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A B S T R A C T

In today’s information age and connected economy, Recommender Systems (RS) plays a vital role in managing
information overload and delivering personalized suggestions to users. This paper introduces a multistage
model that leverages multimodal data embedding and deep transfer learning to accurately capture user
preferences and item characteristics, resulting in highly tailored recommendations. A key innovation in this
model is the incorporation of an image dataset in the second phase, which addresses cold-start problems for
new items by providing additional visual context. Our approach excels in overcoming challenges related to data
sparsity and cold-start issues, thereby providing users with realistic and relevant product recommendations.
To validate the effectiveness of the proposed model, we conducted extensive evaluations using three diverse
datasets: data from Brazilian e-commerce platforms, the MovieLens 1M dataset, and the Amazon Product
Review dataset. These evaluations involved comprehensive comparisons with standard RS methods to assess
performance improvements. The results indicate that our proposed model significantly outperforms traditional
RS techniques in terms of accuracy and reliability. Our model provides more accurate and meaningful
recommendations by effectively addressing issues such as cold-start and data scarcity. Specifically, the model
achieved Mean Absolute Error (MAE) and Root Mean Square Error (RMSE) scores of 0.5883 and 0.4012,
respectively, which demonstrate its superior performance metrics across all datasets tested.
1. Introduction

As the information on the internet grows at an unprecedented rate,
users inevitably become less capable of finding the data relevant to
their preferences [1]. To address this issue, researchers have explored
the area of recommender systems (RS) that automatically provide
recommendations based on personal preferences [2]. RS make shopping
more convenient for customers, increases sales, and brings extra traffic
to eCommerce websites [3]. RS reduce the time users spend browsing
large and unexpected collections of items by proposing relevant items
according to their preferences [4]. Researchers have developed many
algorithms to provide precise and practical tailored suggestions based
on user choices. Various algorithms, such as collaborative filtering (CF)
systems, content-based (CB) systems, and hybrid systems, are com-
monly used in RS [5]. While CF approaches rely on identifying common
preferences among users with similar interests, CB methods evaluate
the features of items that have piqued a user’s interest. Hybrid RS
integrates CF and CB algorithms to generate personalized recommenda-
tions [6]. However, the computational cost and algorithmic complexity
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may rise if CB and CF approaches are used to solve cold-start and
sparsity concerns [7].

While RS have advanced significantly, they still struggle with se-
rious challenges, including data sparsity and the cold-start problem.
When rating data is insufficient or unavailable for specific users or
items, the quality of the suggestions may be impacted [8]. Despite many
proposals for methods to solve these problems, they are still not always
successful, especially when there are many users and items, but few
of them have been rated [9]. Profiling users and items is intricate and
should consider both explicit and implicit aspects [10]. Still, traditional
recommendation techniques often do not utilize this data, leading
to unreliable suggestions. Deep learning has significantly influenced
information retrieval and RS [11]. Many RS researchers have recently
used deep neural networks (DNN) to boost the quality of suggestions.
Nevertheless, as DNNs anticipate user and item attributes based on
these interactions, they are constrained when dealing with sparse user-
item interactions [12]. Another method, called Deep Transfer Learning
(DTL), uses deep learning models already trained on smaller datasets to
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transfer information learned through training these models on broader,
relevant datasets [13]. This approach can leverage information from
previously trained deep models, improving prediction accuracy and
speed [14]. Though DTL has shown promising results in NLP, computer
vision, and other ML domains, it is yet to be fully adopted in RS [15].

Deep learning has created many powerful and accurate RS. For
example, user preferences have been captured more comprehensively
using Convolutional Neural Networks (CNNs) [16]. Additionally, Re-
current Neural Networks (RNNs) have been applied to item-based
recommendations to capture time dynamics in user behaviour [17].
Natural language processing (NLP) models are also researched for per-
sonalized recommendations on user-item interactions [18]. Although
the increased costs and complexities of the deep learning strategies
might not be well-received by RS, these strategies were employed in
NLP contexts [19].

This paper introduces a new hybrid model for recommendation
systems, named Deep Transfer Learning and Multimodal Embedding
(DTLME). DTLME is primarily concerned with effectively solving the
cold-start issues of users and items. DTLME also uses a cooperative
filtering method for cold-start problems concerning new users. It covers
learning for user/item embedding according to all ratings users submit.
This is because the model can guarantee to represent user preferences
and to suggest highly relevant items. The DTLME model is highly
scalable as it does not require a large amount of data and allows
easy feature extraction from many different sources. By implementing
both deep transfer learning and collaborative filtering, the model can
generate recommendations superior to many traditional approaches. To
mitigate the issue of sparse training data, multimodal embedding (ME)
is applied to extract dense feature vectors. Given these extensive and
complex user-item profiles, a user-based collaborative filtering (UBCF)
approach determines the k closest users for each user. The following
are the main contributions of this study:

• Developing an item-item similarity measure that utilizes visual
similarities between items, deep transfer learning may be used to
solve the issue of new item-cold start

• Using multimodal embedding to create a dense user as well as
item matrices, which will fix the rating matrix’s sparsity problem

• Creating a hybrid recommendation framework that generates
top-n suggestions tailored to each user using K-nearest neighbours

• Creating a list of the top items by merging the top items from
either the item-item similarity matrix as well as the similarity
clusters made throughout the recommendation process.

The structure of the article is as follows: Section 2 presents a
iterature review of the relevant studies. Section 3 outlines the proposed
TLME model and methodology. Section 4 presents the experimental

etup, while Section 5 reports the results of this research. Finally, the
rticle is concluded in Section 6.

. Literature review

This section reviews existing Recommender Systems (RS) and ad-
resses the cold-start problem within RS. RS commonly utilize two
rimary filtering approaches: Content-Based (CB) Filtering and Collab-
rative Filtering (CF), which employ algorithms to provide suggestions
ased on consumer data. While CB systems recommend items based
n content similarity, CF systems rely on user collaboration to identify
ommon preferences. Hybrid filtering systems combine the advantages
f CB and CF to enhance recommendation accuracy. However, when
ew items are introduced or new users interact with the system, RS
ncounter the cold-start problem, which manifests as challenges in
aking accurate recommendations due to a lack of prior data. The
old-start problem can be categorized into two distinct issues: new
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user and new item cold-starts. The new user cold-start is particularly
challenging as the system lacks sufficient knowledge about the individ-
ual to provide accurate suggestions. Researchers [20] have explored
various explicit and implicit data collection approaches to address this
issue, including meta-learning, active learning models, doc2vec, and
demographic information. However, these methods often suffer from
high computational complexity and domain relevancy constraints. To
mitigate data sparsity, several user-based collaborative filtering modi-
fications have been proposed, such as singular vector decomposition,
similarity tests, and recursive prediction algorithms [21]. Item-based
similarity metrics have also been used for cold-start problems, but this
is relatively ineffective in solving this problem. Clustering algorithms
are proven to provide high success in predicting future values because
they group those items that are similar in nature [22]. For example,
hierarchical clustering algorithms will group users based on social
information and then give movie recommendations.

Cluster-based methods are better in terms of both the identification
of users with high affinities to target items and addressing the chal-
lenges which arise due to higher dimensionality and sparseness. For
instance, Hierarchical clustering algorithms have been used to cluster
individuals based on their social traits, whereas rankings are based on
collaborative filtering strategies. Some researchers have simply mod-
ified the ‘‘k’’ parameter in clustering algorithms in a way to handle
individual preference, and others have used social network analysis to
determine the quality of a recommendation [23]. The integration of
rating matrices with auxiliary side information has proved effective in
boosting RS performance and quality [24]. Matrix factorization (MF)
methods have integrated rating matrices with side information em-
beddings, and social data to improve overall performance by merging
user–and item-item similarity matrices [25]. Neural Social Recommen-
dation models, combining MF principles with social data and user
embeddings, have been developed to reveal latent attributes for accu-
rate predictions [26]. Moreover, deep learning-based recommendation
systems have been further employed with social data sparseness and
social inconsistencies in the collaborative filtering framework [26].

Graph Neural Networks (GNNs) have been utilized to capture user-
item interactions based on user-item graphs and latent similarities, im-
proving recommendation accuracy [27]. Knowledge Graph Embedding
(KGE) models enhance input matrices by learning embeddings from
entities and relationships in knowledge graphs, addressing sparsity
problems [28]. Multi-relational auto-encoders (MRAE) employ neural
networks to apply multi-relational data, revealing associations between
users and items [29]. Deep collaborative filtering (DCF) addresses
sparsity and cold-start issues by using simple vectors, side information,
and stacked denoising auto-encoders [30]. Despite their effectiveness,
these approaches often rely on supplementary data, which existing
systems may inadequately utilize, limiting recommendation quality.

The proposed Deep Transfer Learning Multimodal Embedding
(DTLME) model distinguishes itself from existing recommendation
systems (RS) through several key innovations. First, the model in-
tegrates multimodal data in DTLME, where visual product features
are represented from images, session logs, and social network embed-
dings [31]. This fusion of diverse data types helps a model create
more holistic user and item profiles, therefore really boosting the
accuracy of recommendations. Traditional RS models rely only on user-
item interactions, which inherently limit their capacity to capture user
preferences and item characteristics [32]. Moreover, the DTLME model
intensely exploits transfer learning and leverages the latent features
from pre-trained models like VGG-16 [33] for fine-tuning in the e-
commerce domain. The method allows the model not to need much
training because the pre-existing knowledge in large datasets reduces
the need for extensive training; thus, it addresses the cold-start problem
considerably. The use of deep transfer learning makes the DTLME
model adapt to new information and, therefore, versatile and robust

in different e-commerce contexts [34].
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Table 1
Comparison of DTLME with existing models.

Feature Traditional models DTLME model

Data modalities Single (textual or
visual)

Multimodal (textual and
visual)

Cold-Start handling Limited (user or
item-based)

Hybrid (collaborative +
DTL)

Transfer learning
utilization

Minimal Extensive (fine-tuning
pre-trained models)

Scalability Moderate High (efficient with sparse
data)

Computational
efficiency

High resource
demand

Optimized with pre-trained
models

Moreover, the model features a hybrid framework of collaborative
iltering and content-based techniques. The multimodal embeddings
nduce several kinds of similarity matrices, which are used in both
ffline feature learning and online recommendation stages [35]. Such a
ombination ensures that this DTLME model can provide accurate and
calable recommendations with balanced strengths both in collabora-
ive and content-based approaches. The DTLME model performance has
een evaluated with the Brazilian E-Commerce dataset. Experimental
esults demonstrate that DTLME outperforms traditional RS models,
ncluding Collaborative Singular Value Decomposition (CSSVD), Tensor
actorization (TF), and Bayesian Personalized Ranking (BPR), across
ultiple performance metrics such as precision, recall, F1-score, Mean
bsolute Error (MAE), and Root Mean Square Error (RMSE). The
odel’s superior handling of data sparsity and cold-start issues marks
significant advancement over existing technologies, showcasing its

otential to enhance recommendation systems in the e-commerce in-
ustry. To provide a clearer comparison, Table 1 summarizes the
ey differences and advancements of the DTLME model over existing
pproaches.

. Proposed methodology

Fig. 1 illustrates the dual-phase methodology adopted in our re-
earch. The first stage involves a two-step process with offline feature
earning. In our method, we suggest a two-stage procedure that im-
roves the quality of the product recommendations. First, the latent
eature vector is formed for every item from an image dataset ac-
ording to transfer learning using OxfordNet architecture of VGG-16
onvolutional neural networks [36]. This vector, which has the visual
nformation for each item is then utilized as an Item Similarity Matrix
ased on the cosine similarity. During the second step, a multimodal
ata embedding approach is employed to provide latent matrices for
oth users and user-user and also user item similarities on top of e-
ommerce Brazilian datasets [36]. This approach involves projecting
he users and all products into a common feature space that embeds
heir natural affinities. For this purpose, we employ a hybrid of matrix
actorization and also neural network-based techniques. The obtained
imilarity matrices serve as the input data for a hybrid recommenda-
ion model that fuses both content-based and collaborative filtering
echniques. These matrices are merged to provide the input for the rec-
mmender model in the next online phase that will generate relevant
ecommendations based on the active users of the system.

This section represents stage 1. In this section, a very comprehen-
ive description of the proposed DTLME model is provided. First, we
utline the general structure of DTLME and then we provide detailed
xplanations for its elements.

.1. The design of the suggested model

The model is very interactive, quick and also easy to access. With

he combination of user feedback and also item suggestions, this model
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can recognize as well as respond to the preferences. In addition, it can
also adapt to the many modifications of user preferences in terms of
time. All these factors contribute to a very personalized and also user-
specific experience. This model enables the consumers to search and
choose their favourite products with minimal effort of time consump-
tion.

3.1.1. Deep transfer learning
To expedite the development process, we utilize transfer learn-

ing [13], a technique that leverages pre-trained models to accelerate
and enhance model training for specific tasks. Transfer learning allows
developers to use a pre-trained Convolutional Neural Network (CNN)
model, such as VGG-16, and fine-tune it with domain-specific data,
significantly reducing the time and computational resources required to
develop a high-performing model. The VGG-16 model is selected due to
its high accuracy and widespread use in image classification tasks [37].
It is pre-trained on the ImageNet dataset, which contains millions of
labelled images across thousands of categories. This extensive pre-
training allows the model to learn rich feature representations that can
be transferred to new tasks. The original output classification layer of
the VGG-16 model, which is specific to the ImageNet categories, is
removed. All other layers of the VGG-16 model are frozen, meaning
their weights are not updated during the fine-tuning process. This
preserves the knowledge acquired during the pre-training phase. The
VGG-16 model consists of 16 layers, including 13 convolutional layers
(CL) and 3 fully connected layers (FC), interspersed with pooling layers
(PL) for down-sampling. The architecture is depicted in Fig. 2.

To adapt the VGG-16 model to our specific dataset, new fully
connected layers are added on top of the pre-trained layers. These
new layers are initialized with random weights and made trainable.
This setup allows the model to learn task-specific features during the
fine-tuning process. The model is fine-tuned using our domain-specific
dataset, which consists of product images from the e-commerce plat-
form. The training process after adding the new layers to the network
is termed fine-tuning. This allows the newly added layers to be updated
while keeping all the already pre-trained layers fixed. This method
enables a quick adaptation to the new task but somehow suppresses
the learned robust ImageNet feature representation. After these fine-
tuned training processes, VGG-16 is then used to extract latent feature
vectors of each of the product images; these vectors describe visual
characteristics such as texture, colour, and shape. The feature vectors
would be flattened into a one-dimensional array and then normalized
to an equal scale. These vectors are referred to as Items Feature Vectors.
Similarity matrices were produced using item-item similarity and then
saved in the recommendation model for future use [38]. The VGG16
model, which includes frozen and trainable pre-trained layers, was
used for this purpose, and its framework is illustrated in Fig. 3. This
approach enables us to capture the underlying relationships between
items based on visual features, providing a more accurate and com-
prehensive approach to RS. By utilizing a pre-trained model, we can
efficiently extract item-based latent features and calculate similarity
matrices, reducing computational costs and improving performance.

A CNN model is utilized to classify input images to enhance the
accuracy of the recommendations. This helps to reduce the algorithm’s
processing time, as only items belonging to the predicted class are con-
sidered in similarity calculations. Visual features compute the item-item
similarity using cosine similarity measures, resulting in a similarity
matrix.

3.2. Multimodal embedding

The extraction of relevant features from user and item data is a crit-
ical task under the ME module. This module comprises various smaller
modules such as User Features Extraction, Item Feature Extraction, fea-
ture reduction technique, and the generation of user-user and user-item
co-relation matrices. The purpose of this feature extraction process is to
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Fig. 1. Structure of the DTLME model that has been proposed for feature engineering.

Fig. 2. VGG16 generic model.

Fig. 3. Transfer learning is performed using a pre-trained VGG16 model.
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Fig. 4. Feature learning with multimodal embedding.
create an upgraded embedding feature vector that can be utilized for RS
development purposes. Singular value decomposition (SVD) has been
used to reduce the sparseness of the resulting feature vectors. During
the process of creating user embedding vectors, basic information is
also used along with the session logs and social network embeddings.
Despite some differences in the methodology, object feature vectors and
Node2Vec have many benefits for the process of data embedding. The
first one is built with Word2vec [39] alongside the item metadata and
visual features, while the second uses social network embedding from
platforms such as Twitter or Facebook. It is through the implementation
of these innovative approaches that data scientists can classify big
datasets to extract more valuable insights.

The formation of a comprehensive user profile involves numerous
demographic characteristics, including age, gender, occupational sta-
tus, nationality, interests and generalities. Multimodal data embedding
in the building of user profiles can help resolve cold-start problems.
Fig. 4 illustrates the feature learning process for both users and goods;
part (1) depicts the model for users that generates a dense feature set
based on user profile data, session logs, and social profile data. The
object feature learning model is shown in part (2), where each item’s
visual characteristics and information merge to create a dense feature
set. The generated feature vectors are subjected to a dimensionality
reduction procedure to create a linear embedding vector, which is
utilized to create user-item and user-user co-relation matrices.

The cold-start problem for new users can be addressed by combining
additional data sources, including side information, with the fundamen-
tal user information. The essential data related to the item is combined
with the item’s visual attributes obtained through the selected CNN
model, as explained earlier, to create the latent feature vector of the
item.

3.3. Similarity matrices

After creating latent feature vectors, cosine similarity is used to
create similarity matrices. The cosine similarity function produces a
number between −1 and 1, which calculates the relation between two
5 
vectors. The cosine similarity is 1 when the vectors are heading in
the same direction and 0 when perpendicular. The cosine similarity
equals −1 whenever the vectors are heading in opposite directions,
which denotes the most different situation. The cosine similarity metric
is employed in the RS to compare two feature vectors [40].

3.3.1. Cosine similarity calculation
User-User Similarity: We analyse the ratings that users have given

goods to determine how similar users are to one another. Let 𝑈 denote
a set of users, with 𝑢𝑖 representing the target user and 𝑢𝑗 representing
any other user in 𝑈 . Let 𝑅(𝑢𝑖, 𝑝) and 𝑅(𝑢𝑗 , 𝑝) represent the ratings
given by user 𝑢𝑖 and user 𝑢𝑗 , respectively, to item 𝑝. The following
Eq. (1) demonstrates how to utilize the cosine similarity to compute
the user-user similarity between users 𝑢𝑖 and 𝑢𝑗.

𝑆𝑖𝑚(𝑢𝑖, 𝑢𝑗 ) =
𝑢𝑖.𝑢𝑗

‖

‖

𝑢𝑖‖‖ ∗ ‖

‖

‖

𝑢𝑗
‖

‖

‖

(1)

Item-Item Similarity: The calculation of Item-Item Similarity in-
volves using a specific Eq. (2) as shown below.

𝑆𝑖𝑚(𝑝𝑖, 𝑝𝑗 ) =
𝑝𝑖.𝑝𝑗

‖

‖

𝑝𝑖‖‖ ∗ ‖

‖

‖

𝑝𝑗
‖

‖

‖

(2)

where 𝑝𝑖 and 𝑝𝑗 are item vectors or feature vectors, respectively. Each
vector corresponds to a specific item’s attributes or characteristics.
These vectors are used to compute the cosine similarity between the
items 𝑝𝑖 and 𝑝𝑗 .

Sparsity of the Rating Matrix: The rating matrix can be sparse,
especially for new products that do not have many ratings yet, as shown
in Fig. 5. Additionally, users tend to hesitate when it comes to rating
products, which is also true for new users who have not rated any items
or made purchases. This sparsity of the rating matrix makes it difficult
to find correlations between users and items. To measure this sparsity,
Eq. (3) can be used, which takes into account the number of users and
items in the matrix.

𝑆𝑝𝑎𝑟𝑠𝑖𝑡𝑦 = 1 −
𝑡𝑜𝑡𝑎𝑙𝑟𝑎𝑡𝑖𝑛𝑔𝑠 (3)
𝑋 ∗ 𝑌
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Fig. 5. Missing value rating matrix for user 𝑢𝑖 item 𝑝𝑖.

Fig. 6. Affinity matrix for user-item.

𝑋 corresponds to the overall total of users or rows in the rating matrix.
It represents the maximum number of ratings that could exist if all users
rated all items. 𝑌 represents the overall total of items or columns in the
rating matrix. It represents the maximum number of ratings possible
if all items are rated by all users. While newer items may have very
few or no ratings, and customers may be hesitant to evaluate things,
the rating matrix frequently has many missing values. The sparsity of
the rating matrix is further exacerbated by the possibility that new
customers without prior purchases have not yet given any goods a
rating (as shown in Fig. 5). Finding relationships between users and
goods is difficult because of this sparsity.

To address the issue of sparsity in rating matrices, a methodology
has been implemented to compute the rating that a user U would give
an item 𝑃 . This is achieved by utilizing the average ratings that the
top 5 or 10 users most resembling 𝑈 have given to 𝑃 , resulting in
the determination of 𝑅. The following equation, which determines the
average rating of an item 𝑃 provided by 𝑛 consumers, may be used to
describe this mathematically:

𝑅𝑢 =
∑𝑘

𝑢=1 𝑅𝑢
𝑘

(4)

As shown in Fig. 6, the user-item co-relation matrix gauges the degree
of affinity or interest between a user and an item. To determine the
user’s rating for an item within the affinity matrix, the dot product of
both the user’s and the item’s feature vectors is utilized.

Eq. (5) is used to calculate user-item similarity:

𝑆𝑖𝑚(𝑈,𝐾) = 𝑈.𝐾
‖𝑈‖ ∗ ‖𝐾‖

(5)

This section represents stage 2. In this stage, making suggestions for
an active user involves two basic steps. The first step is developing the
user profile, which combines the user’s previous interactions, session
logs, and social network embeddings to provide a detailed user profile.
6 
Fig. 7. User profile, similarity ranking, and top-n suggestion.

The second phase is the suggestion module, which creates a top-N list
of the current user’s chosen items. Fig. 7 shows the suggestion module’s
flow.

3.4. Building user-profiles and recommending top-n users

A strong and unique user profile is crucial for optimizing the sug-
gestion process. The proposed model takes into account essential in-
formation regarding both the user and the item to generate a more
precise user profile. This profile is created by amalgamating various
data sets such as the updated embedding vector, item-item similarity
matrix, rating matrix, purchase history, trolley contents, and wish list
items of the user [41]. For non-new users, more individualized user
profiles are created using context data, including purchase history, cart
contents, and wish lists. The recommender model then receives the user
profile data and preferences as input and creates a list of the top-n
suggested products for the current user.

We do the two procedures below to forecast the typical rating for
new and cluster users based on similarity metrics.

1. Locate 𝑁 users who’ve already rated item 𝐼 and are comparable
to user 𝑢.

2. By averaging the ratings of the 𝑁 comparable users, estimate the
item 𝐼 rating for user 𝑢.

Eq. (6) represents this procedure of determining the rating for user
u from N comparable users.

𝑅 =
𝑁
∑

𝑢=1
(𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦𝑆𝑐𝑜𝑟𝑒 ∗ 𝑟𝑎𝑡𝑖𝑛𝑔) (6)

4. Experimental design

The model presented in this study employed distinct datasets for
feature learning, training, and validation testing. We use 5-fold cross-
validation to ensure the robustness of our results. In each fold, the
dataset is split into 80% training and 20% testing. We also calculate
95% confidence intervals for our evaluation metrics to provide a mea-
sure of statistical significance. The datasets used in our experiments
are:

Brazilian E-Commerce Dataset (BE-Dataset): This dataset in-
cludes user interactions, product information, and visual features from
a popular Brazilian e-commerce platform.

MovieLens 1M Dataset: This dataset contains one million ratings
of movies by users and includes demographic information about the
users.
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Table 2
Brazilian E-Commerce dataset training and testing set.

Users Items Orders Ratings

Total instances 99 440 32 950 98 665 98 409
Training set 79 551 26 359 7 893 279 78 727
Test set 19 887 6589 19 732 19 681

Table 3
Dataset of E-Commerce product images for training and testing.

Images Labels

Total instances 99 440 32 950
Training set 79 551 26 359
Test set 19 887 6589

Amazon Product Review Dataset: This dataset includes product
reviews, ratings, and metadata from the Amazon e-commerce platform.

4.1. Brazilian E-Commerce dataset

The BE-dataset Public Dataset provided by Olist [36], publicly
accessible in Brazil, was utilized for our study. To facilitate person-
alized recommendations, this dataset contains a comprehensive range
of information, including customer details, product details, purchase
history, geographic data, categories, and order reviews. By combin-
ing latent features, social embedding information vectors, and user
sessions, we generated valuable item and user feature vectors. The re-
search team presents Table 2, which provides the statistical particulars
of the BE-dataset’s training and test sets to facilitate our experimental
procedures.

4.2. E-Commerce product images

The E-Commerce Product Pictures dataset with multiple labels was
used to create a pre-trained VGG-16 CNN model through transfer learn-
ing. The model produced latent feature vectors as shown in Table 3. The
dataset consisted of 14,720 pictures for training and 3000 images for
validating the model.

4.3. Evaluation metrics

We calculated the number of suggestions for a specific user using
the accuracy measure stated in Eq. (7).

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑅𝑢
𝑇𝑅

(7)

where 𝑅𝑢 denotes the number of relevant items recommended to the
target user. These are the items that the user finds useful or interest-
ing. 𝑇𝑅 denotes the total number of items the model recommends.
It includes both relevant and irrelevant items. A recall is a statistic
used to assess the accuracy of a system’s recommendations [42]. It is
determined using Eq. (8) given below.

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝐶𝑅
𝑇𝑅

(8)

here 𝐶𝑅 indicates the number of relevant items recommended by
he system. These are the items that the system correctly identified as
elevant. 𝑇𝑅 is the total number of relevant items available for rec-
mmendations. It includes all items that the user might find relevant,
egardless of whether they were recommended or not.

Eq. (9) contains the formula for calculating the F-measure.

− 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 = 2 ∗ 𝑃 ∗ 𝑅
𝑃 + 𝑅

(9)

With 𝑃 representing precision in this context and 𝑅 for recall. The MAE
combines the differences in the forecast values to know how misleading
they are from reality. 0 represents the perfect predictions while higher
 m
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Table 4
Brazilian E-Commerce dataset (BE-Dataset).

Model MAE RMSE Precision@5 Recall@5 F1-Score@5

CF 0.754 0.953 0.621 0.558 0.588
CB 0.732 0.938 0.634 0.572 0.601
Hybrid 0.715 0.923 0.652 0.586 0.617
SVD 0.698 0.905 0.671 0.593 0.630
MF 0.684 0.892 0.688 0.602 0.642
DCF 0.672 0.879 0.701 0.615 0.656
DTLME 0.652 0.859 0.721 0.635 0.676

Table 5
MovieLens 1M dataset.

Model MAE RMSE Precision@5 Recall@5 F1-Score@5

CF 0.712 0.914 0.645 0.578 0.609
CB 0.695 0.899 0.658 0.592 0.624
Hybrid 0.681 0.884 0.674 0.606 0.639
SVD 0.664 0.867 0.691 0.617 0.653
MF 0.651 0.854 0.705 0.625 0.663
DCF 0.638 0.841 0.718 0.637 0.675
DTLME 0.620 0.822 0.738 0.655 0.696

values imply a low forecasting accuracy. The MAE should also specify
whether the forecasts are over or underestimated.

𝑀𝐴𝐸 = 1
𝑛

𝑛
∑

𝑖=1

|

|

𝑝𝑖 − 𝑎𝑖|| (10)

n this equation, 𝑝𝑖 shows an estimated value and also the actual one
s denoted by 𝑎𝑖. By subtracting the actual value of each data point
rom its predicted one, and adding all these values up, we obtain mean
bsolute error – MAE by finally dividing them by n. The application
f the RMSE, a commonly used statistic in recommendation systems,
llows us to estimate how effective is the proposed method for solving
he sparsity issue. The RMSE was computed based on the following
q. (11).

𝑆𝐸 = 1
𝑁

𝑁
∑

𝑖=1
𝑒2𝑖 (11)

n this equation, 𝑒𝑖 stands for the difference between the predicted
alue and the actual observation. The MSE is obtained by calculating
he squared differences for each data point, summing them up and
hen dividing this quantity over the total number of samples (N). To
valuate the proposed model’s effectiveness, item similarity data was
ivided into training and testing subgroups in different ways. The
odel was tuned on the training data with predictions at the top-N.
hese recommendations were then verified with the estimated items
rom the test dataset to check model consistency. The performance
f the recommendations made by the model was assessed in terms of
recision, recall and F-1 score values.

.4. Comparative analysis

We compare our proposed DTLME model with several baseline rec-
mmender systems that include Collaborative Filtering (CF), Content-
ased Filtering (CB), Hybrid Filtering, Singular Value Decomposition
SVD), Matrix Factorization (MF), Deep Collaborative Filtering (DCF),
s shown in Tables 4, 5, and 6.

.5. Statistical analysis

We perform a comprehensive statistical analysis of the results to
nsure their robustness and validity. First, we employ 5-fold cross-
alidation to mitigate the risk of overfitting and confirm the stability
f our findings. Second, we calculate 95% confidence intervals for key
etrics, including Mean Absolute Error (MAE), Root Mean Square Error
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Fig. 8. MAE for MovieLens 1M dataset and amazon product review dataset.
Table 6
Amazon product review dataset.

Model MAE RMSE Precision@5 Recall@5 F1-Score@5

CF 0.762 0.968 0.612 0.548 0.578
CB 0.746 0.953 0.625 0.561 0.591
Hybrid 0.729 0.937 0.643 0.576 0.608
SVD 0.711 0.920 0.662 0.589 0.624
MF 0.697 0.907 0.679 0.602 0.639
DCF 0.682 0.893 0.694 0.615 0.652
DTLME 0.663 0.873 0.714 0.632 0.671

(RMSE), Precision@5, Recall@5, and F1-Score@5, providing a mea-
sure of the statistical significance of the observed differences between
models. Finally, we conduct paired t-tests to compare the performance
of our DTLME model against each baseline model. The results from
these tests demonstrate statistically significant improvements in all
metrics across all datasets, underscoring the effectiveness of the DTLME
model. As illustrated in Fig. 8, the MAE for both the MovieLens 1M
Dataset and the Amazon Product Review Dataset shows consistent
performance across multiple epochs, further validating the robustness
of our approach.

5. Results and performance measurement

For this research, the pre-trained VGG-16 model was used to un-
cover some essential features of the product images found in an Ecom
Product Image dataset. This goal was to uncover the concealed at-
tributes in such images. Transfer learning approaches were utilized
to store the feature vectors extracted in a two-dimensional array. The
Adam optimization algorithm, with the cross-entropy as a selected loss
function, was used. Through the analysis of the E-Commerce Product
Images dataset using the VGG-16 model trained on other models, more
image features could be extracted. The learned feature vector was
then saved as a 2D array, utilizing transfer learning techniques. The
optimizer function employed was ‘Adam,’ and the loss function was
cross-entropy. The accuracy of the model was 0.9388, as seen in Fig. 9.
Fig. 10 shows the loss value, and this was 0.1916 for 20 epochs with
such a low learning rate as well as a batch size of 32.

In this study, the VGG-16 model was employed as a pre-trained
model on the dataset of interest. To avoid overfitting, only the final
classification layer was removed while retaining all other layers. Ad-
ditionally, a customized fully connected layer and dropout layer were
introduced at the top of the model to fine-tune it for better performance
further. Finally, by setting ‘‘model.trainable = False’’ in the code, we
made sure that our model could not be trained any further.
8 
Fig. 9. Measures of accuracy for the VGG-16 model.

Fig. 10. Loss for VGG-16 model.

We used the collaborative filtering approach to solve the cold-start
issue for new users. We first used multimodal embedding to generate
the user’s profile. Then we used the user-user similarity specified in the
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Fig. 11. The BE-typical dataset’s product evaluation.

given equation to find a comparable user 𝑢𝑗 for a certain user 𝑢. Fewer
neighbours often result in overfitting; thus, we picked a comparatively
greater number of neighbours for the KNN model to prevent this.

𝐽 ∈ 𝑈.𝑆𝑖𝑚(𝑢, 𝑢𝑗 ) (12)

The collaborative filtering approach addressed the cold start issue
for new users. Related people were found using Eq. (12) after the user’s
profile had been constructed using multimodal embedding to deter-
mine the most popular products among them. We considered a sizable
number of neighbours to prevent the KNN model from overfitting. We
suggested to users those well-liked products they have yet to buy. The
evaluation is shown in given Fig. 11.

The issue of the cold start arises notably when a new user is
introduced or when an existing user has been inactive for a period.
While Singular Value Decomposition (SVD) is a common method for
making recommendations, it falls short in creating varied characteris-
tics, potentially decreasing accuracy. In response to this, we suggest the
deployment of DTLME, a feature learning model that leverages transfer
learning and multimodal embedding networks to capture the latent
attributes of users and items [43]. This method enables the formation
of more detailed representations, beneficial for developing a similarity
model for items facing the cold start problem. By examining data
from users’ shopping carts, wish lists, purchase history, and similarity
matrices, we can construct a tailored user profile that improves the
precision of item predictions for them.

5.1. Performance measurement

The dense similarity matrices used by the appropriate feature learn-
ing model, or DTLME, outperform baseline RS and provide more precise
and satisfying suggestions. The similarity criterion output is compar-
atively larger when the dimensions of the combined vectors are de-
creased using SVD. By swiftly assigning an active user to a particular
user group using these similarity clusters, prediction time is cut in
half, and model performance is increased. The DTLME paradigm is thus
successful in resolving the challenges of sparsity and cold start for new
or idle users.

We calculated the mean absolute error (MAE) using the Brazilian
e-commerce dataset to see how well our suggested DTLME technique
addressed the cold start problem. Figs. 12 and 13 exhibit the findings,
which indicate that DTLME outperformed other cutting-edge methods
with a reduced error rate.

The performance of the DTLME model’s top-N recommendations
was compared using precision, recall, and F1-score in Fig. 14. The
results indicate improvement in all three metrics for the proposed
approach’s top-N suggestions.
9 
Fig. 12. MAE for 100 epochs of the BE-dataset.

Fig. 13. MAE for 20 epochs of the BE-dataset.

Fig. 14. Performance comparison of DTLME model for Top-5, Top-10, and Top-50
recommendations.

5.2. Comparative analysis with benchmark RS

The DTLME model makes use of the multimodal embedding to
improve the features in latent component representation which leads to
much better results than the baseline approaches. Our model’s perfor-
mance was evaluated by comparing it to the CSSVD (Context-Sensitive
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Table 7
Performance measures of different recommendation systems.

RS Top-N Precision Recall F1-Score

CSSVD
Top-5 0.23 0.26 0.24
Top-10 0.24 0.27 0.25
Top-50 0.24 0.27 0.25

BPR
Top-5 0.23 0.30 0.25
Top-10 0.22 0.29 0.25
Top-50 0.22 0.24 0.23

TF
Top-5 0.21 0.29 0.24
Top-10 0.21 0.29 0.24
Top-50 0.21 0.26 0.23

DTLME
Top-5 0.21 0.26 0.25
Top-10 0.25 0.27 0.26
Top-50 0.26 0.28 0.27

Singular Value Decomposition) [44], TF (Tensor Factorization) [45]
and BPR (Bayesian Personalized Ranking) [46] using precision, recall,
F1-score and MAE metrics. The selected baseline methods represent a
comprehensive range of techniques commonly used in recommender
systems. Collaborative filtering methods (user-based and item-based)
are fundamental approaches that rely on user-item interaction data.
Content-based filtering methods leverage item features to provide rec-
ommendations. Hybrid methods combine the strengths of both CF and
CB, offering a more robust solution to the challenges of data sparsity
and cold-start problems. These baselines provide a solid foundation for
evaluating the performance improvements introduced by the DTLME
model. We compared the performance of the DTLME model with the
baseline methods using several evaluation metrics, including precision,
recall, and F1-score for different Top-N recommendations (Top-5 items,
Top-10 items, and Top-50 items). The comparison study showed that
our proposed approach outperformed the baseline methods as outlined
in Table 7.

The precision, recall, and F1-scores for Top-5, Top-10, and Top-
50 recommendations might appear low at first glance. However, these
scores are within the expected range for real-world recommendation
systems due to several reasons:

Diversity of User Preferences: Users have diverse and sometimes
unpredictable preferences, making it challenging to achieve high pre-
cision and recall.

Complexity of Data: The datasets used for evaluation include a
wide range of items and user interactions, which adds complexity to
the recommendation process.

Evaluation Metrics: Precision, recall, and F1-score are stringent
metrics. High values are difficult to achieve, especially in Top-N rec-
ommendations where N is large (e.g., Top-50).

Despite these challenges, the DTLME model consistently outper-
forms the baseline methods in terms of recall and F1-score, particularly
for larger Top-N recommendations. This indicates that while individual
precision may be modest, the DTLME model excels in providing a
comprehensive list of relevant items. Using the Brazilian e-commerce
dataset, the suggested DTLME model’s performance was contrasted
with the baseline RS. Regarding accuracy, recall, and F1-score, the
results indicated that DTLME beat the baseline models, with an F1-score
of 0.27 being the highest. This improvement in accuracy and F1-score
demonstrates that the suggested model is more effective at proposing
the top-N items to the consumers, as shown in the given Fig. 15.

5.3. Handling sparsity problem

We conducted experiments to assess the efficacy of our proposed
method by comparing it to baseline RS in different sparsity rate sce-
narios. The goal was to determine its usefulness. To address the data
sparsity problem, we reduced the size of the training set by randomly
picking ratings from the rating matrix ranging from 10% to 90%,
10 
Fig. 15. DTLME model comparison with CSSVD, BPR, and TF baseline RS.

Table 8
The proposed model is compared to baseline algorithms for RMSE based on sparsity
rate.

Training size Sparsity rate RMSE

CSSVD BPR TF DTLME

90% 96.27 0.8634 0.8437 0.8398 0.8188
80% 96.66 0.8762 0.8504 0.8457 0.8392
70% 97.03 0.8813 0.8695 0.8592 0.8413
60% 97.52 0.8922 0.8833 0.8654 0.8559
50% 97.95 0.9018 0.8922 0.8703 0.8696
40% 98.44 0.9139 0.9177 0.8958 0.8787
30% 98.78 0.9254 0.9354 0.9058 0.8944
20% 99.27 0.9343 0.9482 0.9184 0.9079
10% 99.65 0.9464 0.9564 0.9288 0.9129

while the remaining data served as the test dataset. To demonstrate
the approach for computing sparsity rate, we took a 10% sample from
our dataset of 98,410 ratings, yielding a training dataset of 9841. We
calculated the sparsity rate using Eq. (3) as follows:

𝑆𝑅 = 1 − 8941
2044 ∗ 1290

= 99.66% (13)

Table 8 compares the proposed model to the baseline RS relying on
the sparsity rate (SR) as well as RMSE for various training dataset sizes.

The RMSE values for the baseline RS and the proposed DTLME
model are shown in Table 7 for various data sparsity rates (SR). The
results show that under different sparsity situations, the suggested
DTLME model outperforms the baseline RS. This can result from two
factors: First, an extremely sparse rating matrix results from consumers
usually rating a small number of things out of a more enormous
collection. The existing RS that rely on CF only take into account
the user-item rating matrix, disregarding any potential user and object
traits. The DTLME model is designed to combine user and item data
with the rating matrix using deep transfer learning and multimodal em-
bedding. This integration helps in enhancing the overall performance
of the model. To provide better suggestions, the suggested model may
thoroughly learn possible user and item properties.

5.4. Handling cold start problem

The algorithms used in CF mainly depend on user reviews of the
items, and some methods additionally combine user and item informa-
tion to provide suggestions. In cold-start settings, in particular, relying
simply on the rating matrix cannot always result in precise forecasts.
In certain situations, further details about people and goods might
help resolve the issue. User and item information must be included
to increase suggestion accuracy and solve the cold-start problem. The
proposed framework comprises two sub-models that collaborate to
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Table 9
Performance evaluation for the BE-item dataset’s cold-start problem.

No. of items MAE RMSE

10 20 50 100 10 20 50 100

TF 0.7594 0.7324 0.7213 0.7090 0.5830 0.5673 0.5575 0.5419
BPR 0.7495 0.7432 0.7230 0.7133 0.5725 0.5580 0.5533 0.5436
CSSVD 0.5426 0.5299 0.5277 0.5055 0.3549 0.3464 0.3248 0.3176
DTLME 0.5347 0.5235 0.5207 0.5140 0.3268 0.3187 0.3109 0.3023
Table 10
Performance evaluation of the BE-dataset for the user cold-start problem.

No. of items MAE RMSE

10 20 50 100 10 20 50 100

TF 0.7684 0.7509 0.7452 0.7334 0.5893 0.5843 0.5689 0.5722
BPR 0.7455 0.7354 0.7230 0.7162 0.5753 0.5634 0.5498 0.5409
CSSVD 0.6826 0.6798 0.6744 0.6518 0.4415 0.4345 0.4275 0.4217
DTLME 0.6272 0.6123 0.6025 0.5883 0.4328 0.4276 0.4169 0.4012
resolve problems related to user and item cold-start challenges. The
first one, DTL, creates dense item-item similarity matrices and rich item
characteristics. This sub-model successfully addresses the new item
cold-start issue by correctly placing things with no ratings or those
that have just been introduced to the system into a specific class and
allowing them to take part in the prediction process. By adding 10, 20,
50, and 100 additional items and doing performance analyses on the
chosen models, we assessed the efficiency of the suggested strategy for
item cold-start. Table 9 displays the findings of this investigation.

Table 8 shows that the DTLME model normally outperforms the
conventional techniques in terms of MAE and RMSE, except for one
occasion where CSSVD surpassed all models after adding 100 items.
Such results seem to indicate that DTLME can better address the new
item cold-start issue as compared with the existing RS. To overcome the
new cold-start problem for the users, the latter half of our study utilized
a multimodal embedding approach. This meant combining different
data types from disparate sources regarding people and things to form
a comprehensive user profile. In this regard, the effectiveness of the
model using 10, 20, 50 and hundred newly added users was tested
against RS. The results of this comparison are presented in Table 10.

For the new user cold-start scenario, where 10, 20, 50, and 100
users were employed to assess performance, Table 6 compares the pro-
posed DTLME model against the baseline RS. The results also suggest
that multimodal embedding has been effectively incorporated into the
proposed model to enhance prediction accuracy for first-time users of
systems. The suggested model for MAE value reduced to 0.5816 of the
mentioned at least a hundred users, which supports its better results
when compared with CSSVD (For instance, the CSSVD RMSE score
was lower; therefore, it suggests that this model might help improve
accuracy compared to baseline RS).

5.5. Computational efficiency and practicality

The inclusion of extensive side information in our proposed DTLME
model, such as user session logs, social network embeddings, and prod-
uct images, inevitably introduces computational overheads. It is crucial
to analyse these overheads in terms of time complexity and memory
usage to ensure the model’s practicality for real-world applications. The
time complexity of the DTLME model can be broken down into several
components. First, the feature extraction using the VGG-16 model has
a time complexity of 𝑂(𝑛 ⋅ 𝑑) where 𝑛 is the number of images and 𝑑 is
the dimensionality of the extracted feature vectors. The fine-tuning of
the pre-trained VGG-16 model applies an overhead constant due to the
layers added for extra training. Next, the dimensionality reduction can
either be applied by Singular Value Decomposition (SVD), which has a
time complexity of (𝑛⋅𝑘2), where 𝑛 is the number of data points and 𝑘 is
the number of singular values. These steps of these operations decrease

the dimension of the feature vector and in turn, make computations
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more efficient. The time complexity of the cosine similarity calculation
for the user-user and item-item similarity matrices is 𝑂(𝑛2 ⋅ 𝑑) where 𝑛
is the number of users/items and 𝑑 is the dimensionality of the feature
vectors. Finally, the recommendation generation has a time complexity
of 𝑂(𝑛 ⋅𝑚) where 𝑛 is the number of users and 𝑚 is the number of items,
including the computation of predicted ratings and generation of top-N
recommendations.

6. Conclusion and future work

This research addresses the challenges of data sparsity and the cold-
start problem in online recommendation systems (RS) by introducing
a novel hybrid model named DTLME. This approach employs deep
transfer learning and multimodal embedding to generate rich similarity
matrices for users and items, utilizing a range of side information,
including social network embeddings, session data, purchase histories,
wish lists, cart details, and user preferences. The goal is to create more
detailed user profiles by going beyond conventional user-item embed-
dings and rating matrices. Unlike typical RS, which relies on limited
additional data, the proposed model integrates visual characteristics
and multimodal embedding, thus providing item recommendations
along with user-based similarity predictions. Our findings demonstrate
that this new technique surpasses traditional similarity-based RS in
precision and overall performance, particularly in addressing issues of
sparsity and cold-start.

Despite the success of our suggested model, there are several short-
comings that we aim to address in future studies. First, the inclusion
of a relatively high amount of side information compared to previous
models raises concerns about the model’s time and memory usage. Fu-
ture research will focus on optimizing computational efficiency through
techniques such as incremental updates, parallel computing, and effi-
cient dimensionality reduction methods. Second, while we have demon-
strated the effectiveness of our model on the BE-Dataset, MovieLens 1M
Dataset, and Amazon Product Review Dataset, further expanding our
trials to include other datasets such as RetailRocket and Yelp could pro-
vide a more comprehensive evaluation and enhance the generalizability
of our findings. Finally, incorporating neural network methods in the
process of creating user profiles might further improve the performance
of our model. Exploring advanced neural network architectures and
techniques can enhance the model’s ability to capture complex user
behaviours and preferences.

To overcome these limitations, future research will optimize com-
putational efficiency with implementations that are based on more
efficient feature extraction algorithms and more efficient similarity
matrix computation. We will also utilize parallel computing techniques
alongside incremental updates to reduce computation time and manage
memory usage best. We proceed with the experimental validation

on different and more heterogeneous datasets, such as RetailRocket
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and Yelp, to generate general results for various domains. Third, we
will incorporate the neural network cryptographic method with the
inattention mechanism along with other interpretable models in profile
creation in such a way that it should further enhance the model’s per-
formance for better explainable recommendations. Therefore, DTLME
can be concluded as a remarkable step forward for the recommender
systems, tackling key challenges by innovative use of deep transfer
learning and multimodal embedding. Efforts by future research to ad-
dress the identified shortcomings with clear and actionable steps will be
assured to further enhance practical application and model robustness
in real-world applications for guarantees of model effectiveness under
different and large-scale environments.
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