ 𝑖(𝑝1) < 𝑖(𝑡2) with the lowest cost
4: else
5: if transfer1 then
6: 𝑡2 ← 𝑡1
7: else
8: 𝑡2 ←  [1]

29: if 𝑑2 ∈ 𝑅𝑣2 then
0: 𝑅𝑣2 ← 𝑅𝑣2 ∪ 𝑝1 ∶ 𝑖(𝑝1) < 𝑖(𝑑2) with the lowest cost
1: 𝑅𝑣2 ← 𝑅𝑣2 ∪ 𝑡2 ∶ 𝑖(𝑡2) = 𝑖(𝑝1) + 1
2: else
3: 𝑅𝑣2 ← 𝑅𝑣2 ∪ 𝑝1 with the lowest cost
4: 𝑅𝑣2 ← 𝑅𝑣2 ∪ 𝑡2 ∶ 𝑖(𝑡2) = 𝑖(𝑝1) + 1
5: else
6: if {𝑑1} ∈ 𝑅𝑣2 then
7: 𝑅𝑣2 ← 𝑅𝑣2 ∪ 𝑝1 ∶ 𝑖(𝑝1) < 𝑖(𝑑1) with the lowest cost
8: else
9: if transfer2 then
0: 𝑅𝑣2 ← 𝑅𝑣2 ∪ 𝑝1 ∶ 𝑖(𝑝1) < 𝑖(𝑡2) with the lowest cost
1: else

42: if transfer1 then
43: 𝑡2 ← 𝑡1
44: else
45: 𝑡2 ←  [1]
46: if 𝑑2 ∈ 𝑅𝑣2 then
47: 𝑅𝑣2 ← 𝑅𝑣2 ∪ 𝑝1 ∶ 𝑖(𝑝1) < 𝑖(𝑑2) with the lowest cost
48: 𝑅𝑣2 ← 𝑅𝑣2 ∪ 𝑡2 ∶ 𝑖(𝑡2) = 𝑖(𝑝1) + 1
49: else
50: 𝑅𝑣2 ← 𝑅𝑣2 ∪ 𝑝1 with the lowest cost
51: 𝑅𝑣2 ← 𝑅𝑣2 ∪ 𝑡2 ∶ 𝑖(𝑡2) = 𝑖(𝑝1) + 1
52: if same2 then
53: if transfer1 then
54: 𝑅𝑣1 ← 𝑅𝑣1 ∪ 𝑝2 ∶ 𝑖(𝑝1) < 𝑖(𝑡1) with the lowest cost
55: else
56: if transfer2 then
57: 𝑡1 ← 𝑡2
58: else
59: 𝑡1 ←  [1]
60: if 𝑑1 ∈ 𝑅𝑣1 then
61: 𝑅𝑣1 ← 𝑅𝑣1 ∪ 𝑝1 ∶ 𝑖(𝑝2) < 𝑖(𝑑1) with the lowest cost
62: 𝑅𝑣1 ← 𝑅𝑣1 ∪ 𝑡1 ∶ 𝑖(𝑡1) = 𝑖(𝑝2) + 1
63: else
64: 𝑅𝑣1 ← 𝑅𝑣1 ∪ 𝑝2 with the lowest cost
65: 𝑅𝑣1 ← 𝑅𝑣1 ∪ 𝑡1 ∶ 𝑖(𝑡1) = 𝑖(𝑝2) + 1
66: else
67: if {𝑑2} ∈ 𝑅𝑣1 then
68: 𝑅𝑣1 ← 𝑅𝑣1 ∪ 𝑝2 ∶ 𝑖(𝑝2) < 𝑖(𝑑2) with the lowest cost
69: else
70: if transfer1 then
71: 𝑅𝑣1 ← 𝑅𝑣1 ∪ 𝑝2 ∶ 𝑖(𝑝2) < 𝑖(𝑡1) with the lowest cost
72: else
73: if transfer2 then
74: 𝑡1 ← 𝑡2
75: else
76: 𝑡1 ←  [1]
77: if 𝑑1 ∈ 𝑅𝑣1 then
78: 𝑅𝑣1 ← 𝑅𝑣1 ∪ 𝑝2 ∶ 𝑖(𝑝2) < 𝑖(𝑑1) with the lowest cost
79: 𝑅𝑣1 ← 𝑅𝑣1 ∪ 𝑡1 ∶ 𝑖(𝑡1) = 𝑖(𝑝2) + 1
80: else
81: 𝑅𝑣1 ← 𝑅𝑣1 ∪ 𝑝2 with the lowest cost
82: 𝑅𝑣1 ← 𝑅𝑣1 ∪ 𝑡1 ∶ 𝑖(𝑡1) = 𝑖(𝑝2) + 1
83: return 𝑆
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4.1. Test instances and settings

The data set used is generated from Sampaio (2020)’s 0.ins instance.
he benchmark includes only one depot, one vehicle, and 50 requests.
owever, in our problem setting, we consider multiple depots and
apacitated EVs. Thus, we modified the instance by adding vehicles,
epots, and transfer nodes. The node attributes, e.g., coordinates and
oads, were kept the same as the original instance; however, the late
ime-windows were extended considering EVs’ batteries. We created
0 different instances by selecting the first || number of requests.
he instances are labeled regarding the number of requests, depots,
ransfers, and vehicles, respectively. For example, instance 5_1_1_3
ontains five requests, one depot, one transfer, and three vehicles. The
otal number of nodes in an instance is calculated as 2×||+2×||+| |.
he generated data set can be listed as: 5_1_1_3, 7_1_1_3, 10_1_1_3,
2_1_1_5, 15_2_1_5, 17_2_1_7, 20_2_2_7, 25_2_2_7, 30_2_2_9, 30_2_3_9. In
rder to stress-test the hybrid heuristic, 70_2_3_9 is introduced by using
inimum/maximum coordinates and time windows in the benchmark

nstance.
Another benchmark from Lyu and Yu (2021) is also used in the

omputational experiments. The benchmark includes four sets, and
ach has 90 instances as a total of 360. The sets are labeled as 3_8_4_4,
8

_8_5_4, 4_8_4_4, and 5_8_4_4. While these instances are classified as w
‘new’’, the previous ones are as ‘‘old’’ so as not to confuse readers
ith two different five-request instances. Only late time windows and
ehicles are modified to be consistent with EVs.

Chevrolet Bolt EV is chosen as a default vehicle type as in He et al.
2012). According to Chevrolet (2019), Chevrolet Bolt EV can travel
p to 238 miles on a full charge and can be driven 25 miles with one
our of charging. As we solve the problem for a day, we multiplied
ll late time windows, where the maximum is 180, by eight to extend
hem to 24 h (1440 min). For computational experiments, the EVs’
apacities are set to 10 for all vehicles. Although parameter selection
omogenizes all vehicles, the MILP and the hybrid heuristic can work
ith a heterogeneous fleet without any further modification.

The parameters 𝑡𝑖𝑗 are calculated by the Euclidean distance rule.
he cost per mile is determined to be 10¢ to calculate the costs 𝑐𝑖𝑗 ;
owever, it is a coefficient to multiply the distance, and it can vary
etween nodes. We assume that one unit of distance can be traveled in
ne time unit. All service times are assumed to be zero, but it can be
ncluded in the model as a constant parameter.

We performed the tests on a server equipped with Two Sky Lake
PUs @ 2.60 GHz, with 96 GB RAM per node, where each node is
esponsible of running 24 jobs simultaneously. The heuristic approach
as coded in Java, and the MILP model was solved by IBM CPLEX 12.8.
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Algorithm 6 Small-Destroy-Repair
Require: Solution 𝑆
1: same ← false, 𝜌 ← constant probability
2: Randomly select a request 𝑟 for removal operator
3: 𝑅𝑝 ← current route of 𝑝(𝑟) in solution S
4: 𝑅𝑑 ← current route of 𝑑(𝑟) in solution S
5: 𝑖(𝑥) ← index of node 𝑥
6: if 𝑅𝑝 = 𝑅𝑑 then
7: same ← true
8: 𝑅𝑝 ← 𝑅𝑝 ⧵ 𝑝(𝑟)
9: 𝑅𝑑 ← 𝑅𝑑 ⧵ 𝑑(𝑟)

10: if same then
11: 𝛼 ← a random number: 𝛼 ∈ [0, 1]
12: if 𝛼 < 𝜌 then
13: 𝑅𝑣 ← 𝑅𝑣 ∪ {𝑝(𝑟), 𝑑(𝑟)} with the lowest cost
14: else
15: for all 𝑘 ∈  do
16: for all 𝑙 ∈  do
17: if 𝑘 ≠ 𝑙 then
18: 𝑇𝑥 ← transfers in vehicle 𝑥
19: if |𝑇𝑘| = |𝑇𝑙| = 0 then
20: 𝑡 ←  [1]
21: if |𝑇𝑘| = 0 then
22: 𝑅𝑣𝑘 ← 𝑅𝑣𝑘 ∪ 𝑝(𝑟) with the lowest cost
23: 𝑅𝑣𝑘 ← 𝑅𝑣𝑘 ∪ 𝑡 ∶ 𝑖(𝑡) = 𝑖(𝑝(𝑟)) + 1
24: else
25: 𝑅𝑣𝑘 ← 𝑅𝑣𝑘 ∪ 𝑝(𝑟) ∶ 𝑖(𝑝(𝑟)) < 𝑖(𝑡) with the lowest cost

26: if |𝑇𝑙| = 0 then
27: 𝑅𝑣𝑙 ← 𝑅𝑣𝑙 ∪ 𝑑(𝑟) with the lowest cost
28: 𝑅𝑣𝑙 ← 𝑅𝑣𝑙 ∪ 𝑡 ∶ 𝑖(𝑡) = 𝑖(𝑑(𝑟)) + 1
29: else
30: 𝑅𝑣𝑙 ← 𝑅𝑣𝑙 ∪ 𝑑(𝑟) ∶ 𝑖(𝑑(𝑟)) < 𝑖(𝑡) with the lowest cost
31: else
32: if 𝛼 < 𝜌 then
33: for all 𝑘 ∈  do
34: for all 𝑙 ∈  do
35: if 𝑘 ≠ 𝑙 then
36: 𝑇𝑥 ← transfers in vehicle 𝑥
37: if |𝑇𝑘| = |𝑇𝑙| = 0 then
38: 𝑡 ←  [1]
39: if |𝑇𝑘| = 0 then
40: 𝑅𝑣𝑘 ← 𝑅𝑣𝑘 ∪ 𝑝(𝑟) with the lowest cost
41: 𝑅𝑣𝑘 ← 𝑅𝑣𝑘 ∪ 𝑡 ∶ 𝑖(𝑡) = 𝑖(𝑝(𝑟)) + 1
42: else
43: 𝑅𝑣𝑘 ← 𝑅𝑣𝑘 ∪ 𝑝(𝑟) ∶ 𝑖(𝑝(𝑟)) < 𝑖(𝑡) with the lowest cost
44: if |𝑇𝑙| = 0 then
45: 𝑅𝑣𝑙 ← 𝑅𝑣𝑙 ∪ 𝑑(𝑟) with the lowest cost
46: 𝑅𝑣𝑙 ← 𝑅𝑣𝑙 ∪ 𝑡 ∶ 𝑖(𝑡) = 𝑖(𝑑(𝑟)) + 1
47: else
48: 𝑅𝑣𝑙 ← 𝑅𝑣𝑙 ∪ 𝑑(𝑟) ∶ 𝑖(𝑑(𝑟)) < 𝑖(𝑡) with the lowest cost
49: else
50: 𝑅𝑣 ← 𝑅𝑣 ∪ {𝑝(𝑟), 𝑑(𝑟)} with the lowest cost
51: return 𝑆
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Table 3
The summary of the hybrid heuristic results.

Instance Total
request

Transferred
request

Transferred
requests (%)

Used
vehicles

5_1_1_3_old 5 0 0.00 1
7_1_1_3_old 7 2 28.57 2
10_1_1_3_old 10 5 50.00 2
12_1_1_5_old 12 10 83.33 4
15_2_1_5_old 15 6 40.00 5
17_2_1_7_old 17 2 11.76 4
20_2_2_7_old 20 10 50.00 5
25_2_2_7_old 25 7 28.00 7
30_2_2_9_old 30 12 40.00 9
30_2_3_9_old 30 17 56.67 8
70_2_3_9_old 70 39 55.71 9

4.2. Heuristic results

The hybrid heuristic parameters are chosen after preliminary exper-
iments by using sets of different values for each parameter. The initial
temperature, cooling schedule, and the maximum non-improved itera-
tion number are set to 1000, 0.95, and 1,000,000 ×||, e.g., 5,000,000
iterations for 5_1_1_3_old, respectively. The temperature is raised back
to its initial degree when it reaches a minimum value. The lowest
possible temperature is set to the initial temperature multiplied by 0.2.
Thus, the search can continue from a different region after one part of
the solution space is examined.

Each instance is run 30 times to obtain normally distributed results.
The summary of the best solutions of 30 replications is given in Table 3
that contains the total number of requests and the transferred request,
the percentage of transferred requests, and the number of vehicles used.
The results reveal that intra-route facilities are likely visited to transfer
requests when the number of requests increases; however, there is no
direct correlation between them. Transferring requests mostly happen
as a result of how nodes are distributed over the network rather than
the number of nodes in the network. The table only includes the old
instances because instance 5_1_1_3_old (the smallest) gives a general
idea for the new ones, which are smaller than 5_1_1_3_old instance.
9
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Table 4
Example row from the raw table.

𝑓𝑚 𝑡𝑚 %𝑔𝑎𝑝𝑚 𝑓ℎ 𝑡ℎ %𝑔𝑎𝑝𝑓 %𝑔𝑎𝑝𝑡
3_8_4_4_new_1 30.47 534.28 0.00 30.47 25.00 0.00 −95.32

4.3. Heuristic performance compared to MILP

The average of 30 objective values obtained from the hybrid heuris-
tic are compared with the MILP’s results. A one-hour time limit is used
for the MILP model (24 h for the instances larger than five requests).
The results are presented in Table 5. Letters 𝑓 and 𝑡 represent objective
values and computational runtimes (in seconds), respectively. Subscript
𝑚 stands for the mathematical model, and ℎ is for the hybrid heuristic.
The column %𝑔𝑎𝑝𝑚 is the percentage gap between the upper and the
lower bound when the mathematical model stops after one hour (24 h
for the instances larger than five requests). The columns %𝑔𝑎𝑝𝑓 and
%𝑔𝑎𝑝𝑡 describe the percentage gaps between the objective values (𝑓𝑚
and 𝑓ℎ) and the runtimes values (𝑡𝑚 and 𝑡ℎ), respectively. The gaps are
alculated as in Equations (32) and (33).

𝑔𝑎𝑝𝑓 =
(𝑓ℎ − 𝑓𝑚)

𝑓𝑚
× 100 (32)

%𝑔𝑎𝑝𝑡 =
(𝑡ℎ − 𝑡𝑚)

𝑡𝑚
× 100 (33)

The table rows indicate the statistics obtained from 90 instances’
verage results (one set): minimum, the first quartile, mean, median,
he third quartile, and max. The link to the raw tables can be found
n supplemantary materials. Observe that, the %𝑔𝑎𝑝𝑓 and %𝑔𝑎𝑝𝑡 values
annot directly be calculated from the columns 𝑓𝑚, 𝑓ℎ, 𝑡𝑚, and 𝑡ℎ. The
eason is that the gaps are individually calculated for each instance,
ut only the statistics are presented in the table. For example, consider
ne instance of set 3_8_4_4_new (3_8_4_4_new_1), the row would be as
ollows in the raw table (Table 4), and the gap values can directly be
alculated. Remember that, each set has 90 of this row, and each row
hows the average of 30 runs under 𝑓ℎ and 𝑡ℎ.

With our current computer hardware, it is not possible to obtain
ven a feasible solution in 24 h for the instances with more than seven
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Table 5
Heuristic results compared to MILP model.

𝑓𝑚 𝑡𝑚 %𝑔𝑎𝑝𝑚 𝑓ℎ 𝑡ℎ %𝑔𝑎𝑝𝑓 %𝑔𝑎𝑝𝑡

3_8_4_4_new (1–90)

min 18.00 12.64 0.00 18.00 22.61 0.00 −98.17
Q1 25.26 329.38 0.00 25.26 23.63 0.00 −96.43
mean 27.27 548.99 0.00 27.30 24.62 0.13 −89.40
median 27.25 500.52 0.00 27.27 24.57 0.00 −95.11
Q3 29.02 713.08 0.00 29.12 25.50 0.00 −92.63
max 38.72 1267.97 0.00 38.89 27.60 1.39 86.79

𝑓𝑚 𝑡𝑚 %𝑔𝑎𝑝𝑚 𝑓ℎ 𝑡ℎ %𝑔𝑎𝑝𝑓 %𝑔𝑎𝑝𝑡

3_8_5_4_new (1–90)

min 18.00 17.06 0.00 18.00 21.79 −0.27 −98.87
Q1 24.98 414.34 0.00 25.27 22.89 0.00 −97.46
mean 27.24 734.26 0.00 27.28 23.80 0.13 −91.82
median 27.25 661.79 0.00 27.25 23.72 0.00 −96.24
Q3 29.02 929.15 0.00 29.03 24.53 0.06 −94.43
max 38.49 1946.26 0.00 38.49 26.85 1.45 30.05

𝑓𝑚 𝑡𝑚 %𝑔𝑎𝑝𝑚 𝑓ℎ 𝑡ℎ %𝑔𝑎𝑝𝑓 %𝑔𝑎𝑝𝑡

4_8_4_4_new (1–90)

min 20.86 256.97 0.00 21.41 31.76 −2.86 −99.11
Q1 28.93 856.99 0.00 28.93 33.49 0.00 −98.74
mean 31.61 1790.46 3.08 32.06 34.18 1.42 −96.68
median 31.14 1379.22 0.00 31.86 33.98 0.86 −97.55
Q3 33.33 2718.85 0.00 33.43 34.94 2.31 −96.01
max 42.62 3607.91 31.67 44.36 36.99 5.58 −87.32

𝑓𝑚 𝑡𝑚 %𝑔𝑎𝑝𝑚 𝑓ℎ 𝑡ℎ %𝑔𝑎𝑝𝑓 %𝑔𝑎𝑝𝑡

5_8_4_4_new (1–90)

min 28.48 1406.84 0.00 28.61 38.41 −42.98 −98.93
Q1 36.58 3600.96 5.75 34.74 45.05 −13.93 −98.75
mean 41.53 3334.45 19.27 38.52 45.59 −5.67 −98.56
median 40.43 3604.80 18.24 38.59 45.88 −3.00 −98.72
Q3 44.94 3605.83 28.04 41.47 46.59 5.27 −98.68
max 58.69 3644.65 59.51 55.52 47.85 13.65 −96.67

𝑓𝑚 𝑡𝑚 %𝑔𝑎𝑝𝑚 𝑓ℎ 𝑡ℎ %𝑔𝑎𝑝𝑓 %𝑔𝑎𝑝𝑡
5_1_1_3_old 43.98 1820.99 0.00 45.17 35.04 2.71 −98.08
7_1_1_3_old 46.53 7589.17 0.00 52.89 58.60 13.66 −99.22
10_1_1_3_old – – – 64.22 107.00 – –
12_1_1_5_old – – – 88.21 199.06 – –
15_2_1_5_old – – – 102.30 308.80 – –
17_2_1_7_old – – – 125.98 517.61 – –
20_2_2_7_old – – – 142.05 778.80 – –
25_2_2_7_old – – – 169.00 2017.53 – –
30_2_2_9_old – – – 195.08 23066.91 – –
30_2_3_9_old – – – 196.68 15300.18 – –
70_2_3_9_old – – – 195.05 33097.65 – –
requests. However, the results from small instances indicate that the
hybrid heuristic may find the optimal solution on average 90% faster
than the mathematical model. The negative %𝑔𝑎𝑝𝑓 values indicate
that the hybrid heuristic yields better solutions than the mathematical
model with a one-hour (or 24 h) limit. The results highlight the problem
complexity and justify the need for an efficient solution method.

4.4. Importance of transfers

In order to give readers a better understanding of how transfer
nodes improve the delivery system’s capability, we solve the one-hour-
limited MILP model for all the instances by removing the transfer
nodes. Again, 𝑓 and 𝑡 represent the objective values and the runtimes
(in second), respectively, while 𝑤 and 𝑤𝑜 stand for ‘‘with’’ and ‘‘with-
ut’’ transfers. In Table 6, the gap values are calculated as follows:

𝑔𝑎𝑝𝑓 =
(𝑓𝑤𝑜 − 𝑓𝑤)

𝑓𝑤
× 100 (34)

%𝑔𝑎𝑝𝑡 =
(𝑡𝑤𝑜 − 𝑡𝑤)

𝑡𝑤
× 100 (35)

Table 3 indicates that vehicles do not travel to an intra-route facility
for exchanging requests in small instances. However, the resulting
routes reveal that EVs still visit intra-route facilities to get recharged,
and Table 6 highlights that using transfer nodes may still improve the
objective value by up to 129%. This emphasizes the importance of
10
transfer nodes for EVs although they do not exchange requests. On
the other hand, without transfer nodes, the computational runtimes
decrease 40% on average as the total number of nodes and constraints
is reduced. 𝛥𝑖 represents the number of instances in the set become
infeasible after removing the transfer nodes. All 𝛥𝑖 values are zero
for the instances with less than or equal to five requests. However,
one might expect to observe positive 𝛥𝑖 values for large instances by
looking at Table 3 because intra-route facilities are visited to exchange
requests in large instances. Although most of the 5_8_4_4_new instances
are stopped by the time limit, the objective value is 24% better on
average than the ‘‘without’’ transfer scenario. As we could not obtain
results for the instances with more than five requests, we removed the
last ten instances’ results from the table (7_1_1_3 - 70_2_3_9).

4.5. Effect of valid inequalities on the runtimes

In addition to the first two comparisons, the impact of the valid in-
equalities (VI) is also investigated. Table 7 contains the objective values
and the runtimes (in second) of the MILP model with and without the
VI. The percent gap values (%𝑔𝑎𝑝𝑓 and %𝑔𝑎𝑝𝑡) are calculated as the
previous subsection by using Eqs. (34) and (35). Columns 𝑔𝑎𝑝𝑤 and
𝑔𝑎𝑝𝑤𝑜 show the percent gap between the upper and the lower bounds
for ‘‘with’’ and ‘‘without’’ the VI when the MILP stops, respectively.

Although the MILP model is run with a one-hour time limit, the
increase in average runtimes is 75%. Additionally, 𝛥𝑖 values represent
the number of instances, where even a feasible solution cannot be found
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Table 6
Transfer nodes impact.

𝑓𝑤 𝑡𝑤 𝑓𝑤𝑜 𝑡𝑤𝑜 %𝑔𝑎𝑝𝑓 %𝑔𝑎𝑝𝑡 𝛥𝑖

3_8_4_4_new (1–90)

min 18.00 12.64 18.02 133.36 0.00 −69.93

0

Q1 25.26 329.38 26.83 244.34 0.11 −50.44
mean 27.27 548.99 32.76 396.10 19.03 33.36
median 27.25 500.52 32.41 342.32 16.84 −34.71
Q3 29.02 713.08 38.08 511.19 32.45 −4.26
max 38.72 1267.97 48.66 893.15 49.22 1576.19

𝑓𝑤 𝑡𝑤 𝑓𝑤𝑜 𝑡𝑤𝑜 %𝑔𝑎𝑝𝑓 %𝑔𝑎𝑝𝑡 𝛥𝑖

3_8_5_4_new (1–90)

min 18.00 17.06 18.02 128.52 0.00 −81.26

0

Q1 24.98 414.34 26.83 238.18 0.11 −68.72
mean 27.24 734.26 32.76 395.04 19.13 4.79
median 27.25 661.79 32.41 339.50 17.37 −40.01
Q3 29.02 929.15 38.08 507.15 32.45 −13.27
max 38.49 1946.26 48.66 902.36 49.22 1205.02

𝑓𝑤 𝑡𝑤 𝑓𝑤𝑜 𝑡𝑤𝑜 %𝑔𝑎𝑝𝑓 %𝑔𝑎𝑝𝑡 𝛥𝑖

4_8_4_4_new (1–90)

min 20.86 256.97 28.71 185.25 0.00 −90.29

0

Q1 28.93 856.99 33.82 431.48 9.58 −67.38
mean 31.61 1790.46 41.46 946.55 30.51 −18.88
median 31.14 1379.22 38.57 931.75 30.58 −50.06
Q3 33.33 2718.85 46.97 1477.95 45.76 22.49
max 42.62 3607.91 68.49 1850.26 86.16 240.30

𝑓𝑤 𝑡𝑤 𝑓𝑤𝑜 𝑡𝑤𝑜 %𝑔𝑎𝑝𝑓 %𝑔𝑎𝑝𝑡 𝛥𝑖

5_8_4_4_new (1–90)

min 28.48 1406.84 33.03 259.77 −25.62 −84.19

0

Q1 36.58 3600.96 39.61 1005.37 6.08 −70.79
mean 41.53 3334.45 48.83 2160.93 24.58 −33.46
median 40.43 3604.80 44.64 2190.47 15.11 −31.50
Q3 44.94 3605.83 55.64 3604.09 36.34 −0.03
max 58.69 3644.65 72.38 3605.72 129.49 81.71

𝑓𝑤 𝑡𝑤 𝑓𝑤𝑜 𝑡𝑤𝑜 %𝑔𝑎𝑝𝑓 %𝑔𝑎𝑝𝑡 𝛥𝑖

5_1_1_3_old 43.98 1820.99 49.45 151.37 12.44 −91.69 –
Table 7
Effect of valid inequalities.

𝑓𝑤 𝑡𝑤 𝑔𝑎𝑝𝑤 𝑓𝑤𝑜 𝑡𝑤𝑜 𝑔𝑎𝑝𝑤𝑜 %𝑔𝑎𝑝𝑓 %𝑔𝑎𝑝𝑡 𝛥𝑖

3_8_4_4_new (1–90)

min 18.00 12.64 0.00 18.00 13.84 0.00 −1.58 −6.09

2

Q1 25.26 329.38 0.00 25.18 358.33 0.00 0.00 −1.42
mean 27.27 548.99 0.00 27.47 1046.53 3.44 0.84 203.49
median 27.25 500.52 0.00 27.31 622.30 0.00 0.00 0.19
Q3 29.02 713.08 0.00 29.10 954.23 0.00 0.00 3.89
max 38.72 1267.97 0.00 41.67 3607.24 51.44 49.30 7853.74

𝑓𝑤 𝑡𝑤 𝑔𝑎𝑝𝑤 𝑓𝑤𝑜 𝑡𝑤𝑜 𝑔𝑎𝑝𝑤𝑜 %𝑔𝑎𝑝𝑓 %𝑔𝑎𝑝𝑡 𝛥𝑖

3_8_5_4_new (1–90)

min 18.00 17.06 0.00 18.00 18.73 0.00 −0.24 −77.81

4

Q1 24.98 414.34 0.00 25.05 481.17 0.00 0.00 −1.39
mean 27.24 734.26 0.00 27.46 1088.60 3.10 0.59 94.56
median 27.25 661.79 0.00 27.30 766.77 0.00 0.00 0.49
Q3 29.02 929.15 0.00 29.03 1071.44 0.00 0.00 2.18
max 38.49 1946.26 0.00 38.49 3606.49 37.88 22.04 3200.02

𝑓𝑤 𝑡𝑤 𝑔𝑎𝑝𝑤 𝑓𝑤𝑜 𝑡𝑤𝑜 𝑔𝑎𝑝𝑤𝑜 %𝑔𝑎𝑝𝑓 %𝑔𝑎𝑝𝑡 𝛥𝑖

4_8_4_4_new (1–90)

min 20.86 256.97 0.00 20.86 252.20 0.00 −4.91 −4.53

16

Q1 28.93 856.99 0.00 29.74 869.69 0.00 0.00 −1.19
mean 31.61 1790.46 3.08 31.94 1874.95 4.22 0.20 3.30
median 31.14 1379.22 0.00 31.14 1405.53 0.00 0.00 −0.02
Q3 33.33 2718.85 0.00 33.92 2770.37 0.01 0.00 0.41
max 42.62 3607.91 31.67 42.62 3606.67 29.41 10.55 261.24

𝑓𝑤 𝑡𝑤 𝑔𝑎𝑝𝑤 𝑓𝑤𝑜 𝑡𝑤𝑜 𝑔𝑎𝑝𝑤𝑜 %𝑔𝑎𝑝𝑓 %𝑔𝑎𝑝𝑡 𝛥𝑖

5_8_4_4_new (1–90)

min 28.48 1406.84 0.00 29.99 1616.99 0.00 −28.31 −2.50

27

Q1 36.58 3600.96 5.75 37.15 3602.16 8.27 0.00 −0.03
mean 41.53 3334.45 19.27 41.51 3365.74 20.55 −0.56 0.02
median 40.43 3604.80 18.24 41.32 3605.39 18.21 0.00 0.00
Q3 44.94 3605.83 28.04 42.84 3606.19 32.27 0.00 0.03
max 58.69 3644.65 59.51 56.97 3646.80 59.51 19.11 3.57

𝑓𝑤 𝑡𝑤 𝑔𝑎𝑝𝑤 𝑓𝑤𝑜 𝑡𝑤𝑜 𝑔𝑎𝑝𝑤𝑜 %𝑔𝑎𝑝𝑓 %𝑔𝑎𝑝𝑡 𝛥𝑖

5_1_1_3_old 43.98 1820.99 0.00 47.65 3601.85 17.39 8.34 97.80 –
within the time limit without the VI over 90 instances. Observe that,
even for small instances, the rate can reach up to 30%. In this table,
again the instances with more than five requests are removed due to
not able to find a solution within the time limit.
11
4.6. Effect of strict constraints

If the time-windows and the vehicle battery and capacity constraints
are removed from our problem, then the problem becomes the PDP-T.
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%

Table 8
Comparison of results from metaheuristic with and without strict constraints.

𝑓ℎ 𝑡ℎ 𝑓𝑟ℎ 𝑡𝑟ℎ %𝑔𝑎𝑝𝑓 %𝑔𝑎𝑝𝑡

3_8_4_4_new (1–90)

min 18.00 22.61 18.00 21.49 0.00 −4.39
Q1 25.26 23.63 24.92 23.05 0.00 2.38
mean 27.30 24.62 27.13 23.49 0.58 4.81
median 27.27 24.57 27.04 23.43 0.08 4.83
Q3 29.12 25.50 28.81 23.78 0.74 7.27
max 38.89 27.60 36.99 26.52 5.14 14.91

𝑓ℎ 𝑡ℎ 𝑓𝑟ℎ 𝑡𝑟ℎ %𝑔𝑎𝑝𝑓 %𝑔𝑎𝑝𝑡

3_8_5_4_new (1–90)

min 18.00 21.79 18.00 21.77 −0.02 −3.10
Q1 25.27 22.89 24.92 22.38 0.00 2.14
mean 27.28 23.80 27.13 22.72 0.49 4.72
median 27.25 23.72 27.05 22.60 0.08 4.85
Q3 29.03 24.53 28.81 22.91 0.71 7.45
max 38.49 26.85 36.99 25.99 4.06 13.42

𝑓ℎ 𝑡ℎ 𝑓𝑟ℎ 𝑡𝑟ℎ %𝑔𝑎𝑝𝑓 %𝑔𝑎𝑝𝑡

4_8_4_4_new (1–90)

min 21.41 31.76 21.73 31.21 −4.38 −4.02
Q1 28.93 33.49 28.94 32.29 0.00 1.94
mean 32.06 34.18 31.74 32.89 0.90 3.93
median 31.86 33.98 31.43 32.85 0.54 4.06
Q3 33.43 34.94 33.33 33.45 1.52 6.07
max 44.36 36.99 41.98 35.06 5.68 10.45

𝑓ℎ 𝑡ℎ 𝑓𝑟ℎ 𝑡𝑟ℎ %𝑔𝑎𝑝𝑓 %𝑔𝑎𝑝𝑡

5_8_4_4_new (1–90)

min 28.61 38.41 28.61 43.49 −3.74 −13.57
Q1 34.74 45.05 33.56 44.72 −0.80 −1.13
mean 38.52 45.59 37.98 45.23 1.28 0.81
median 38.59 45.88 37.91 45.27 0.42 1.11
Q3 41.47 46.59 40.76 45.75 2.82 3.36
max 55.52 47.85 50.70 47.32 9.88 6.45

𝑓ℎ 𝑡ℎ 𝑓𝑟ℎ 𝑡𝑟ℎ %𝑔𝑎𝑝𝑓 %𝑔𝑎𝑝𝑡
5_1_1_3_old 45.17 35.04 43.02 34.21 4.99 2.43
7_1_1_3_old 52.89 58.60 50.98 58.17 3.74 0.74
10_1_1_3_old 64.22 107.00 63.49 109.72 1.15 −2.48
12_1_1_5_old 88.21 199.06 84.90 202.31 3.90 −1.61
15_2_1_5_old 102.30 308.80 107.23 321.28 −4.60 −3.88
17_2_1_7_old 125.98 517.61 123.63 542.22 1.90 −4.54
20_2_2_7_old 142.05 778.80 147.61 791.86 −3.77 −1.65
25_2_2_7_old 169.00 2017.53 182.18 1521.61 −7.24 32.59
30_2_2_9_old 195.08 23066.91 223.47 2615.17 −12.71 782.04
30_2_3_9_old 196.68 15300.18 218.63 2622.52 −10.04 483.42
70_2_3_9_old 195.05 33097.65 204.02 32678.77 −4.40 1.28
p

%

In order to see the impact of these strict constraints, we relax them by
assigning large-enough numbers to 𝑇𝑖, 𝐵𝑘, and 𝑄𝑘 parameters. We test
this version of the problem with the hybrid heuristic approach.

The subscripts ℎ and 𝑟ℎ indicate the hybrid heuristic and the re-
laxed hybrid heuristic, respectively. The percentage gap columns are
calculated as follows:

%𝑔𝑎𝑝𝑓 =
(𝑓ℎ − 𝑓𝑟ℎ)

𝑓𝑟ℎ
× 100 (36)

𝑔𝑎𝑝𝑡 =
(𝑡ℎ − 𝑡𝑟ℎ)

𝑡𝑟ℎ
× 100 (37)

When the strict constraints are relaxed, it is expected that the objec-
tive value would improve. However, in Table 8, the results contradict
our expectations. Remember that, the hybrid heuristic stops when the
maximum number of non-improved iterations is reached and does not
start the iterator until it finds the first feasible solution. Without the
strict constraints, a feasible solution is found at the early stage of the
algorithm. On the other hand, when the search space is stricter, the
iterator starts when the algorithm already converges to a better solution
than the initial one.

Resulting vehicle schedules indicate that transfer nodes are still
visited even if EVs are not the part of the system in this experiment.
We can conclude that intra-route facilities do not only contribute to
the delivery system by providing chargers, but also help to reduce the
total traveled distance.
12
4.7. Comparison with large neighborhood search

In this test, the impact of one particular neighborhood on the
performance of the hybrid approach is evaluated. Remember that,
Small-Destroy-Repair neighbor removes a request from the current
solution and inserts it back with the lowest cost, which is the LNS
part of the approach. We apply this test to compare our method with
others as Adaptive LNS is a widely used technique to solve logistics
problems in the literature, and we already mentioned the adaptive
layer of it. Thereby, the remaining neighborhood definitions, besides
Small-Destroy-Repair, are removed from the hybrid heuristic approach.

The new subscript 𝑙𝑛𝑠 in Table 9 refers to the new approach. The
ercentage gaps are calculated as follows:

𝑔𝑎𝑝𝑓 =
(𝑓𝑙𝑛𝑠 − 𝑓ℎ)

𝑓ℎ
× 100 (38)

%𝑔𝑎𝑝𝑡 =
(𝑡𝑙𝑛𝑠 − 𝑡ℎ)

𝑡ℎ
× 100 (39)

The results reveal that the hybrid heuristic finds better results on av-
erage than the new approach in a shorter time period for the instances
with less than 10 requests. However, the new approach may yield better
solutions than the hybrid heuristic for larger sets if one can bear with
a 604% (on average) longer computational runtime. The findings are
validated by the paired t-test. The result of the test highlights that
there is not a significant difference between the objective values of
two methods (2.84E−09). On the other hand, the test returns 0.51
(5.13E−01) for the runtime comparison.
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Table 9
Comparison of LNS and SA.

𝑓ℎ 𝑡ℎ 𝑓𝑙𝑛𝑠 𝑡𝑙𝑛𝑠 %𝑔𝑎𝑝𝑓 %𝑔𝑎𝑝𝑡

3_8_4_4_new (1–90)

min 18.00 22.61 22.22 31.27 0.02 19.02
Q1 25.26 23.63 30.05 32.95 15.34 29.71
mean 27.30 24.62 33.73 33.09 23.36 34.71
median 27.27 24.57 33.11 33.08 22.27 34.63
Q3 29.12 25.50 37.50 33.27 32.24 39.82
max 38.89 27.60 46.91 34.38 54.70 48.16

𝑓ℎ 𝑡ℎ 𝑓𝑙𝑛𝑠 𝑡𝑙𝑛𝑠 %𝑔𝑎𝑝𝑓 %𝑔𝑎𝑝𝑡

3_8_5_4_new (1–90)

min 18.00 21.79 22.22 30.66 0.02 21.82
Q1 25.27 22.89 30.38 32.84 14.40 34.84
mean 27.28 23.80 33.77 33.00 23.72 38.98
median 27.25 23.72 32.52 33.01 21.53 39.23
Q3 29.03 24.53 37.99 33.20 33.85 42.90
max 38.49 26.85 46.70 34.12 47.74 55.84

𝑓ℎ 𝑡ℎ 𝑓𝑙𝑛𝑠 𝑡𝑙𝑛𝑠 %𝑔𝑎𝑝𝑓 %𝑔𝑎𝑝𝑡

4_8_4_4_new (1–90)

min 21.41 31.76 28.57 58.79 1.37 68.28
Q1 28.93 33.49 35.88 62.54 18.59 79.45
mean 32.06 34.18 41.17 62.74 28.79 83.79
median 31.86 33.98 40.42 62.95 27.28 83.86
Q3 33.43 34.94 45.10 63.27 37.27 88.99
max 44.36 36.99 55.83 64.14 63.25 101.07

𝑓ℎ 𝑡ℎ 𝑓𝑙𝑛𝑠 𝑡𝑙𝑛𝑠 %𝑔𝑎𝑝𝑓 %𝑔𝑎𝑝𝑡

5_8_4_4_new (1–90)

min 28.61 38.41 38.43 101.62 2.96 117.04
Q1 34.74 45.05 43.55 109.60 16.46 136.16
mean 38.52 45.59 48.09 110.18 25.55 142.03
median 38.59 45.88 47.47 110.76 23.65 141.62
Q3 41.47 46.59 50.59 111.23 32.10 145.80
max 55.52 47.85 65.13 112.77 62.20 184.59

𝑓ℎ 𝑡ℎ 𝑓𝑙𝑛𝑠 𝑡𝑙𝑛𝑠 %𝑔𝑎𝑝𝑓 %𝑔𝑎𝑝𝑡
5_1_1_3_old 45.17 35.04 49.40 70.90 9.37 102.34
7_1_1_3_old 52.89 58.60 56.50 184.32 6.83 214.54
10_1_1_3_old 64.22 107.00 66.02 274.91 2.81 156.93
12_1_1_5_old 88.21 199.06 87.86 1581.16 −0.40 694.31
15_2_1_5_old 102.30 308.80 90.85 1975.40 −11.19 539.70
17_2_1_7_old 125.98 517.61 106.14 5542.16 −15.75 970.72
20_2_2_7_old 142.05 778.80 113.29 4442.30 −20.24 470.40
25_2_2_7_old 169.00 2017.53 133.89 9068.51 −20.77 349.49
30_2_2_9_old 195.08 23066.91 155.71 17413.99 −20.18 −24.51
30_2_3_9_old 196.68 15300.18 155.21 17135.76 −21.08 12.00
70_2_3_9_old 195.05 33097.65 139.85 219120.72 −28.30 562.04
P
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5. Conclusion

In this study, we propose a novel NP-Hard logistic problem that
ombines the pickup and delivery problem with transfers and electric
ehicles. To the best of our knowledge, we are the first to study the
DP-T with multiple depots and capacitated heterogeneous EVs with
artial charging. We propose a MILP model for the problem and update
he existing model in the literature. Although the model’s runtime is
mproved by several valid inequalities, for large instances of more
han five requests, obtaining optimal and even feasible solutions is
ot possible. Thus, we provide a metaheuristic approach (the hybrid
euristic), that contains eight neighborhood definitions. Numerous tests
re conducted on the MILP model and the hybrid heuristic approach.
he results reveal that the hybrid heuristic finds the optimal solutions
0% faster than CPLEX for small instances where the MILP model can
e solved exactly. The advantages of transfer nodes for the delivery
ystems with EVs are provided by two experiments. The results in Sec-
ion 4.6 highlight that transfer nodes help to reduce the total traveled
istance and also provide chargers for EVs to stay operational. If EVs
re not recharged during their daily tasks, then it is possible that not
ll requests are delivered (Section 4.4).

The current paper has some limitations to be improved. Battery
echarging and consumption depend on a linear function of time and
raveled distance, respectively. Besides, transfer nodes provide infinite
apacity to charge vehicles and store requests. These issues will be
13

ddressed in future research. o
Our follow-up research is solving the PDP-TWT as a Location Routing
roblem by combining routing and intra-route facility location deci-
ions. Further research could cover drones as an alternative vehicle
ype, and the impact of transfer nodes can be assessed on such net-
orks. Note that, drones have more strict battery and capacity con-

traints, but they travel faster. Moreover, the selective PDP-T could help
esearchers to explore more on how transfer nodes improve the overall
ustomer satisfaction while minimizing travel times and waiting times.
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