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Abstract—Online dynamic security assessment (DSA) is exam-
ined in a data-mining framework by taking into account the oper-
ating condition (OC) variations and possible topology changes of
power systems during the operating horizon. Specifically, a robust
scheme is proposed based on adaptive ensemble decision tree (DT)
learning. In offline training, a boosting algorithm is employed to
build a classification model as a weighted voting of multiple un-
pruned small-height DTs. Then, the small-height DTs are period-
ically updated by incorporating new training cases that account
for OC variations or the possible changes of system topology; the
voting weights of the small-height DTs are also updated accord-
ingly. In online DSA, the updated classification model is used to
map the real-timemeasurements of the presentOC to security clas-
sification decisions. The proposed scheme is first illustrated on the
IEEE 39-bus test system, and then applied to a regional grid of the
Western Electricity Coordinating Council (WECC) system. The
results of case studies, using a variety of realized OCs, illustrate
the effectiveness of the proposed scheme in dealing with OC vari-
ation and system topology change.

Index Terms—Boosting, data mining, decision tree, ensemble
learning, online dynamic security assessment, transient stability.

I. INTRODUCTION

D YNAMIC security assessment [1] can provide system op-
erators important information regarding the transient per-

formance of power systems under various possible contingen-
cies. By using the real-time or near real-time measurements col-
lected by phasor measurement units (PMUs), online dynamic
security assessment (DSA) can produce more accurate security
classification decisions for the present operating condition (OC)
or imminent OCs. However, online DSA still constitutes a chal-
lenging task due to the computational complexity incurred by
the combinatorial nature of contingencies
and the massive scale of practical power systems, which makes
it intractable to perform power flow analysis and time domain
simulations for all contingencies in real-time.
The advent of data mining techniques provides a promising

solution to handle these challenges. Cost-effective DSA
schemes have been proposed by leveraging the power of data
mining tools in classification, with the basic idea as follows.
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First, a knowledge base is prepared through comprehensive
offline studies, in which a number of predicted OCs are used
by DSA software packages to create a collection of training
cases. Then, the knowledge base is used to train classification
models that characterize the decision rules to assess system sta-
bility. Finally, the decision rules are used to map the real-time
PMU measurements of pre-fault attributes to the security
classification decisions of the present OC for online DSA. The
data mining tools that have proven effective for DSA include
decision trees (DTs) [2]–[7], neural networks [8]–[10] and
support vector machines [11]–[13]. More recently, fuzzy-logic
techniques [14] and ensemble learning techniques [15]–[17]
have been utilized to enhance the performance of these data
mining tools in security assessment of power systems. Among
various data mining tools, DTs have good interpretability
(or transparency) [18], in the sense that the secure operating
boundary identified by DTs can be characterized by using only
a few critical attributes and corresponding thresholds. As illus-
trated in Fig. 1, a well-trained DT can effectively and quickly
produce the security classification decisions for online DSA,
since only a few PMU measurements of the critical attributes
are needed. The high interpretability of DTs is amenable to
operator-assisted preventive and corrective actions against
credible contingencies [19]. However, as discussed in [20],
there exists an “accuracy versus transparency” trade-off for data
mining tools. In order to obtain a more accurate classification
model from DTs, one possible approach is to use an ensemble
of DTs at the cost of reduced interpretability. Examples of
ensembles of DTs for DSA are the multiple optimal DTs [6],
random forest [15] and boosting DTs [16].
When applying data-mining-based approaches to online

DSA, there are two main issues that can result in inaccurate
security classification decisions. First, the realized OCs in
online DSA can be dissimilar to those in the initial knowledge
base prepared offline, since the predicted OCs might not be
accurate and the OCs can change rapidly over time. Second,
it is possible that a system topology change may occur during
the operating horizon due to the forced outage of generators,
transformers and transmission lines. These factors can com-
promise the performance of the classification model trained
offline. To develop a robust data-mining-based online DSA
scheme, the initial knowledge base and the classification model
have to be updated in a timely manner to track these changed
situations. However, there have been limited efforts directed
towards handling OC variation and topology change. In the
scheme proposed in [6], when the built DT fails to classify the
changed OCs correctly, a new DT is built from scratch or a
sub-tree of the DT is replaced by a newly built corrective DT.
Aiming to deal with possible topology changes, [9] and [17]
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Fig. 1. Fully-grown DT of height 5 for the WECC system using an initial knowledge base consisting of 481 OCs and three critical contingencies.

suggest creating an “overall” knowledge base that covers all
possible system topologies and choosing the attributes that are
independent of topology for data mining.
In this paper, a robust data-mining-based DSA scheme using

adaptive ensemble DT learning is proposed to handle these chal-
lenges in a more efficient manner. Specifically, the classifica-
tion model for DSA is based on boosting multiple unpruned
small-height DTs. Generally, the height of a DT is the max-
imal number of tests that is needed for the DT to classify a
case. For the sake of brevity, small-height DTs are referred to
as small DTs throughout. In offline training, the small DTs and
their voting weights are sequentially identified in a “gradient-
descent” manner to minimize the misclassification cost. The
small DTs, together with their voting weights, are then period-
ically updated throughout the operating horizon by using new
training cases that are created to account for any change in OC
or network topology. Different from existing DT-based DSA
schemes, the training cases are assigned different data weights
by each small DT; and higher data weights are assigned to a new
training case if it is misclassified by the small DTs. The afore-
mentioned techniques are utilized to minimize the misclassifi-
cation cost as new training cases are added to the knowledge
base, so that the classification model could smoothly track the
changes in OCs or system topology.
The rest of the paper is organized as follows. A brief introduc-

tion to DTs and their application to DSA are given in Section II.
The proposed scheme is discussed in detail in Section III. An il-
lustrative example by using the IEEE 39-bus test system is pre-
sented in Section IV. The proposed scheme is applied to the
WECC system in Section V. Finally, conclusions are provided
in Section VI.

II. BACKGROUND ON DT AND ITS APPLICATION TO DSA

The data-mining framework for DSA was originally devel-
oped in [2], in which DTs were introduced to perform DSA for
power systems. A DT, as illustrated in Fig. 1, is a tree-structured

predictive model that maps the measurements of an attribute
vector to a predicted value . When DTs are used for on-
line DSA, the attribute vector can consist of various PMU-mea-
sured variables and other system information, and the binary
decision given by DTs represents the security classification de-
cision of an OC for a critical contingency (e.g., rep-
resents the insecure case, and for the secure case).
Usually, bus voltage phase angles, bus voltage magnitudes and
branch power/current flows that are directly measured by PMUs
are used as numerical attributes. Fig. 1 illustrates the numerical
and categorical attributes used in a trained DT, in which an at-
tribute with initial “V” stand for a bus voltage magnitude, the
attributes with initials “P”, “Q”, and “A” stand for an active
power flow, a reactive power flow, and a voltage phase angle
difference between two buses, respectively (the bus numbers in
attribute names are different from their real ones), “CTNO$”
stands for the index of contingency.
In a DT, each non-leaf node tests the measurement of an

attribute and decides which child node to drop the measure-
ments into, and each leaf node corresponds to a predicted value.
As shown in Fig. 1, in a DT for DSA, the predictive value of
each leaf node is either “S” or “I”, in which “S” stands for se-
cure cases and “I” for insecure cases. Fig. 1 also illustrates the
training cases that fall into each node, by using dark bars for
secure cases and bright bars for insecure cases. The number of
non-leaf nodes along the longest downward path from the root
node to a leaf node is defined as the height of a DT. Given a
collection of training cases , the objective of DT
induction is to find a DT that can fit the training data and accu-
rately predict the decisions for new cases. State-of-the-art DT
induction algorithms are often based on greedy search. For ex-
ample, in the classification and regression tree (CART) algo-
rithm [21], the DT grows by recursively splitting the training
set and choosing the critical attributes (numerical or categor-
ical) and critical splitting rules (CSR) with the least splitting
costs until some predefined stopping criterion (e.g., the size of

 
 

 



HE et al.: ROBUST ONLINE DYNAMIC SECURITY ASSESSMENT USING ADAPTIVE ENSEMBLE DECISION-TREE LEARNING 4091

tree or the number of training cases in a leaf node) is satis-
fied. In general, a fully-grown DT that accurately classifies the
training cases might misclassify new cases outside the knowl-
edge base. This feature of fully-grown DTs is usually referred
to as “overfitting” [18]. In order to avoid overfitting, DTs are
usually pruned by collapsing unnecessary sub-trees into leaf
nodes. As illustrated in Fig. 1, in a pruned DT, some leaf nodes
do not have pure training cases, which is a result of either tree
pruning or early termination of tree growing [18]. By removing
the nodes that may have grown based on noisy or erroneous data,
the pruned DT is more resistant to overfitting than a fully-grown
DT without pruning, and thus can give more accurate security
decisions.
A major advancement in DT-based DSA schemes was made

in [7], in which the authors proposed to build a single DT to
handle multiple contingencies, by using the index of contingen-
cies as a categorical attribute of the DT. It is worth noting that a
DT built by using such an approach can give the security classi-
fication decisions of an OC concurrently for all the critical con-
tingencies in the knowledge base, which is more efficient and
can identify the critical attributes that are independent of contin-
gencies. For example, the DT in Fig. 1, using CTNO$ as a cate-
gorical attribute, can give security classification decisions of an
OC for three critical contingencies, i.e., CT6, CT45 and CT46,
at the same time, and the critical attributes

and can give security classification
decisions independent of contingence type for some cases.

A. Small DTs

A small DT with tree height is obtained by stopping the
splitting of any leaf node if the downward path from the root
node to that leaf node has exactly non-leaf nodes. According
to [22], a small DT is much less prone to overfitting compared to
a fully-grown DT; therefore, the small DTs used in the proposed
scheme are built without pruning. Examples of small DTs are
given in Fig. 2 with . It can be seen that the non-leaf
nodes of are exactly the same as the corresponding nodes of
the DT in Fig. 1. It is worth noting that the optimal choice of is
highly dependent on the knowledge base, and should be decided
based on a bias-variance analysis [18], which will be discussed
in the case study of Section IV. Note also that different from
[18], the tree height, instead of the number of nodes, is used as
the metric to quantify the tree size. The reason, which will be
soon apparent, is to restrict the number of nodes that will be
revised when updating DTs to a value less than .

B. Ensemble of DTs

In ensemble-DT-based DSA schemes, the security classifica-
tion decision of an OC vector , denoted by , is made
based on the voting of multiple DTs. For an ensemble of DTs

, there are two approaches to DSA classi-
fication: deterministic and probabilistic. For the deterministic
approach, the security classification decision is given by

(1)

where are the voting weights of DTs. To
obtain probabilistic classification decisions, the “logistic correc-

Fig. 2. First three small DTs for theWECC system, the voting weights
of which are 4.38, 3.04 and 0.93, respectively. (a) Small DT . (b) Small DT
. (c) Small DT .

tion” technique [23] can be applied. Then, the probability of an
“Insecure” classification decision is given by

(2)

In this paper, deterministic classification decision is used to cal-
culate the misclassification rate for case studies.
The existing methods for ensemble DT learning include bag-

ging, random subspace method, boosting and random forest.
Reference [24] compares these methods, and finds that boosting
and random forest achieve significantly better performance than
the others. In previous work by the authors [16], an algorithm
for boosting DTs is developed in the context of avoiding over-
fitting to noisy training data. In this paper, the boosting algo-
rithm is employed in online DSA to deal with OC variations
and possible topology changes. The algorithm for building the
small DTs and calculating the voting weights will be discussed
in Section III-A.

C. Updating DTs

One existing approach for updating a DT without rebuilding
it from scratch is the efficient tree restructuring algorithm [25],
with the main idea summarized as follows. When incorporating
a new case, the DT remains unchanged if the new case is clas-
sified correctly; otherwise, the non-leaf nodes along the path

 
 

 



4092 IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 28, NO. 4, NOVEMBER 2013

Fig. 3. Proposed scheme for online DSA using adaptive ensemble DT learning.

which the new case passes are revised in a top-down manner.
Specifically, for each non-leaf node to be revised, a new test is
first identified by using the new case as well as the existing cases
that fall into the non-leaf node. If different from the original test,
the newly identified test is then installed at the non-leaf node,
followed by tree restructuring operations recursively applied on
the sub-tree corresponding to that non-leaf node (there are six
slightly different restructuring operations for various structures
of the sub-tree, which are not discussed here). The motivation
for these restructuring operations is that the original test at the
non-leaf node is highly likely to be the optimal tests for the two
child nodes after restructuring, which is usually the case when
categorical attributes are used by the test [25]; in this scenario,
the two child nodes are exempted from further update.

III. PROPOSED ONLINE DSA SCHEME

The proposed scheme for online DSA, as illustrated in Fig. 3,
consists of three steps, with the details described below.

A. Offline Training

1) Initial Knowledge Base Preparation: First, pre-
dicted OCs are generated day ahead for each period of the future
operating horizon (e.g., the next 24 hours) based on day-ahead
load forecast and generation schedules; each period may span
several hours, and can be divided according to the hours of peak
load, shoulder load and off-peak load. Then, for each of the

day-ahead predicted OCs, detailed power flow analysis
and time-domain simulations are performed for critical
contingencies that are selected by the system operator or based
on prior experience. It is worth noting that the key focus here is
on dealing with OC variations and possible topology change,

and thus the selection or screening of critical contingencies is
beyond the scope of this study. By using specified dynamic
security criteria (e.g., transient stability, damping performance,
transient voltage drop/rise, transient frequency, relay margin),
the day-ahead predicted OCs are labeled as “Secure” or “Inse-
cure” for each critical contingency.
As a result, an initial knowledge base that consists of

training cases is obtained, in which each case is rep-
resented by a vector , where is the index of a
critical contingency, are the values of numerical
attributes obtained from power flow analysis of an OC, and
is the transient security classification decision of the OC for the
critical contingency . Based on the previous studies [5]–[7],
the following PMU-measured variables are selected as numer-
ical attributes:
• Branch active power flows
• Branch reactive power flows
• Branch current flows (magnitude)
• Bus voltage magnitudes
• Bus voltage phase angle differences

where denotes the set of PMU buses in the system. It is worth
noting that only raw measurements reported by PMUs are used
as the numerical attributes in this work; more generally, the vari-
ables computed using other system information may also be
used, e.g., the voltage at the bus connected to a PMU bus when
the branch impedance is constant [5].
2) Boosting Small DTs: The basic algorithmic flowchart of

boosting small DTs is illustrated in Fig. 4. For convenience,
define as the class of small DTs with height , define
as the score of the weighted voting of the ensemble of small
DTs, i.e., , and define as the
cost function of on the training cases, given by

(3)

It is observed from (1) and (3) that lies strictly above
the misclassification error rate of . Then, a primary objective
of boosting is to minimize , by identifying the small
DTs and their voting weights . An analytical
formulation is provided as follows:

(4)

The convexity and the differentiability of with regard
to make it possible to solve in (4) by using a line search
strategy [26], the details of which are summarized as follows.
A small DT is chosen to be the “gradient” of at
projected onto , and the voting weight is computed as the
“step size” that minimizes . Then, the small DT
is added to to obtain . The above steps

are iterated, for , by using as a zero function.
More specifically, it is shown in [16] that the small DT can
be obtained by solving the following problem:

(5)
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Fig. 4. Boosting small DTs.

where is the positive data weight
of the training case , and takes value 0
if the training case is correctly classified by the small
DT (otherwise, it takes value 1). By definition of , it is
easy to observe that the data weights are assigned adaptively
by small DTs, in the sense that if the training case is
misclassified by the small DT , then , i.e., the
training case has a higher data weight in the next round of the
boosting process. It is worth noting that highly skewed training
data (e.g., the case in [15]) can be handled by scaling up the
weights of under-represented cases, such that

. As suggested in (5), the objective of is to
determine the small DT that has the least misclassification error
rate on the weighted training data. Thus, the small DT can
be obtained by employing the standard CART algorithm [21]
subject to the tree height , and by using misclassification error
rate as the splitting cost when building the DT. Then, its positive
voting weight is obtained by solving the following problem:

(6)

where . Under the condition that
is a “descent direction” of , it is easy to verify

that and holds for any .
Therefore, has a unique minimum in that can
be found using standard numerical solution methods (e.g.,
Newton’s method).

B. Periodic Updates

1) New Training Case Creation: In the initial knowl-
edge base prepared offline, the predicted OCs generated using
day-ahead forecast may not reflect the actual system conditions,
which is very likely to be the case for power systems with high
penetration of variable renewable generation and distributed
generation. Therefore, as the operating horizon is approached
and the data available to system operators is updated, it will
be necessary to utilize short-term forecast and schedules to
generate newly changed OCs and add them to the knowledge
base on a slot-by-slot basis (one slot may span several minutes
depending on the processing speed [5]). Further, in case of
topology change, the post-disturbance OCs should also be in-
corporated into the knowledge base. After power flow analysis
of these newly changed OCs, new training cases are generated

as described in Section III-A1. It is worth noting that during
the operating horizon, it is also likely that the knowledge base
may need to be updated by incorporating new contingencies
of interest. The solution to this problem has been discussed in
[16]. In this work, the critical contingency list is assumed to
remain unchanged during the operating horizon.
2) Updating the Classification Model: Given the newly cre-

ated training cases, the classification model is updated by using
one new case at a time. Specifically, for the th new training
case , the classification model is updated by in-
corporating with a data weight

into the small DT and recalculating the
voting weight , iteratively for .
A key step for incorporating a new training case into a small

DT is to adopt the method described in Section II-C. Since mis-
classification error rate is used as the metric of splitting cost, as
suggested in (5), it is easy to observe that there exists a even sim-
pler solution for updating the small DTs. Specifically, a small
DT remains unchanged if the new case is correctly classified;
therwise, only the sub-tree corresponding to the first non-leaf
node that has a different decision for the new case is subject to
update. It is worth noting that, since the tree height is , the total
number of non-leaf nodes to be revised is at most . After the
small DT is updated, its voting weight is recalculated by
minimizing .
The process of updating the classification model is summa-

rized in Algorithm 1. It is useful to note that when the th new
training case is used to update the small DTs, the data weights of
the previous training cases calculated in Step 4 of Al-
gorithm 1 are different from the data weights that were used in
building or updating the small DTs in the past rounds. Therefore,
unlike the case in offline training, it is possible that the updated
small DT is not a “descent direction” of at any
more. In order to detect and handle this situation, an extra step is
used in Algorithm 1. Specifically, if ,
then is a “descent direction” and used for weighted voting.

Algorithm 1: Periodic updates using a new training case

1: Input: A new training case .
2: Initialization: .
3: for to do
4: Recalculate the data weights of .
5: Incorporate with weight into

.
6: Calculate .
7: if then
8: .
9: end if
10: Recalculate by minimizing .
11: .
12: end for

C. Online DSA

In real-time, when the synchronized PMU measurements are
received, the pre-fault values of the numerical attributes are re-
trieved and combined with the indices of all critical contingen-
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cies to create unlabeled cases, which will be used by the clas-
sification model to give security classification decisions of the
present OC for the critical contingencies. Specifically, when
an unlabeled case is processed by the classification model, each
of the small DTs uses the values of the attribute vector and its
CSRs to produce a binary decision. Finally, the binary decisions
of all small DTs are collected and used to give the security clas-
sification decisions of the present OC, according to (1). It is
worth noting that distributed processing technologies [27] can
be leveraged to speed up online DSA. Specifically, the unla-
beled cases can be classified separately by using duplicates
of the classification model, and in each classification model, all
small DTs can process the attribute vector of an unlabeled case
in a parallel manner.
From the above development, it can be seen that the proposed

scheme illustrated in Fig. 3 is derived from those in previous
work [5]–[7], with the following major modifications. 1) The
classification model is obtained via boosting multiple small un-
pruned DTs instead of a single fully-grown DT after pruning. It
is suggested that boosting algorithms can lead to better model
fitting and the produced classification model is quite resistant
to overfitting [22]. Thus, boosting small DTs has great poten-
tial to deliver better performance in terms of classification accu-
racy. 2) Unequal data weights are assigned to the training cases
adaptively by small DTs. In periodic updates, misclassified new
training cases can have higher data weights than those classified
correctly. This will speed up adapting the small DTs to newly
changed OCs. 3) The small DTs are gracefully updated by in-
corporating new cases one at a time, whereas rebuilding DTs is
used in [5]–[7]. 4) The DT and the knowledge base are updated
only when the new cases are misclassified in [5]–[7]; whereas
all new training cases are incorporated into the knowledge base
in the proposed scheme.

IV. ILLUSTRATIVE EXAMPLE

The IEEE 39-bus test system [28] is used as an illustrative
small system. As illustrated in Fig. 5, 8 PMUs are installed in
the system, according to the placement design provided in [29].
In what follows, the main steps of the proposed approach, in-
cluding attribute selection, knowledge base preparation and en-
semble small DT learning, will be demonstrated by using the
IEEE 39-bus test system. Finally, the results of robustness test
on changed OCs will be presented.

A. Knowledge Base

1) Attribute Selection: Based on the PMU placement and
system topology in Fig. 5, 111 numerical attributes are selected
according to the rules described in Section III-A, including:
• 8 bus voltage magnitudes at the 8 PMU buses;
• 75 branch active/reactive power flows and current flows,
which take any of the 8 PMU buses as either a from-bus or
a to-bus of the branch;

• 28 bus voltage phase angle differences, which are com-
puted from the pairs of phase angles.

2) OC Generation and Contingencies: The OC specified in
[28] is used as the base OC. To enrich the knowledge base, more
OCs are generated by randomly changing the bus loads (both ac-
tive and reactive) within 90% to 110% of their original values

Fig. 5. IEEE 39-bus system with 8 PMUs.

in the base OC. For each generated OC, limit checking is car-
ried out by using the power flow and short circuit analysis tool
(PSAT) [30], so that any generated OC with pre-contingency
overloading or violation of voltagemagnitude/angle limits is not
included in the knowledge base. Further, transient stability as-
sessment is carried out for the 30 contingencies listed in
[31, Table II]. These contingencies, which can lead to
stressed system conditions, are identified by exhaustive search
among all possible contingencies.
3) Transient Stability Assessment Tool and Criteria: The

transient security assessment tool (TSAT) [30] is used to assess
the transient performance of the generated OCs. The time-do-
main simulation is executed for 10 s with a step size of 0.5 cycle.
The power angle-based stability margin is used as the transient
stability index (TSI), defined as

(7)

where is the maximum angle separation of any two gener-
ators in the system at the same time in the post-fault response.
In case of islanding, the above value is evaluated for each island
and the smallest value is taken as the TSI. During the simula-
tion time, whenever the margin turns out to be negative, i.e.,
the rotor angle difference of any two generators exceeds 360 de-
gree, the case is labeled as transiently insecure.

B. Offline Training

1) Choice of and : -fold cross validation is
carried out to determine the optimal tree height and the op-
timal number of small DTs . Specifically, the training cases
in the initial knowledge base are randomly partitioned into
subsets of equal size. For given fixed and , a classification
model is trained by using subsets, and tested using the
other subset. The training process is then repeated times in
total, with each of the subsets used exactly once as the test
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Fig. 6. Ensemble small DT learning with different tree heights for the IEEE
39-bus test system.

data. Finally, the misclassification error rate obtained by -fold
cross validation is calculated by averaging over the classifica-
tion models. The results of the above procedure for different tree
heights are illustrated in Fig. 6. It can be seen that
as increases, the misclassification error rate of each classifi-
cation model decreases and reaches a plateau at some . Then,
when grows larger, each classification model incurs a larger
variance and hence a higher misclassification error rate. On the
other hand, a larger tree height implies a larger variance of
classificationmodel [18], which is also observed in Fig. 6. Based
on these observations, is chosen, and at which
the misclassification error rate drops below 1% and reaches a
plateau is selected.
2) Ensemble Small DT Learning: When the optimal tree

height and the optimal number of small DTs are determined,
the algorithm described in Section III-A2 is used to build the
ensemble of small DTs. Specifically, for , the
data weights are first computed according to (5). Then, the
training cases together with their data weights are used by the
CART algorithm to build a small DT with height , by using
weighted misclassification rate as the cost function, as shown in
(5). Note that each small DT gives security classification deci-
sions for all critical contingencies. Further, the voting weight of
is calculated by numerically solving (6). Then, the ensemble

of small DTs are obtained. It is worth noting that, different from
the -fold cross validation procedure, the entire training set (not
a subset) is used by each small DT of the ensemble.

C. Robustness Testing

1) Changed OCs: In the IEEE 39-bus test system, generator
G1, together with transmission lines (39, 9) and (39, 1), repre-
sents the equivalent to the external system of the New England
area [28]. It is now assumed that the capacity of G1 reduces
from 1100 MW to 900 MW, which could be the result of ei-
ther the loss of a transmission corridor or a generator tripping
outside the New England area. Therefore, the OCs will change
due to generation rescheduling. By setting the capacity of G1
to 900 MW, changed OCs are generated by rescheduling gen-
eration and re-solving power flows for each OC in the initial
knowledge base. These changed OCs will be utilized to test the
robustness of the proposed approach.

Fig. 7. First small DT for the IEEE 39-bus test system. (a) Trained
small DT [CSR1 represents the critical splitting rule: CTNO$ (CT1, CT2,
CT3, CT7, CT11, CT12, CT15, CT16, CT17)]. (b) Small DT updated with
changed OCs [CSR2 represents: CTNO$ (CT1, CT2, CT3, CT4, CT7, CT8,
CT12, CT15, CT16, CT19)]. (c) Small DT rebuilt with changed OCs [CSR3
represents: CTNO$ (CT1, CT2, CT3, CT4, CT7, CT9, CT11, CT15, CT17)].

2) Robustness Testing Results: First, 200 OCs are generated
to create the initial knowledge base consisting of 6000 (200
OCs 30 contingencies) training cases. Accordingly, another
200 changed OCs are generated, in which 100 OCs are used to
update the small DTs and the other 100 OCs are used for ro-
bustness testing. In the proposed approach, Algorithm 1 is ap-
plied to update each of the 15 small DTs by using the 3000 (100
OCs 30 contingencies) new cases. To illustrate the change of
small DTs, the first small DT is used as an example. Specif-
ically, obtained in offline training and updated with the 100
changed OCs by using the proposed approach are illustrated in
Fig. 7(a) and (b), respectively. It is observed that due to the
changed OCs and generation rescheduling, the critical attribute
in the root node of changes from the voltage phase angle dif-
ference between bus 2 and bus 26, , to the active power
flow between bus 17 and bus 18, . The CSRs of the
non-root nodes change accordingly, as a result of the recursive
procedure of the CART algorithm. The small DT rebuilt with
the 100 changed OCs is illustrated in Fig. 7(c), which has the
same CSR at the root node as the small DT updated by using
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TABLE 1
MISCLASSIFICATION ERROR RATE OF ROBUSTNESS TESTING

the proposed approach. Since the small DTs obtained by up-
dating and rebuilding are different at non-root nodes, the other
small DTs, to are also different. This is because the en-
semble DT learning algorithm sequentially updates/builds the
small DTs, in which each small DT depends on the previous
small DTs.
The proposed approach is compared with two benchmark ap-

proaches: 1) small DTs rebuilt by using the 100 changed OCs
together with the initial 200 OCs, 2) small DTs without up-
dating. The test results of the three approaches are presented in
Table I. It can be seen that the proposed approach achieves com-
parable performance to the benchmark approach by rebuilding
small DTs. The test results also suggest that when OCs change,
the small DTs have to be updated in order to track the variation
of OCs.

V. APPLICATION TO THE WECC SYSTEM

The test power system used in this case study is part of the
Western Electricity Coordinating Council (WECC) system. It
consists of over 600 buses (of which 33 are PMU buses), 700
transmission lines and 100 generators.

A. Knowledge Base

1) OC Generation: The OCs used in the case study are gen-
erated by using real-life data of power flows, bus loads and gen-
erator power outputs that were recorded every 15 min during a
2008 summer peak day. The overall load profile is illustrated in
Fig. 8. Based on the variations of the aggregate load, each period
for offline training is chosen to span 8 hours, and the peak load
period 12:00 Hrs–20:00 Hrs is investigated in this case study.
Basically, there are three sets of generated OCs used in this case
study: day-ahead predicted OCs, short-term predicted OCs and
realized OCs. The day-ahead predicted OCs are used to create
the initial knowledge base, the short-term predicted OCs are
used to create the new training cases to update the knowledge
base and the classification model, and the realized OCs are used
for testing purposes only.
In what follows, the procedure for generating the three OC

sets is discussed in detail. The realized OCs include the 33
recorded OCs and another 448 OCs that are generated by in-
terpolation, as illustrated in Fig. 8. Specifically, following the
method in [7], both the active and reactive load of each load
bus for every minute of the investigated period are obtained by
linear interpolation based on the two closest recorded OCs, and
the generator power outputs are adjusted as needed to ensure
valid OCs. To enrich the initial knowledge base, a day-ahead
predicted OC is obtained by randomly changing the bus loads
within 90% to 110% of the loads of the corresponding realized
OC, by using a uniform distribution. Similarly, a short-term pre-
dicted OC is generated by uniformly randomly changing the bus

Fig. 8. Aggregate load of recorded OCs and generated OCs by interpolation.

loads within 97% to 103% of the loads of the corresponding re-
alized OC. After solving the power flows for each OC using the
power flow and short circuit analysis tool (PSAT) [30], 481 OCs
are generated for each of the three OC sets. It is worth noting
that different from the day-ahead predicted OCs, the short-term
predicted OCs and the realized OCs are time-stamped.
2) Critical Contingency Selection: A contingency list, which

was created by the regional grid operator to account for pos-
sible outages of transmission lines, three-winding transformers
and generators that could have significant impact, is used here.
Specifically, the contingency list consists of 1 contin-
gency, 8 contingencies, 172 contingencies, and
0 contingencies (i.e., no contingencies lead to
insecure conditions). The power angle-based stability margin
defined in (7) is used as the transient stability index. After per-
forming transient security assessment by using TSAT for all re-
alized OCs and adhering to the above security criteria, three

contingencies which lead to transiently insecure cases
are selected as the critical contingencies in the knowledge base.
Each of the three critical contingencies is initiated by
a “three-phase short circuit to ground” fault at a bus which is
cleared after 5 cycles, by tripping a transmission line that con-
nects the bus and by disconnecting a generator that will go out
of step as a result of the line tripping.
3) Case Creation: Combining the three sets of generated

OCs with their transient security classification decisions for the
three critical contingencies, cases are created for
the initial knowledge base, for updating and for testing, respec-
tively. Based on the interconnection structure of the 33 PMU
buses, 799 numerical attributes are identified using the rules de-
scribed in Section III.A; thus . For each case, the values
of the 799 numerical attributes are obtained from the power flow
solutions. Then, the initial knowledge base is organized into an

array.

B. Offline Training

The initial knowledge base as an array is first
used by the CART algorithm to build the small DTs. Following
the procedure described in Section III-D, it is found that
and give the best results of -fold cross validation.
The first three small DTs built from the initial knowledge base
are illustrated in Fig. 2. For comparison, a fully-grown single
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Fig. 9. Flowchart for testing online DSA with periodic updates.

DT with pruning is also built, as illustrated in Fig. 1 (in order to
give a concrete impression of DTs and small DTs used for DSA,
Figs. 1 and 2 were presented in Section II).

C. Online DSA Simulation

The online DSA is simulated iteratively on a slot-by-slot
basis, as illustrated in Fig. 9. Generally, each slot spans
minutes. Since it is sufficient to perform security assessment
of a short-term predicted OC for the three critical
contingencies, is chosen here. In case of more critical
contingencies or a larger test system, a longer slot can be
chosen. In online DSA, a third scheme in which the classifica-
tion model is obtained by boosting small DTs but updated by
rebuilding is compared with the two aforementioned schemes.
1) OC Variations in Sub-Period 12:00 Hrs–16:00 Hrs: In

each slot of this sub-period, the test cases created from the
realized OCs with time-stamps falling into this slot are col-

lected, and then used as the present OCs for online DSA to as-
sess the performance of the classification model updated so far.
Meanwhile, another new training cases created from the
short-term predicted OC for the next slot are incorporated into
the knowledge base to update the classification model.
2) Topology Change in Sub-Period 16:00Hrs–20:00Hrs: At

the peak hour 16:00 Hrs, a topology change is imposed on the
test system, and assumed to last for the remaining hours of the
day. Specifically, among the 178 contingencies that do not incur
transient instability for all realized OCs, the contingency which
has the least positive margin averaged over all realized OCs is
chosen; as a result, a transmission line is removed and a gener-
ator is disconnected from the test system. Then, the new training
cases and test cases during the latter sub-period are created using
an approach similar to those used in the former sub-period, but
by using a different system topology.

D. Test Results and Discussion

Throughout the entire horizon of the above online DSA sim-
ulations, the misclassification error rate and the computation
time for updating in each slot are recorded and summarized in
Table II and Fig. 10, respectively.
1) Classification Accuracy: As illustrated in Table II, the two

boosting-based schemes turn out to be more accurate than the
single-DT-based scheme for both simulation sub-periods, and
the performance of the proposed scheme is quite close to the
scheme based on boosting small DTs with rebuilding.
2) Computation Requirement: The computation time re-

quired by updating the classification models using new OCs
is illustrated in Fig. 10. It is clear that the proposed scheme

Fig. 10. Computation time for updating/rebuilding (executed in MATLAB on
a workstation with an Intel Pentium IV 3.20-GHz CPU and 4 GB of RAM).

TABLE II
MISCLASSIFICATION ERROR RATE OF ONLINE DSA

requires the lowest computation time. Further, as the number
of new OCs increases, the proposed scheme becomes less
time-consuming than the other two schemes. The reason is
that for each new OC, the two benchmark schemes rebuild
DTs from scratch, while the graceful update of small DTs is
carried out in the proposed scheme. Further, according to the
CART algorithm [21], it is known that the sorting operation of
the CART algorithm dominates the computational burden of
DT building/rebuilding. When updating small DTs, the sorting
operation is skipped [25]. Therefore, the proposed scheme has
a much lower computational burden.

VI. CONCLUSION

In this study, a data-mining-based online DSA scheme is pro-
posed to handle the OC variations and topology change that
are likely to occur during the operating horizon. The proposed
scheme is applied to a practical power system, and the results of
a case study demonstrate the performance improvement brought
by boosting unpruned small DTs over a single DT. Compared
to single DTs, the classification model obtained from ensemble
DT learning often have higher accuracy, and lend themselves to
cost-effective incorporation of new training cases. The results
presented here also provide an insight into the possibilities of
other ensemble DT learning techniques, e.g., random forest, in
handling the challenges of online DSA.
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