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Abstract—Non-orthogonal multiple access (NOMA) has been
considered as a significant candidate technique for the next gen-
eration wireless communication to support high throughput and
massive connectivity. It allows different users to be multiplexed
on one channel through applying superposition coding at the
transmitter and successive interference cancellation (SIC) at the
receiver. To fully utilize the benefit of the NOMA technique, the
key problem is how to optimally allocate resources, such as power
and channels, to users to maximize the system performance.
There have been some existing works on the power allocation
for the single-carrier NOMA system. However, how to optimally
assign channels in the multi-carrier NOMA system is still
unclear. In this paper, we propose a deep reinforcement learning
framework to allocate resources to users in a near optimal way.
Specifically, we exploit an attention-based neural network (ANN)
to perform the channel assignment. Simulation results show that
the proposed framework can achieve better system performance,
compared with the state-of-the-art approaches.

Index Terms—Non-orthogonal multiple access (NOMA), chan-
nel assignment, power allocation, deep reinforcement learning,
attention-based neural network.

I. INTRODUCTION

With the rapid growth in the number of mobile devices
and the volume of mobile data [1]–[6], there are dramatic
demands to improve the capacity and connectivity of mobile
communications. To satisfy such demands, the fifth generation
(5G) communication is being standardized in recent years,
where one key technique is the non-orthogonal multiple ac-
cess (NOMA), a novel multiple access scheme promised to
significantly improve the system throughput [7]–[9].

With traditional multiple access schemes, multiple users are
allocated with orthogonal resources, such as time, frequency
and codes, to avoid inter-user interference. However, with
more and more mobile devices accessing to the wireless com-
munication system, the benefit from resources exploited by
the orthogonal multiple access schemes will saturate. To solve
this problem, the NOMA technique introduces an extra power
domain, which enables multiple users to be multiplexed on the
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same channel. Specifically, it uses superposition coding at the
transmitter, and applies successive interference cancellation
(SIC) at the receivers to differentiate signals from multiple
users in the power domain. Therefore, the NOMA technique
is able to impel the 5G communication system to achieve high
data rate and massive connectivity.

To fully utilize the benefit of the NOMA technique, the
key issue is to optimally perform joint channel assignmen-
t and power allocation with limited resources. Such joint
channel assignment and power allocation problem has been
proven to be NP-hard [10], [11], i.e., to derive the optimal
solution, all possible combinations of channel assignment
should be evaluated, which is computationally expensive if
not infeasible. Therefore, researchers have proposed many
suboptimal or heuristic approaches [10], [12]–[21] to resolve
this optimization problem.

Since channel characteristics among different users can be
complicated, conventional approaches may not be able to cap-
ture the underlying relationship among users. Meanwhile, the
solution space to the optimization problem is huge, nonlinear
searching procedures are ineluctable. Therefore, conventional
approaches are not efficient and reliable enough to obtain good
channel assignment, due to which the performance of NOMA
system can still be quite limited. In recent years, machine
learning as a promising technique has been incorporated in the
wireless communication communication system design [22]–
[25]. It improves the system performance by exploiting the
nonlinear relationship in the training data.

However, how to derive the optimal solution to the channel
assignment problem in the multi-carrier NOMA system is still
unclear. Inspired from the power of machine learning, we
consider utilizing machine learning techniques to resolve the
channel assignment problem. The channel assignment problem
can be re-formulated as a sequential decision-making process.
At each step, one channel is assigned to a corresponding user
according to the decision-making process. The process will
be terminated until there is no available channel resource. The
objective is to find the optimal process, i.e., channel assign-
ment that maximizes the system performance. However, due to
the absence of the optimal “labels” in the channel assignment,
the supervised machine learning techniques are not applicable
to the channel assignment problem. To revolve the problem,
in this paper we propose a deep reinforcement learning based
resource allocation scheme to maximize the performance of
the multi-carrier NOMA system under the MSR and MMR
metrics. With the benefit from deep reinforcement learning,
the proposed scheme can explore different channel assignment
processes, observe their corresponding rewards and discover
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Fig. 1. The block diagram of the transmission and reception procedures of the NOMA system.

the behind heuristics.
Specifically, we formulate the joint channel assignment

and power allocation as an optimization problem. Similar to
JRA, we derive an optimal power allocation given channel
assignment. Then, with the optimal power allocation, we
propose to utilize the deep reinforcement learning to learn an
optimal channel assignment policy. To capture the sequential
relations between input and output of channel assignment
problem, the policy network in the proposed framework ap-
plies a Transformer architecture [26]. It only uses an attention
mechanism, instead of recurrence or convolution, to draw
sequential dependencies in transduction works, which has been
demonstrated to be able to achieve good performance with
reasonable training time.

Finally, we compare the proposed framework with two other
approaches, i.e., the joint resource allocation (JRA) in [18]
and the exhaustive search (ES) method. Simulation results
show that the proposed framework can achieve better system
performance than JRA. Compared with ES, the proposed
framework can achieve similar performance with much lower
computational complexity.

The rest of paper is organized as follows. Section II briefly
reviews the related works on resource allocation and machine
learning for NOMA system design.The system model is intro-
duced in detail in section III. The problem formulation on the
joint channel assignment and power allocation is discussed
in section IV. The optimal power allocation is derived in
section V, while the deep reinforcement learning based channel
assignment is discussed in section VI. The simulation results
are shown in section VII and conclusions are drawn in section
VIII.

II. RELATED WORKS

A. Resource Allocation for NOMA Systems

How to optimally allocate resources, such as channel and
power to users is an important topic in the NOMA system

design. Therefore, researchers have proposed many approaches
to resolve this optimization problem under different objective
functions, such as maximizing sum rate (MSR) and maxi-
mizing minimal rate (MMR). The MSR dedicates to improve
the overall data rate of the wireless communication system.
In [12], an efficient power allocation and precoding design
scheme is proposed for the single-carrier NOMA system to
maximize the sum rate. It addresses the resource allocation
problem through a two-step approach, where the sum rate
maximization problem is first transformed into an equivalent
form and then the suboptimal power allocation and com-
plex precoding vectors are derived by iteratively using the
minimization-maximization algorithm [13]–[16].

However, the overall data rate can be further improved by
applying NOMA in the multi-carrier communication system
with benefit from frequency diversity. The authors in [10]
propose a suboptimal joint power and channel allocation algo-
rithm to maximize the throughput performance of the multi-
carrier NOMA system. The sum rate maximization problem is
first converted to an equivalent problem by relaxing the power
constraints, and then the power weights and assigned channels
for users are derived through dynamic programming. A joint
resource allocation algorithm is proposed in [17] to maximize
the weighted system data rate through an iterative approach,
where the authors first reformulate the maximization problem
into a class of difference of convex function programming
and then obtain the local optimal solution with successive
convex approximation method [27]. In [18], a NOMA system
that maximizes the weighted sum rate with individual user
quality of service (QoS) constraints is considered. Assuming
the number of users multiplexed on each channel is no more
than two, the optimal power allocation is first obtained with
the given channel assignment. Then by iteratively performing
channel assignment and power allocation, a near optimal
solution to the maximization problem is derived.

Different from MSR which neglects the users with bad
channel condition, MMR can ensure the fairness among users.
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The authors in [19] provide a low-complexity power allocation
algorithm to maximize the fairness among users of the NOMA
system. The maximization problem is first decomposed into a
sequence of subproblems via a bisection iterative algorithm.
For each subproblem, the solution with closed and semi-
closed form is obtained. A proportional fairness scheduling
scheme is proposed in [20] to maximize the minimal user
rate, where the maximization problem is approximated by a
convex optimization. In [21], the authors propose to maximize
the minimal user rate with outage probabilities and power
constraints. The decoding order for users is first derived,
and then the power allocation is obtained by performing the
Newton’s method.

B. Machine Learning for Wireless Communication Systems

To enhance the system performance, machine learning has
been incorporated in the wireless communication system de-
sign [22]–[25].

A robust and efficient deep learning scheme is proposed
in [22] to learn the unknown channel state information (CSI)
of the NOMA system to achieve better performance in terms
of block error rate and sum rate. The scheme is composed
of a pretraining network and a long short-term memory
(LSTM) network. The pretraining network exploits restricted
boltzmann machines to reduce the dimension of the input data
and enhance the generalization ability, while the LSTM is
employed to learn the CSI of the NOMA system via offline
training and online training. The authors in [23] propose a
fast reinforcement learning based power allocation scheme to
improve the spectral efficiency of multiple-input and multiple-
output (MIMO) NOMA system with interference from smart
jammers. An anti-jamming MIMO NOMA transmission game
is first formulated and the Stackelberg equilibrium is derived
to reveal the impact of multiple antennas and channel state
information. Then, to resolve the dynamic game, a Q-learning
based power allocation scheme is exploited to allocate power
to users against jamming attack. The authors in [25] propose a
reinforcement learning scheme to learn the optimal feedback
allocation in LTE network to maximize the system perfor-
mance. They first build the feedback model and analyze the
impact of feedback. Then a Q learning based reinforcement
learning scheme is exploited to optimally allocate feedback.
An actor-critic reinforcement learning approach is proposed
in [24] to learn an optimal policy for user scheduling and
resource allocation in HetNets to maximize the energy ef-
ficiency. The actor part uses the Gaussian distribution as
the parameterized policy to generate continuous stochastic
actions, while the critic part evaluates the value function with
compatible function and helps the actor learn the gradient of
the policy.

III. SYSTEM MODEL

In this paper, we consider a downlink multi-carrier NOMA
system, where the base station transmits data to multiple
users over wireless channels. In such a system, the signals
of different users are multiplexed on the wireless channels
through channel assignment and power allocation. Then at the

decoder, users recover the specific signals from each channel
via SIC. The key problem here is how to allocate limited
resources, such as power and channels, to multiple users to
maximize the system performance.

The block diagram of the transmission and reception pro-
cesses for the NOMA system is shown in Fig. 1, where we
assume that there are N users and K channels. The total
bandwidth is Btot, and thus each channel is with bandwidth
Bc = Btot/K. Suppose there are Nk users multiplexed on
the kth channel. Let bn denote the transmission symbols for
the nth user. Then, the base station multiplexes symbols of
different users on each channel through channel assignment
and power allocation module, and transmits them over wireless
channels. The multiplexed signal on the kth channel can be
written as

xk =

Nk∑
i=1

√
pki bi, (1)

where pki is the power allocated to the ith user transmitted on
the kth channel.

At the receiver, the distorted signals of users are received
from each channel. For the nth user, the received signal from
the kth channel is represented as

ykn =
√

pknh
k
nbn +

Nk∑
i=1,i̸=n

√
pki h

k
i bi + zkn, (2)

where hk
n is the channel response between base station and

the nth user that considers both the path loss and shadowing
effect, zkn denotes the additive white gaussian noise (AWGN)
with zero mean and variance σ2

zk
.

To reconstruct the signals for users on each channel, the
decoder applies the SIC technique. Specifically, let Γk

n =
|hk

n|2/σ2
zk

represent the channel-to-noise-ratio (CNR) of the
nth user on the kth channel. Without loss of generality, let
us assume the CNRs of users multiplexed on the kth channel
are ordered as Γk

1 > ... > Γk
n > ... > Γk

Nk
. According to the

NOMA protocol, the users with lower CNR are assigned with
more power, i.e., pk1 < ... < pkn < ... < pkNk

. Hence, on the
kth channel, the nth user is able to decode signals of users
who are allocated with more power (pki > pkn), while treating
signals of users who are allocated with less power (pki < pkn)
as interference. Therefore, the signal to interference plus noise
ratio (SINR) of the nth user on the kth channel could be
written as

γk
n =

pknΓ
k
n

1 +
∑n−1

i=1 pki Γ
k
n

, (3)

and the corresponding data rate is

Rk
n(Γ

k
n, p

k
1 , ..., p

k
n) = Bclog2(1 +

pknΓ
k
n

1 +
∑n−1

i=1 pki Γ
k
n

). (4)

By performing SIC on each channel, a user has to decode
the signals of other users in addition to its own signal. Thus,
the hardware complexity and processing delay increase with
the number of users on each channel. Practically, each channel
is constrained to be allocated to two users [28], [29]. In this
paper, we assume there are two users multiplexed on each
channel, i.e., Nk = 2, ∀k = 1, ...,K. Let Γk

1 > Γk
2 , and then
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we can respectively derive the data rate for the two users on
the kth channel as

Rk
1(Γ

k
1 , p

k
1 , p

k
2) = Bclog2(1 + pk1Γ

k
1),

Rk
2(Γ

k
2 , p

k
1 , p

k
2) = Bclog2(1 +

pk2Γ
k
2

1 + pk1Γ
k
2

).
(5)

IV. PROBLEM FORMULATION

In this section, we discuss how to optimize the join-
t channel assignment and power allocation module of the
NOMA system in Fig. 1. Let Γ =

{
Γ1
1,Γ

1
2, ...,Γ

K
1 ,ΓK

2

}
and P =

{
p11, p

1
2, ..., p

K
1 , pK2

}
be the channel assignment and

power allocation set, respectively. In this paper, we focus on
the following two system performance, i.e., maximizing the
sum rate (MSR) and maximizing the minimal rate (MMR).

For the MSR performance metric, the corresponding objec-
tive function dedicates to improve the overall data rate of all
users. Here, we consider the sum rate with QoS constraints as
follows

max
Γ,P

K∑
k=1

[
Rk

1(Γ
k
1 , p

k
1 , p

k
2) +Rk

2(Γ
k
2 , p

k
1 , p

k
2)
]
,

s.t. Rk
n ≥ (Rk

n)min, n = 1, 2, ∀k = 1, ...,K,

(6)

where (Rk
n)min denotes the minimal data rate requirement for

the nth user on the kth channel.
The objective function for the MMR performance metric

aims to achieve the fairness among users, which can be written
as

max
Γ,P

min
k=1,...,K

{
Rk

1(Γ
k
1 , p

k
1 , p

k
2), R

k
2(Γ

k
2 , p

k
1 , p

k
2)
}
. (7)

Suppose that the total power provided for the base station
is PT , and thus there is a power constraint for all users as
follows

K∑
k=1

(pk1 + pk2) ≤ PT . (8)

Due to the coupling between the power weights and as-
signed channel in (5), it is generally difficult to derive the
optimal solution to the optimization problem on joint channel
assignment and power allocation. To resolve this problem,
we first derive the optimal power weights given channel
assignment. Then, we propose a deep reinforcement learning
framework to solve the channel assignment problem and thus
jointly obtain a near optimal assigned channels and power
weights for users.

V. OPTIMAL POWER ALLOCATION

In this section, we illustrate how to conduct power allocation
given the channel assignment for two performance metrics,
MSR and MMR. The power allocation method we employ in
this paper is similar to that in [18]. Therefore, in the following,
we will skip the detailed derivation and directly illustrate the
optimal power allocation solution.

Agent: the base station

Environment: the performance of 

NOMA system

Learn the channel 

assignment policy: 

State, 

Fig. 2. Reinforcement learning formulation for channel assignment of the
NOMA system.

For MSR, the power allocation problem can be written as

max
P

K∑
k=1

[
Rk

1(p
k
1 , p

k
2) +Rk

2(p
k
1 , p

k
2)
]
,

s.t. Rk
n ≥ (Rk

n)min, n = 1, 2, ∀k = 1, ...,K,
K∑

k=1

(pk1 + pk2) ≤ PT ,

0 ≤ pk1 ≤ pk2 , ∀k = 1, ...,K.

(9)

Let Ak
n = 2

(Rk
n)min
Bc and assume Ak

2 ≥ 2, the solution to (9)
can be written as follows

pk1 =
Γk
2qk −Ak

2 + 1

Ak
2Γ

k
2

,

pk2 = qk − pk1 ,

(10)

where qk and γk are given as

qk =

[
Bc

λ
− Ak

2

Γk
1

+
Ak

2

Γk
2

− 1

Γk
2

]∞
γk

,

γk =
Ak

2(A
k
1 − 1)

Γk
1

+
Ak

2 − 1

Γk
2

,

(11)

with λ satisfying
∑K

k=1 qk = PT

For MMR, the optimization on power allocation is formu-
lated as follows

max
P

min
k=1,...,K

{
Rk

1(p
k
1 , p

k
2), R

k
2(p

k
1 , p

k
2)
}
,

s.t.
K∑

k=1

(pk1 + pk2) ≤ PT ,

0 ≤ pk1 ≤ pk2 , ∀k = 1, ...,K.

(12)

The solution to (12) can be written as

pk1 =
−(Γk

1 + Γk
2) +

√
(Γk

1 + Γk
2)

2 + 4Γk
1(Γ

k
2)

2qk
2Γk

1Γ
k
2

,

pk2 = qk − pk1 ,

(13)
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where qk =
(Z(λ)Γk

2 + Γk
1)(Z(λ)− 1)

Γk
1Γ

k
2

, Z(λ) = X +√
X2 +

Bc

2λ
∑K

k=1 1/Γ
k
1

, and X =

∑K
k=1(Γ

k
2 − Γk

1)/(Γ
k
1Γ

k
2)

4
∑K

k=1 1/Γ
k
1

.

VI. DEEP REINFORCEMENT LEARNING FRAMEWORK FOR
CHANNEL ASSIGNMENT

With the optimal power allocation derived in the previous
section, in this section, we introduce a deep reinforcement
learning framework to solve the channel assignment problem.
Specifically, we first formulate the channel assignment prob-
lem into an optimization and describe how it can be represent-
ed as a reinforcement learning task. Then, we introduce the
network designed for deep reinforcement learning framework,
discuss the corresponding training algorithm in detail and
analyze the computational complexity.

A. Channel Assignment Formulation

In this subsection, we formulate the channel assignment
problem under two performance metrics into optimization
problems, respectively. The optimization on channel assign-
ment with the MSR objective can be written as

max
Γ

K∑
k=1

[
Rk

1(Γ
k
1) +Rk

2(Γ
k
2)
]
, (14)

and the channel assignment optimization that applies the MMR
objective can be represented as

max
Γ

min
k=1,...,K

{
Rk

1(Γ
k
1), R

k
2(Γ

k
2)
}
. (15)

The optimization problems in (14) and (15) is computa-
tionally expensive since all possible combinations on channel
assignment have to be evaluated. To resolve this challenge,
in the following, we propose a deep reinforcement learning
framework to optimize channel assignment for the NOMA
system.

B. Deep Reinforcement Learning Formulation

In this subsection, the optimization on channel assignment is
modeled as a reinforcement learning task, which consists of an
agent and environment interacting with each other, as shown
in Fig 2. Specifically, the base station is treated as the agent
and the performance of NOMA system is the environment. The
action taken by the agent is based on the collective information
on channel condition from users. Then at each step, based
on the observed state st of the environment, the agent picks
an action at from the action space A to assign channels to
users according to the channel assignment policy, π, where the
policy is learned by an attention-based neural network (ANN).
With the action, the environment evolves into a new state,
st+1. The channel assignment process terminates when there
is no extra channel resources. Then, with the obtained channel
assignment, the optimal power allocation is conducted and the
step reward, rt can be computed and fed back to the agent.
This reward is the objective data rate of the NOMA system.

1) State Space: The state of the environment is charac-
terized by the channel information. Here, we represent the
channel information as user-channel pairs. Let st = (Uet ,Γ

ct)
(1 ≤ et ≤ N , 1 ≤ ct ≤ K) be the user-channel pair,
i.e., the (ct)

th channel assigned to the (et)
th user at step

t. Hence, the state space contains NK states, denoted as
S =

{
(U1,Γ

1), ..., (U1,Γ
K), ..., (UN ,Γ1), ..., (UN ,ΓK)

}
.

2) Action Space: At each step, the agent takes an action,
at ∈ A, which selects a channel for a user for transmission.
However, to satisfy the requirements of channel assignment
for the NOMA system, such action is constrained, i.e., the
two users chosen by an action for each channel should be
different. After N actions, the channel assignment process is
completed.

3) Reward Function: In the NOMA system, the user’s data
rate is an important metric to evaluate the system performance.
At the end of each epoch, the power allocation is conducted
with given channel assignment. Then, the reward for step l
that selects the state sl ∈ S is defined as

rl =

{
Rcl

1 (s
l), if user of sl is first assigned to the channel of sl,

Rcl
2 (s

l), otherwise.
(16)

To evaluate the overall system performance at the end of
each epoch, the reward in previous states should also be
taken into consideration. Therefore, we respectively define the
returned reward of each epoch for MSR and MMR as follows

Gmsr
N =

N∑
l=1

rl,

Gmmr
N = min

l=1,...,N

{
rl
}
.

(17)

The objective of the NOMA system under two performance
metrics is to maximize the returned award in (17), respectively.
Through solving the maximization problem, we can derive the
optimal channel assignment policy.

C. Attention-based Neural Network

In this subsection, we model the channel assignment policy
by an ANN and introduce the design of ANN in detail.

After the agent takes action at−1 based on the learned
policy, the state of the environment transits from st−1 to st,
which can be characterized by the state transition probability
π : p(si|S, si−1). To derive the state transition probability, we
apply the proposed ANN to parameterize it as pθ(si|S, si−1).
Motivated by the sequence transduction model [26], the pro-
posed ANN employs an encoder-decoder structure, as shown
in Fig. 3. The encoder computes the embedding of state space
as Es, and the decoder outputs probability distribution over
all states at each step.

1) Encoder: The encoder applies the structure proposed
in [26] without the positional encoding. For each din-
dimensional input (din = 2 in this paper), the encoder linearly
projects it into an initial de-dimensional output. Then, through
L identical layers, the result embedding with dimension de
of each state is computed, where each layer is composed
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Fig. 3. The structure of the proposed attention-based neural network (ANN).

of two sub-layers. The first sub-layer is the Multi Head
Attention layer with heads h = 8. It concatenates the h heads
derived from the [26]. By performing linear transformation,
the concatenated heads are mapped back to a de-dimensional
output. The second sub-layer is the Feed Forward layer,
which is composed of two linear transformations and a RELU
activation in between. Followed by each sub-layer, the residual
connection and batch normalization are appended sequentially.

2) Decoder: The decoder applies the single attention mech-
anism to compute the output probability, pθ(st|S, st−1) at
each step. For the embedding of state space derived from the
encoder, it linearly combines all states into one de-dimensional
general state, eg . Then, at each step of the decoding process,
the embedding of the last state and the general state are con-
catenated and linearly projected to one decoding state, denoted
as ed. At the Single Head Attention layer, it computes the
compatibility of each state with the decoding state and masks
the states that satisfies the following conditions: (1) the states
have already been selected ; (2) the states are not reachable
due to the constraints of the action space. Specifically, the
key (K) and the query (Q) come from the last state and the

decoding state, respectively, which are represented as

K = EsWK ,

Q = edWQ,
(18)

where WK ∈ Rde×de

and WQ ∈ Rde×de

.
After masking the states specified above, it calculates the

compatibility for residual state as

Compatibility = softmax(mask(KQT )), (19)

where K ∈ RNK×de

and Q ∈ R1×de

.
Finally, through the sigmoid layer, the state transition prob-

ability, pθ(st|S, st−1) is obtained.

D. Training Algorithm

The proposed ANN is trained in an epochal setting. In
each epoch, the state, i.e., the user-channel pair, is selected
step by step using bootstrap sampling method according to
the output probability derived from the ANN. The epoch
terminates until all channels are assigned. Therefore, the
solution to the channel assignment problem can be represented
as ζ =

{
s1, ..., sN

}
, which is a combination of states. The
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conditional probability of solution ζ given state space, S, can
be written as follows

pθ(ζ|S) =
N∏
i=1

pθ(s
t|S, st−1). (20)

The loss of the proposed ANN for two performance metrics
is defined as the averaged reward over multiple channel
assignment solutions on the base of (17), which can be written
as

Loss(ζ|S) = Eζ [G
msr
N (ζ)] or Eζ [G

mmr
N (ζ)]. (21)

To derive the gradient of ANN, we use a variation of the
reinforcement estimator [30], which introduces a baseline to
reduce the gradient variance and reinforce the policy towards
better direction. The baseline here is defined as a neural
network with the same structure of the ANN, and initialized
by the parameter of the ANN, denoted as θbl ← θ. According
to [30], the gradient of the ANN is computed as

∇θLoss(ζ|S) = Eζ

[
(Loss(ζ|S)− Loss(ζbl|S)∇logpθ(ζ|S)

]
,

(22)
where ζbl is the solution derived from baseline, which greedily
chooses the state with maximal probability at each step of an
epoch.

Therefore, at the end of each epoch, the ANN updates
its parameter according to the derived gradient in (22). The
optimizer here we used is Adam [31]. Then we evaluate the
system performance of the proposed ANN and the baseline
respectively on the validation dataset. If ANN can achieve
better performance than the baseline, the baseline replaces its
parameters by that of ANN. Otherwise, the baseline keeps its
parameters.

The training algorithm stops when the ANN cannot suc-
cessively outperform the baseline over Ts epochs. Then the
learned ANN model, i.e., the baseline is saved for test. The
training algorithm is described in Algorithm 1. The dimension
of vector in Algorithm 1 is equal to the batch size. Finally, with
the learned channel assignment policy, i.e., the ANN model,
we can derive a near optimal solution to the optimization on
channel assignment in (14) and (15).

E. Complexity Analysis

From the above discussions, we can see that the training
algorithm is composed of an attention-based neural network,
a baseline neural network and state space. In the following,
we will derive the time and space complexity of the training
algorithm.

The state space needs some space to be stored, hence the
corresponding space complexity is O(NK). As the ANN and
baseline share the same encoder-decoder structure, the space
and time complexity for them are identical.

The encoder consists of an embedding layer and L identical
layers. The space complexity for the embedding layer is
O(dinde). Each identical layer is composed of two sub-layers,
i.e., a Multi Head Attention layer and a Feed Forward layer.
According to [26], the space complexity for the Single Head

Algorithm 1 Training algorithm for channel assignment
Input: State space, S; The initialized ANN; Batch size, B
Output: The learned ANN; Channel Assignment; Power Al-

location,
1: for each epoch do
2: for each step do
3: pθ(s

t|S, st−1)← output probability of ANN
4: ζt ← bootstrap sampling based on pθ(s

t|S, st−1)
5: ζbl

t ← greedy sampling based on pθ(s
t|S, st−1)

6: end for
7: if stopping criteria is not satisfied then
8: θ ← Adam(θ,∇θLoss(ζ|S))
9: if Loss(ζ|S) < Loss(ζbl|S) then

10: θbl ← θ
11: end if
12: else
13: save the learned ANN
14: break
15: end if
16: end for

Attention layer and the Multi Head Attention layer are similar,
which is O((NK)2de), and the Feed Forward layer has a
space complexity of O(d2e). Therefore, the space complexity
for the encoder is written as

O(L(NK)2de + Ld2e). (23)

For the decoder, since the Single Head Attention layer
restricts attention to only last state, the corresponding space
complexity is reduced to O(NKde). The complexity for
the linear layer and sigmoid layer are calculated as O(d2e)
and O(de), respectively. Hence, the space complexity of the
decoder is represented as

O(d2e +NKde). (24)

Therefore, the space complexity of ANN and baseline is
represented as

O(L(NK)2de + Ld2e) +O(d2e +NKde). (25)

The time complexity of the ANN and baseline can be
written as

O(TNL(NK)2de + TNLd2e), (26)

where T is the number of training epoches and N is the
number of channel assignment steps in an epoch, i.e, the
number of users in the NOMA system.

Hence, the the overall space complexity of our training
algorithm is

O(2L(NK)2de + 2Ld2e) +O(2d2e + 2NKde), (27)

and the overall time complexity of our training algorithm is

O(2TNL(NK)2de + 2TNLd2e). (28)

Note that the complexity of exhaustive search in channel
assignment problem can be calculated as O(CN

NK), which
denotes all qualified combinations that chooses N states from
state space containing NK states. Therefore, we can find the
complexity of the proposed training algorithm is much lower.
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VII. SIMULATION RESULTS

In this section, we conduct multiple simulations to evaluate
the performance of the proposed deep reinforcement learning
framework, by comparing with two other approaches: the
joint resource allocation (JRA) method proposed in [18] and
the exhaustive search (ES) method. Also, we conduct the
parameter analysis to show the influence of the parameters
in the proposed ANN on the training process and results.

A. Simulation Settings

In the simulations, we assume the base station is located at
the center of cell and the N users are randomly distributed
around it ranging form 50m to 300m. The minimal distance
between users is set to 30m. The total power provided for
the base station is PT = 2 ∼ 12Watt. The total bandwidth
offered to the NOMA system is Btot = 5MHz. The channel
response of the kth channel between the nth user and the base
station is specified as

hk
n = gknd

−α
n , (29)

where gkn follows the Rayleigh distribution, dn is the distance
between the nth user and the base station, and α = 2
is the path loss coefficient. The variance of channel noise
is defined as σ2

zk
= BtotN0/K for ∀k = 1, ...,K, with

N0 = −170dbm. The minimal user rate requirement in (6)
is set to Rk

n = 2 bps/Hz, ∀k = 1, ...,K, n = 1, 2.
The ANN for policy learning in the proposed framework is

set up as follows. The parameters, such as weights and biases
of the ANN are initialized to be uniformly distributed within
(−1/

√
din, 1/

√
din), where din = 2 is the input dimension.

For a trade-off between the quality and the complexity, we
use L = 3 identical layers at the encoder, and the embedding
dimension de is set to 32. The Ts for stopping criteria is set
to 5.

The training and validation datasets are randomly generated
at each epoch consisting of 40000 and 2000 instances, respec-
tively. The test dataset contains 2000 instances. Each instance
is composed of NK states, i.e., the user-channel pairs. The
batch size applied for training is set to 400.

B. Performance Comparison

In this subsection, we compare the proposed framework
with two other approaches, JRA and ES. In the following,
the proposed Joint Resource Allocation Framework using
Deep Reinforcement Learning is called as “JRA-DRL”. In
JRA, the solution to the optimization on power allocation
given channel assignment is first derived. Then with optimal
power allocation, JRA conducts channel assignment and power
allocation iteratively to find the power and channels allocated
to each user. The ES method is a direct extension of JRA. It
carries out the power allocation in the same way as that in JRA.
For channel assignment, instead of the iterative optimization
used by JRA, it exhaustively searches all combinations of
channel assignment and finds the one that can maximize the
objective data rate of the NOMA system.

The sum rate performance comparisons versus the power
of base station with N = 10 users in the NOMA system
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Fig. 4. The system sum rate performance comparisons versus the power of
base station with N = 10 users in the NOMA system.
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Fig. 5. The spectral efficiency versus different number of users with PT =
12Watt.

are shown in Fig. 4. We can see that the sum rate achieved
by the JRA-DRL is higher than that by JRA, which means
that compared with JRA, the JRA-DRL is able to find better
channel assignment for the NOMA system. From Fig. 4, we
can also observe that the achieved sum rate by both the JRA-
DRL and JRA methods increases with the power supplied
to base station, but the increment becomes smaller when the
power supply is larger. Such a phenomenon is because that
according to (5), the channel data rate increases as power
allocated to users multiplexed on that channel increases, but
the benefit will saturate with the power supply is large.

The spectral efficiency of the NOMA system under the MSR
performance metric versus different number of users when the
power supplied to the base station is fixed as PT = 12Watt
is shown in Fig 5. We can see that with the increase of
users in the NOMA system, the spectral efficiency realized
by the JRA-DRL and JRA methods increases, and JRA-DRL
achieves much higher spectral efficiency than that of JRA.
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NOMA system.

This is mainly because that the JRA-DRL can find better
combination of channel assignment than JRA.

We also evaluate the minimal rate performance via different
methods versus the power offered to base station when differ-
ent number of users are deployed in the NOMA system, and
the result is shown in Fig. 6. We can see that the minimal rate
increases with the power of base station. This is reasonable
since the rate will be larger when more power is available. We
can find that at any fixed power supplied to base station, the
minimal rate achieved by the JRA-DRL is always larger than
that by JRA no matter how many users are deployed in the
system. This is because the JRA-DRL is able to better assign
channels than JRA under the MMF performance metric. We
can also observe that the minimal rate of system reduces with
the increase of the deployed users when the power supplied
to base station is fixed. This is because that to realize MMF
that assures the fairness among users, the minimal use rate
would decrease as the number of users in the NOMA system
increases when the total power supply is limited.

Due to the high computational complexity in conducting
ES to find optimal combination of channel assignment, we
set N = 6 to compare the objective rate performance with
ES at different power configuration of base station under both
MSR and MMF performance metrics. The results are shown
in Fig. 7. We can see that under both performance metrics,
the JRA performs the worst. By exploiting better channel
assignment, the JRA-DRL achieves higher objective data rate,
which is almost the same as that realizes by ES.

C. Parameter Analysis

In this subsection, we conduct parameter analysis to the
proposed ANN. To facilitate comparison, we in the following
assume there are N = 40 users and K = 20 channels in the
NOMA system.

The influence of the batch size is shown in Fig. 8, where
the learning rate is set to 0.01. We can see that the sum
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Fig. 8. Convergence of the channel assignment policy network with different
batch size.
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Fig. 9. Convergence of the channel assignment policy network with different
learning rate.

rate of NOMA system increases with the batch size. This is
partly because with a larger batch size, the ANN can explore
more channel assignment processes at the same time, which
is helpful to discover the deep relations and output a better
channel assignment policy network. We can also observe that
the results will converge quickly when a large batch size is
applied.

In Fig. 9 shows the influence of the learning rate, where
the batch size is set to 20. We can see that when the learning
rate is 0.1 and 0.01, the ANN cannot learn a good channel
assignment policy. With a learning rate of 0.001, the results
will converge quickly to a good channel assignment policy.
If the learning rate goes even smaller, e.g., 0.0001, the ANN
converges quickly but with a slightly worse performance.

VIII. CONCLUSION

In this paper, we propose a deep reinforcement learning
based resource allocation scheme to maximize the perfor-
mance of the multi-carrier NOMA system. The joint channel
assignment and power allocation problem is first formulated
into an optimization problem. To resolve the optimization
problem, we first derive a closed-form solution to the power
allocation problem given channel assignment. Then, with
the optimal power weights, a deep reinforcement learning
framework, which utilizes an attention-based neural network,
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Fig. 7. Comparisons on objective rate performance among three approaches at different power configuration of base station under different performance
measures with N = 6: (a) under the MSR performance metric ; (b) under the MMF performance metric.

is proposed to address the channel assignment problem. The
attention-based neural network exploits an encoder-decoder
structure, where the encoder computes an embedding of state
space and the decoder outputs probability distribution over all
states at each step. In simulation results, we compare the pro-
posed framework with two other approaches and show that the
proposed framework can achieve better system performance
under different performance metrics.
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