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A B S T R A C T   

Portfolio management is a critical aspect of investment strategies, with the goal to balance the 
low-risk and high-return investments. Despite this, existing portfolios frequently overlook the 
integration of stock selection outcomes and underutilize data from listed companies, leading to 
suboptimal portfolio performance. Addressing these shortcomings, this paper introduces a hybrid 
system involving stock selection and portfolio optimization. In stock selection, the system em-
ploys a combination of convolutional neural network and bi-directional recurrent neural network 
to predict stock trends. This approach enables the identification of stocks likely to appreciate in 
value, setting the stage for their inclusion in the subsequent optimization process. For portfolio 
optimization, the study formulates a five-objective optimization problem that incorporates mean, 
variance, skewness, kurtosis, and distance-to-default as key considerations. To solve the many- 
objective constrained optimization problem, an advanced strategy employing a static penalty 
function and an improved Non-dominated Sorting Genetic Algorithm III (NSGA-III) based on tent 
chaotic mapping is utilized. The efficacy of the proposed hybrid system is rigorously tested 
through three sets of ablation experiments alongside two discussions focused on its robustness 
and computational efficiency. The findings from these investigations reveal that the hybrid sys-
tem outperforms traditional approaches, reducing risks and improving returns for investors.   

1. Introduction 

The growing awareness of risk and sophistication in investment concepts has led to an increased demand for investments that offer 
more than just risk-free returns. Consequently, investors, both individual and institutional, are gravitating towards stocks as a 
preferred investment vehicle due to their potential for high returns accompanied by high risks. This shift underscores the critical role of 
diversification as a strategy for risk management. In this context, the construction of an effective and efficient portfolio becomes 
imperative [1], as it serves to optimize the balance between risk and return [2]. 

The problem of portfolio selection, initially introduced by Markowitz in 1952 [3], marked the beginning of quantitative finance by 
formulating investment decisions into the mean–variance (M− V) model. This model, by focusing on the risk-return trade-off, aimed to 
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minimize unsystematic risk by considering the distribution’s risks and returns. However, subsequent research indicated that focusing 
solely on the first two moments (mean and variance) is insufficient for a comprehensive risk assessment. Maringer and Parpas [4] as 
well as Liu [5] demonstrated the necessity of incorporating higher-order moments—unless returns follow a normal distribution or 
investors’ utility functions are quadratic. Samuelson [6] further highlighted the asymmetry and fat tails in the distribution of asset 
returns, prompting a shift towards incorporating skewness and kurtosis into the objective function. Recent advancements have seen the 
development of models that integrate these aspects. Zhen and Chen [7] obtained a mean–variance-skewness (M− V− S) portfolio 
frontier and a closed-form strategy for investors with a cubic utility function, while Abid et al. [8] expanded this to include kurtosis, 
proposing a mean–variance-skewness-kurtosis (M− V− S− K) model for diversified portfolio construction. Li et al. [9] further enriched 
this framework by adding entropy, resulting in a mean–variance-skewness-kurtosis-entropy (M− V− S− K− E) hybrid approach. Despite 
these developments, incorporating a company’s financial information remains essential, as evidenced by the Kohn-Merchant-Vasicek 
(KMV) method [10], which emphasizes credit risk assessment through various financial factors. Wang et al.’s [11] introduction of a 
mean–variance-KMV (M− V− KMV) model signifies a notable improvement over the traditional M− V model by integrating financial 
information. However, the integration of higher-order moments with financial information into the objective function remains un-
explored. This paper aims to address this gap by considering five variables—risk, return, skewness, kurtosis, and distance-to- 
default—as the foundational elements of our objective functions. 

In optimizing objective functions, the original M− V model is fundamentally a quadratic programming (QP) problem. Solutions to 
QP problems, especially those with both equality and inequality constraints, typically employ Lagrange multipliers and Karush-Kuhn- 
Tucker (KKT) conditions, necessitating convex objective functions [12]. However, confirming the convexity of high-dimensional 
objective functions poses significant challenges, leading researchers to explore meta-heuristic optimization algorithms for approxi-
mate solutions. Kaucic et al. [13] employed a level-based learning swarm optimizer (LLSO) for addressing large-scale portfolio 
optimization challenges, demonstrating superior performance. Similarly, Bedoui et al. [14] applied a genetic algorithm (GA), derived 

Table 1 
Review of portfolio selection model, optimization algorithm and forecasting model.  

Models References Notes Benefit Drawback 

Portfolio Selection Models 
M¡V [3] M¡V model is the most classic model to 

convert portfolio into a mathematical 
problem. 

First convert a portfolio problem to a 
mathematical model. 

These portfolio models only use 
stock data, but not use financial data 
of public company. 

M¡V¡S [7] M¡V¡S model adds a skewness objective 
on the basis of M¡V and enriches the 
objective function. 

It utilizes the information of some 
higher-order moments. 

M¡V¡S¡K [8] M¡V¡S¡K model combines objectives of 
skewness and kurtosis and M¡V model, 
which covers more information in the 
objective function. 

More information on high-order 
moments is exploited. 

M¡V¡S¡K¡E [9] M¡V¡S¡K¡E introduces information 
entropy into M− V− S− K portfolio with two 
auxiliary models for portfolio optimization 
problem. 

The introduction of entropy can 
eliminate the measure of the 
information uncertainty. 

M¡V¡KMV [11] M¡V¡KMV model utilizes more 
information about high-order moments and 
financial data. 

Financial data is used through KMV 
method. 

High-order moments information is 
not applied in this model.  

Optimization Algorithms 
LLSO [13] LLSO is used to solve M− V− S− K and 

achieved good results. 
Meta-heuristic optimization 
algorithms can solve optimization 
problems and consume as little 
computing resources as possible. 

These meta-heuristic optimization 
algorithms cannot work well when 
solving many-objective 
optimization algorithms. 

GA [14] GA-based heuristic algorithm is used to 
find the cardinality constrained efficient 
frontier. 

NSGA-II [9,17] NSGA-II can solve portfolio optimization 
and getting weights of each stock.  

Forecasting Model 
DTM [21] DTM is used to predict price of stocks, 

providing estimates of the mean and 
variance. 

Fast running speed. The information on multivariate are 
not completely used in these 
models. 

AHP þ TOPSIS [22] AHP is used to obtain expert views, and 
then TOPSIS is used to rank and select the 
best stocks. 

Choosing stocks is intuitive. 

RNN [27] RNN and other variants, such as LSTM has 
the advantages in processing time series 
problem. 

Solve the vanishing of gradient 
problem. 

CNN [26] CNN can extract useful information, and 
then achieve the purpose of dimensionality 
reduction. 

Automatic feature extraction, suitable 
for high-dimensional data.  
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from deep machine learning, to the Conditional Value at Risk (CVaR) [15] portfolio optimization problem. Zhang et al. [16] introduced 
a hybrid approach combining Ant colony optimization with the Estimation distribution algorithm for tackling mixed-integer quadratic 
multi-objective portfolio optimization. While Li et al. [9] used fast and elitist multi-objective non-dominated sorting genetic algorithm 
(NSGA-II) for portfolio optimization, determining stock weights effectively. Additionally, Li et al. [17] proposed a bi-objective 
mean–variance-Value at Riak-entropy portfolio model, optimized by NSGA-II, enhancing solution accuracy. Despite the efficacy of 
meta-heuristic algorithms like LLSO, GA, and NSGA-II, their suitability for many-objective optimization problems is limited. Specif-
ically, NSGA-II tends to perform optimally in scenarios involving no more than three dimensions. Beyond this, the exponential increase 
in non-dominated individuals and the complexities of the Pareto dominance relationship complicate the differentiation between su-
perior and inferior solutions. Addressing this, the current work introduces an evolved version of NSGA-II, named NSGA-III [18,19], 
focusing on many-objective optimization challenges. Building upon NSGA-III, we propose an enhanced variant that incorporates 
tent chaotic mapping for improved population initialization, ensuring a more uniform distribution of the initial population. 

Before embarking on portfolio construction, selecting promising stocks for investment is a critical preliminary step. Dhaini and 
Mansour [20] opted not to select individual stocks, instead utilizing the OR-Library datasets, which, despite being validated for 
representativeness, cannot be considered universally applicable. Wang et al. [11] employed the ARBR indicator for stock screening 
from a pool of 100 stocks, yet this approach leans more towards emotional judgment than rational analysis. Corberán-Vallet et al. [21] 
used damped trend model (DTM) to predict the future stocks price, but this model cannot make full use of various information of 
stocks. Vasantha and Udaya [22] enhanced the Analytic Hierarchy Process (AHP) with expert opinions, subsequently applying the 
Technique for Order Preference by Similarity to an Ideal Solution (TOPSIS) for ranking and selecting prime stocks. However, the 
reliance on subjective expert insights is less effective for the volatile nature of stock assets. Given the stock market’s susceptibility to 
volatility and extreme events, direct predictions of closing prices are generally not recommended [23]. A more viable strategy involves 
accurately forecasting the directional movement of stock prices, assisting investors in making informed decisions [24,25]. The evo-
lution of computational technology, particularly advancements in CPU and GPU capabilities, has significantly propelled the devel-
opment of deep learning. This progression has enabled the resolution of complex prediction challenges through deep learning 
methodologies, such as Convolutional Neural Networks (CNN) [26] and Recurrent Neural Networks (RNN) [27]. Consequently, this 
paper adopts deep learning techniques for forecasting stock trends prior to the optimization of portfolios. An overview of the 
portfolio optimization and forecasting methods utilized is presented in Table 1. 

In summary, inspired by various portfolio works, we developed a hybrid system that integrates stock selection and portfolio 
optimization. For stock selection, a CNN-BiLSTM model was constructed and utilized to forecast trends over specific periods. Based on 
the forecasted trends, the Shanghai Securities Exchange 50 (SSE 50) was segmented into three groups: an experimental group and two 
control groups, with the former analyzed to gauge potential returns for investors and the latter serving comparative purposes. In terms 

Fig. 1. The flowchart of this article.  
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of portfolio optimization, we enriched the traditional mean–variance (M− V) model by incorporating higher-order moments and the 
KMV model, facilitating the creation of many-objective optimizations that consider five factors: mean, variance, skewness, kurtosis, 
and distance-to-default. NSGA-III, enhanced with a tent chaotic map, was selected as the most suitable algorithm for addressing the 
complexities of the five-objective problem presented. The key contributions and innovations of this study are as follows: 

(1) The research transcended conventional stock return analysis by incorporating the listed company’s equity value and debt 
maturity via the KMV method, rendering the investment portfolio more comprehensive; 

(2) This study augmented the mean–variance-skewness-kurtosis (M− V− S− K) portfolio with an additional objective function—the 
distance-to-default variable—aiming for higher returns in the proposed M− V− S− K− K portfolio; 

(3) For the five-objective optimization problem, an improved NSGA-III algorithm with chaotic mapping was employed, demon-
strating superior performance over other algorithms such as NSGA-II and Strength Pareto Evolutionary Algorithm 2 (SPEA2); 

(4) To address the constrained optimization problem, a static penalty function method was applied to transform the constrained 
problem into an unconstrained one, subsequently determining the optimal penalty coefficient; 

(5) This study is pioneering in applying CNN-BiLSTM for stock selection, successfully predicting stock price trends with signifi-
cantly enhanced performance. 

The structure and method of this study are shown in Fig. 1. Section 2 introduces the higher-order moment portfolio and NSGA-III; 
Section 3 details our hybrid approach; Section 4 presents preliminary research data, evaluation metrics, and the operational envi-
ronment; Section 5 describes comparative experiments conducted to validate the proposed portfolio’s performance; Section 6 explores 
the sensitivity and computational efficiency of our algorithm; and Section 7 summarizes the research comprehensively. 

2. Methodology 

For the stock selection part, we developed the CNN-BiLSTM model to forecast the future trends of stocks over a period of time. The 
principle of CNN and BiLSTM can be seen in [28,29]. Subsequently, in the portfolio optimization part, the KMV model along with an 
enhanced version of NSGA-III were employed to construct and optimize the M− V− S− K− K portfolio, demonstrating an integration of 
advanced forecasting and optimization techniques in financial analysis. 

2.1. KMV model 

The KMV model, developed by KMV Company, is designed to estimate the default probability of borrowing companies [10]. A 
company is considered to default when the projected market value of its assets falls below the face value of its liabilities. The metric 
“distance-to-default” (DtD) quantifies the gap between the expected asset value and the threshold at which default occurs. The 
implementation of the KMV model involves three specific steps: 

2.1.1. Calculate the company’s market value SC and volatility σC 
The Black-Scholes option pricing formula [30] is used to estimate the market value SC and volatility σC of the company’s equity. 

C = SC ⋅ N(D1) − e− rW ⋅ L ⋅ N(D2), (1)  

where C is the company’s equity value, L is the book value of liabilities, SC is the marked value of the company’s assets, W is the debt 
maturity, r is the risk-free interest rate, and N( ⋅ ) is the normal distribution cumulative probability function. D1 and D2 are determined 
by Eq. (2–3). 

D1 =
ln(SC/L) +W ⋅

[
r + (1/2)σ2

C

]

σC ⋅
̅̅̅̅̅
W

√ , (2)  

D2 = D1 − σC ⋅
̅̅̅̅̅
W

√
, (3)  

where σC is the volatility of C. 
Furthermore, the relationship of σC and σE can be obtained by Eq. (4). 

σE = (SC/C) ⋅ N(D1) ⋅ σC. (4)  

2.1.2. Calculate the distance-to-default 
The default exercise point is determined by summing the short-term liabilities with half of the long-term liabilities based on a large 

number of empirical analyses. At the same time, the company reaches a critical point where it becomes prone to credit risk. Eq. (5–7) 
represents the process of calculating the DtD. 

DEP = STD+ 0.5LTD, (5)  

where DEP is the default exercise point, and STD and LTD are the short-term and long-term debt, respectively. 
Assuming that the asset value follows lognormal distribution, we can calculate the DtD through Eq. ((1)–(5)). 

ADD = (E(SC) − DEP )/σC, (6) 
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where ADD is the absolute distance-to-default; we can then divide ADD by the asset value to get DtD. 

DTD = ADD/SC. (7)  

2.1.3. Calculate the expected default probability (EDP) 
After the DtD is obtained, the EDP can be easily obtained by Eq. (8) under certain technical conditions. 

EDP = N[(DEP − E(SC) )/E(SC) ⋅ σC ] = N( − DTD). (8)  

2.2. Improved NSGA-III 

In this section, we introduce the principle of NSGA-III and the tent chaotic map, and combine them to develop improved NSGA-III. 

2.2.1. NSGA-III 
Using the basic framework of NSGA-II, NSGA-III also utilizes fast non-dominated sorting to stratify individuals of merged popu-

lation Rt into different non-dominated frontiers. Let us suppose that the parent population size is M, and the parent population of ith 
generation is Pi. In the hierarchical-based non-dominated sorting mechanism, two vectors {up} and {rp} are defined, and p is the 
individual in the population. The number of individuals dominating p is up, and the number of individuals dominated by p is rp. Thus, 
we can calculate up and rp for each individual. Since the set of non-dominant individuals of the population is situated in the first layer, 
the set of individuals in the first layer is F1 = {q|uq = 0,q ∈ Rt}. Then, the set of non-dominated individuals will be situated in the 
second layer after removing the first layer. According to this method, the set of individuals in each layer can be obtained as Fr =

{all individuals q
⃒
⃒uq − r + 1 = 0}. 

During the environmental selection stage, the individuals from layer 1 to layer L of the non-dominated frontier are placed into the 
set Ai. If |Ai| = M, the parent of the next generation Pi+1 = Ai. If |Ai| > M, then the individuals from layer 1 to (L-1) are placed into Pi+1, 
and M − |Ai| individuals are selected from the layer L. NSGA-II uses the crowded-comparison approach in order to preserve population 
diversity. 

Define reference points 
The systematic boundary intersection construction weight method is used in NSGA-III; it places points on a normalized hyperplane: 

a unit simplex with (N − 1) dimensions. Specifically, the hyperplane has equal inclination angles for most targets with an intercept of 1 
on each axis. If p partitions are thought to be present in all objects, then the sum of reference points in the N − objective is H = Cp

N+p− 1, 
where H is the sum of reference points. For instance, this paper has chosen the five-objective optimization problem. Thus, if five 
divisions are determined—that is, p = 5—then H = C5

9 = 126 reference points will be defined. 
Normalize adaptively populated members 
NSGA-III utilizes extreme point normalization in each generation; this helps to not only maintain diversity adaptively but also 

perfectly solves the difficulties introduced by target values with different scales. 
(1) We use the minimum value zmin

t of all individuals of the population Ai on each dimensional object to form the ideal points z =

(zmin
1 ,⋯, zmin

M ) of the current population. Thus, the objective values for all individuals are transformed using the ideal point as a 
reference. Through Eq. (9), we can change the ideal point to the origin so that the object of individual x is transformed. 

f ′
t(x) = ft(x) − zmin

t , t = 1, 2,…,N, (9)  

where f is the objective function before extreme point normalization and f′ is the objective function after extreme point normalization. 
(2) We calculate the extreme points on the target axis of each dimension. After fixing a target direction, the vector of this direction 

wi is equal to 1, and the weights of other directions are set to 0, so w = (1, 0,…,0). Eq. (10) can be the extreme point in the direction of 
the target axis. 

F(x,w) = maxN
t=1f

′
t(x)
/
wt, x ∈ Ai, (10)  

where F is the extreme point in the direction of the target axis. 
(3) We use the obtained M extreme points to form a linear hyperplane. Next, the intercept at in each target direction can be 

calculated, and consequently, the normalized hyperplane can be calculated in combination with f′
t(x). Eq. (11) combines the intercept 

and ideal points to standardize the objective function. 

f nt (x) = f ′
t(x)
/(

at − zmin
t

)
=
(
ft(x) − zmin

t

)/(
at − zmin

t

)
, t = 1, 2,…,N, (11)  

where 
∑N

t=1fn
t = 1. Since the normalization process and hyperplane creation are finished at extreme points in each generation, NSGA- 

III can maintain the variety in the space spanned by Ai members adaptively. Consequently, the problems with Pareto optimal front can 
be solved using NSGA-III. 

Associate reference lines 
After the reference points are set, it is important to define the reference line, which is the ray from the origin through the reference 

points in the target space. The association operation aims to relate the individuals to the corresponding reference lines. The specific 
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content is intended to calculate the vertical distance in Ai to the reference line, and then associate the individual with the reference line 
closest to it. 

Preserve niche 
i individuals are selected from the critical layer FL to associate the next generation population Pi+1. After associating the reference 

lines, the following two situations may occur: (1) the reference points are associated with one or more individuals; (2) no individual is 
associated with the reference points. This step counts the population members related to reference points by using Pi+1 = Ai/FL. 

The reference points with smallest pj are selected. When pj = 0, no reference point can be associated with it in the set Pi+1 = Ai/FL. 
The following two situations will occur in the layer FL. (1) If there are one or more individuals associated with the reference points in 
FL, the closest individual will be associated with them, and the individual will be added to Pt+1. (2) If there is no individual associated 
with it in FL, these reference points are no longer considered. If pj⩾1, an individual in Pi+1 = Ai/FL has already been associated with the 
reference points. If there is an individual in FL associated with it, one is randomly selected and added to Pi+1. Repeat the above- 
mentioned steps until the size of the population in next generation Pi+1 is equal to M. 

2.2.2. Tent chaotic map 
Tent chaotic map is a piecewise linear map that is widely used in chaotic encryption systems [31]. The definition of tent chaotic 

map is as follows: 

ym+1 = g(ym) =

{
ym/θ, ym ∈ [0, θ),

(1 − ym)/(1 − θ), ym ∈ [θ, 1], (12)  

where 0 < θ < 1. In the desirable range of θ, the system is considered to be in a chaotic state. 
In the context of the optimization algorithm, a uniformly distributed initial population across the search space significantly en-

hances the algorithm’s efficiency and precision. Notably, chaotic sequences produced by the tent map exhibit superior distribution and 
randomness compared to pseudo-random numbers. Leveraging these properties, selecting diverse initial values allows for the gen-
eration of a chaotic sequence y within the range [0,1]. This approach facilitates the effective initialization of the population. 

2.2.3. Improved NSGA-III 
Building on the foundation of NSGA-III, this study proposes the substitution of pseudo-random number generation with tent chaotic 

maps for initializing the population’s position, thereby enhancing the NSGA-III algorithm. A detailed visualization of the improved 
NSGA-III and its pseudo-code is provided in Appendices A and B. 

3. The hybrid system 

The hybrid system encompasses both stock selection and portfolio optimization. Consequently, this chapter outlines the specific 
steps involved in each component. 

3.1. Stock selection 

The SSE 50 index constituent stock, as of March 31, 2022, was preliminarily chosen as the experimental dataset. To ensure 
accessibility to data post-2007, stocks exhibiting extensive missing data and brief historical periods were excluded. Ultimately, a 
selection of 21 stocks was made for trend forecasting analysis. 

The essence of trend forecasting is classification rather than regression. Specifically, we developed a multivariate time-series 
classification model based on CNN-BiLSTM [32] to classify stock trend (Y) using closing price (X1), trading volume (X2), 
weekly turnover rate (X3) and weekly return (X4), where Y = (y1, y2,⋯)

T, X1 = (x1,1, x1,2,⋯)
T, X2 = (x2,1, x2,2,⋯)

T,X3 =

(x3,1, x3,2,⋯)
T and X4 = (x4,1,x4,2,⋯). Given that past values of these factors could influence future trends, a sliding window approach 

[33] was implemented in the stock selection phase. Formula (13) can describe the multivariate time-series classification when the 
sliding window size is equal to k. A detailed schematic of the trend forecasting model is provided in Appendix C. 

⎛

⎜
⎜
⎝

x1,1
x1,2
⋯
x1,k

⎞

⎟
⎟
⎠,

⎛

⎜
⎜
⎝

x2,1
x2,2
⋯
x2,k

⎞

⎟
⎟
⎠,

⎛

⎜
⎜
⎝

x3,1
x3,2
⋯
x3,k

⎞

⎟
⎟
⎠,

⎛

⎜
⎜
⎝

x4,1
x4,2
⋯
x4,k

⎞

⎟
⎟
⎠ ⇒ yk+1. (13) 

The CNN-BiLSTM model developed in this study offers several key advantages. Firstly, the CNN component is capable of auton-
omously extracting features due to its inherent local connection and weight sharing properties. Secondly, the BiLSTM component 
effectively processes both past and future information, enhancing the model’s ability to discern long-term dependencies within the 
input sequences. By integrating CNN and BiLSTM, the model can consider temporal and spatial changes concurrently. Through 
training and testing on individual stock data, high-performance models were derived and subsequently employed for predicting short- 
term stock trends. To facilitate portfolio optimization, the 21 selected stocks were categorized into three distinct groups. 
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3.2. Portfolio optimization 

This section describes how the portfolio was built and optimized in terms of objection function and the method used for solving the 
optimization. 

3.2.1. Objective function and constraint condition 
The classical M− V model can be viewed as a two-objective problem with equality and inequality constraints; see following: 
⎧
⎪⎪⎨

⎪⎪⎩

Max E(X)

Min Var(X)

s.t. W⩾0,
WTI = 1.

(14) 

Regarding formula (14), the two objective functions—expectation and variance—are shown in Eq. ((15)–(16)). 

E(X) = WT ⋅ X =
∑n

i=1
wi ⋅ Xi, (15)  

Var(X) = WT ⋅ V ⋅ W =
∑n

i=1
w2

i ⋅ σ2
i + 2

∑n

i=1

∑n

j=1
wi ⋅ wj ⋅ σij, (16)  

where I is a row vector with all-one value, X = (X1,X2,⋯,Xn)
T constitute the expected return of many stocks, W = (w1,w2,⋯,wn)

constitute the weights of corresponding stocks, σij = cov(Xi,Xj) constitute the covariance of the returns, and V is the covariance matrix; 
see Eq. (17). 

V =

⎡

⎣
σ11⋯σ1n
⋯⋯⋯
σn1⋯σnn

⎤

⎦. (17) 

Regarding the proposed M− V− S− K− K model, three new objective functions about higher-order moment and DtD can be added; 
see Eq. (18–20). 

Skew(X) = E
(
WT(X − X)

3 )
, (18)  

Kurt(X) = E
(
WT(X − X)

4 )
, (19)  

DtD(X) =
∑n

i=1
Xi ⋅ dtdi, (20)  

where dtdi is the distance-to-default of the ith stock. 
Investors typically seek to maximize returns while minimizing risks. To this end, expectation maximization and variance mini-

mization serve as intuitive methods. 
A positive skewness implies a distribution where the mean exceeds the median, leading to a right-skewed characteristic. This means 

the right tail of the probability density function (PDF) extends longer than the left, with most values clustering to the left of the mean. 
Therefore, maximizing skewness is crucial to enhance the likelihood of positive returns. 

The kurtosis of asset returns is used to measure the leptokurtosis and fat-tail characteristics of the PDF. Higher kurtosis suggests a 
distribution with pronounced peaks and heavier tails, indicating a greater probability of extreme outcomes. Thus, minimizing 
kurtosis is strategic for reducing the incidence of extreme events. 

The DtD measures the gap between the expected value and the default point, with a larger distance signifying a reduced likelihood 
of company default. Maximizing DtD is essential for ensuring robust risk management. 

The portfolio’s constraints were defined by an equality and an inequality condition based on formula (14), emphasizing that asset 
weights cannot be negative—a no-short selling constraint—and limiting the weight of any single asset to no more than 0.5 to promote 
diversification and ensure the effective utilization of funds. Consequently, the sum of the weights must equal one, adhering to portfolio 
balance. 

Thus, the M− V− S− K− K portfolio can be seen in formula (21). 
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

Max E(X)

Min Var(X)

Max Skew(X)

Min Kurt(X)

Max DtD(X)

s.t.0⩽W⩽0.5,
WTI = 1.

(21) 
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3.2.2. Optimization solution 
Set O(X) represent a matrix encompassing all the objective functions. Given that NSGA-III inherently seeks to minimize the 

objective function values, an inversion of sign is applied to any objective function that necessitates maximization, as illustrated in Eq. 
(22). 

O(X) = [ − E(X),Var(X), − Skew(X),Kurt(X), − DtD(X)]
T
. (22) 

The M− V− S− K− K model incorporates two constraints, necessitating the adaptation of the problem into an unconstrained format 
for simplification. This transformation employs the penalty function method, specifically utilizing the static penalties approach [34], 
detailed in Eq. (23). 

fit( a→) = h( a→)+
∑m

k=1

(
Ck ⋅ max[0, fk( a→)]

2 )
, (23)  

where Ck is the coefficients of static penalties, m is the number of constraints, h( a→) is the original objective function when unpenalized, 
fit( a→) is the penalized objective function, and fk( a→) is the constraint condition. When the constraints are satisfied, denoted by fk( a→) =

0, no penalty is imposed. Conversely, when the constraints are violated, indicated by fk( a→) > 0, a penalty is applied, resulting in an 
increase in the fitness value. 

Based on Eq. (23), we made some small improvements to static penalties. In the first constraint in M− V− S− K− K, if one of the 

Fig. 2. The structure of CNN-BiLSTM.  
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weights wi was found to be between 0 and 0.5, the coefficient C1,i was considered to 0; otherwise, the value was considered 1. In the 
second constraint, if the difference between the sum of the weights and 1 was found to be within the interval of − 1e-3 and 1e-3, set C2 
was considered to be 0; otherwise, the value was considered 1. Then, we used C to combine two coefficients using the following 
formula: C =

∑n
i=1C1,i + C2. Accordingly, the final penalized objective function can be seen in Eq. (24). 

fit(X) = O(X)+R ⋅ C, (24)  

where R is defined by ourselves, which is necessary to determine the optimal coefficient through multiple experiments. 

4. Preliminary 

Prior to conducting the experiment, the research data about assets, evaluation metrics of forecasting and portfolios, and operating 
environments were introduced as the preliminary. 

4.1. Research data 

The experimental dataset used in this study was initially derived from the China SSE 50 index available in the RESSET Database. 
This index features stocks ranked by total market capitalization, highlighting those most indicative of the A-share market. However, 
due to significant missing data, 29 stocks were initially excluded, resulting in a final dataset comprising 21 stocks. Appendix D provides 
a basic statistical description of these stocks, including daily and weekly data. 

In the hybrid system, we chose weekly and daily data for follow-up experiments. Weekly data, covering the period from January 5, 
2007, to March 31, 2022, included a total of 784 data points and were utilized for trend forecasting. Daily data, spanning from January 
4, 2016, to March 31, 2022, consisted of 1519 data points and were applied in portfolio assessment. To accurately evaluate the hybrid 
system’s performance, the dataset was split into training and test sets at a 4:1 ratio. Within the weekly data subset, the training set 
encompassed 627 instances, while the test set comprised 157 instances. Similarly, in the daily data subset, we allocated 1215 instances 
to the training set and 304 instances to the test set. The training set facilitated the optimization of CNN-BiLSTM parameters for trend 
prediction, whereas the test set was used to assess classification performance. The structure of the CNN-BiLSTM network is shown in 
Fig. 2. Regarding portfolio optimization, the training set assisted in deriving optimal stock weights via the improved NSGA-III, and the 
test set served to evaluate portfolio performance. 

4.2. Evaluation metrics 

In this part, the metrics of classification and portfolios for performance evaluation are introduced in 4.2.1 and 4.2.2. 

4.2.1. Classification metrics 
Predicting the future trend of stocks is essentially a binary classification problem. Therefore, in evaluating such a problem, four key 

metrics—Accuracy, Precision, Recall and F1-score—are commonly utilized for assessment; these metrics are also prevalent in most 
classification [35,36]. To define these terms:  

• True Positive (TP) signifies instances where a sample is correctly identified as positive.  
• True Negative (TN) refers to instances where a sample is correctly identified as negative.  
• False Positive (FP) denotes instances where a negative sample is incorrectly classified as positive.  
• False Negative (FN) indicates instances where a positive sample is incorrectly classified as negative. 

These metrics are formally defined and their equations are provided in Table 2. Although Accuracy is the most direct measure of 
performance, it fails to provide an objective evaluation of an algorithm’s effectiveness, especially in scenarios where the data cate-
gories are imbalanced or exhibit extreme bias. Precision and Recall have an inverse relationship; an increase in Precision often results 

Table 2 
Evaluation Metrics in Classification.  

Metric Definition Equation 

Accuracy All predictions are positive as a percentage of the total. TP + TN
TP + TN + FP + FN 

Precision Correct predictions are positive as a percentage of all predictions are positive. TP
TP + FP 

Recall Correct predictions are positive as a percentage of all true values are positive. TP
TP + FN 

F1-score The Harmonic Mean of Precision and Recall. 2×
Precision × Recall
Precision + Recall  

Note: TP+TN+FP+FN = N and N is the total number of samples.  
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in a decrease in Recall. In stock trend prediction, Precision is prioritized as it measures the accuracy of correctly predicted positive 
samples (e.g., stocks expected to rise) which are of greater investment interest. The F1-score serves as a balanced metric that combines 
Precision and Recall, offering a harmonic mean of the two. Consequently, Precision and F1-score are given greater emphasis due to 
their relevance in accurately assessing predictive performance in stock trend analysis. 

4.2.2. Portfolio metrics 
To assess the excess returns of both the proposed portfolios and their comparative counterparts, this study introduces two pivotal 

metrics: the Sharpe ratio [37] and the Information ratio [38,39]. The Sharpe ratio stands as one of the most foundational indicators 
within financial analysis, offering a comprehensive measure that simultaneously evaluates risk and return. Conversely, the Infor-
mation ratio is predominantly utilized to gauge the active management capability of fund managers, effectively representing the 
excess returns generated from taking active risks. Therefore, it is reasonable to choose these two indicators to measure the performance 
of portfolio. The calculation formulas of these two metrics are shown in Appendix E. 

4.3. Operating environment 

In this study, all experimental procedures were executed utilizing Matlab 2020a on a Windows 10 operating system. The specific 
hardware components are detailed as follows: AMD Ryzen 7 5800H 3.20 GHz, 16 GB RAM, and RTX 3050 GPU (4G) were used for 
Compute Unified Device Architecture (CUDA) acceleration in the convolutional and recurrent neural network. Additionally, to ensure 
the precision and reliability of the experimental results, each experiment was repeated 100 times. Subsequently, the average value of 
these iterations was calculated to minimize the potential impact of randomness inherent in the algorithms used, thereby providing 
more accurate and consistent outcomes. 

5. Experiment 

This chapter details how the proposed hybrid system was applied to the real stock data. Specifically, the hybrid system was divided 
into two parts: trend forecasting and portfolio optimization. In order to verify the strength of the hybrid system, different models were 
compared with our models in the two parts. 

5.1. Data preprocessing 

Before implementing the experiment, data preprocessing is a necessary step, which involves checking for and addressing missing 
values and outliers. 

5.1.1. Missing values processing 
In the majority of cases, if the data is missing at a certain point in time, “NA”, “NAN” or null value will be displayed. However, in 

some rare instances, a “0” might also signify a missing value. To handle these missing entries, we employed interpolation using the data 
from the previous day. 

5.1.2. Outlier values processing 
Outlier means that the value of an individual value in the sample significantly deviates from the rest of the observed value of the 

sample. Since the daily limit of the stock in the SSE 50 is 10 points, it is normal as long as the daily fluctuation of the daily data is within 
10 %. Upon computation, it was found that the daily data has no outlier values. 

5.2. Trend forecasting 

As stated in section 3.1, we used closing price (X1), trading volume (X2), weekly turnover rate (X3) and weekly return (X4) 
variables to forecast the trends of the stocks. To highlight the validity and rationality of our system, some classification models were 
introduced for comparison with CNN-BiLSTM (e.g., traditional machine learning models, neural network models, and more popular 
deep learning models). The specific information of classification performance is provided in Appendix F-H. Furthermore, the pa-
rameters used in these classification models are shown in Appendix I. 

5.2.1. Comparison with traditional Machine learning models 
In this part, the performance of Support Vector Classification (SVC), K-Nearest Neighbor (KNN), Naive Bayes (NB), and Decision 

Tree (DT) was evaluated in comparison with CNN-BiLSTM. For these four comparison models, grid search was primarily employed to 
optimize most of their parameters. Specifically for SVC, the Gaussian RBF kernel function was initially chosen due to its common 
application; parameters γs and cs were varied within certain ranges until optimal values were identified. Finally, we determined γs = 1, 
and cs = 0.1. Using this method, we finally determined the number of neighbors nk = 20 in KNN, the maximum depth ħd = 15 and 
maximum leaf nodes ƛd = 10 in DT. Appendix I shows that the classification performances of SVC, KNN, NB, and DT were much worse 
than CNN-BiLSTM. This is mainly because the four traditional models could not implement multivariate time series prediction and 
could only use X1, X2, X3, and X4 from the previous period as input for forecasting. Consequently, it is inferred that stock prices are 
influenced by the data from several previous periods, underscoring the superior predictive capability of CNN-BiLSTM in capturing the 
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complexities of stock trend forecasting through multivariate analysis. 

5.2.2. Comparison with neural network models 
In this part, Back Propagation Neural Network (BPNN), Convolutional Neural Network (CNN), Long Short-Term Memory (LSTM) 

and Bi-directional Long Short-Term Memory (BiLSTM) were compared with CNN-BiLSTM. Focusing on these neural network models, 
consider BPNN as a case study. The initial learning rate was set to lb = 0.01, which, being slightly high, necessitated adjustments for 
optimal training efficiency. Therefore, a drop period (lbp = 50) and a drop factor (lbf = 0.5) were implemented to progressively reduce 
the learning rate, facilitating the model’s convergence towards a global optimum. Appendix G shows that the Accuracy and F1-score 
of the neural network models were higher than traditional machine learning models. In particular, BiLSTM outperformed the other 
three neural network models, though its result was still not as good as CNN-BiLSTM (except for stock 600000). That is, the feature 
extraction ability of CNN could make BiLSTM better for classification. 

5.2.3. Comparison with more popular deep learning models 
Through the aforementioned two sets of experiments, we have largely ascertained that the CNN-BiLSTM yields the best results in 

stock trend prediction. However, given the rapid advancements in artificial intelligence in recent years, more popular models such as 
Transformer [40], Generative Adversarial Network (GAN) [41], and Graph Neural Network (GNN) [42] have achieved significant 
success in the field of time series. Thus, it’s imperative to compare our CNN-BiLSTM model with these models. 

Specifically, we constructed two Transformer-based models: Transformer_1 and Transformer_2. Transformer_1 is based on the 
multi-head self-attention mechanism, and its architecture comprises an input layer, a fully connected layer, a multi-head self-attention 
layer, a global average pooling layer, and an output layer. In the fully connected layer, we utilized the Rectified Linear Unit (ReLU) 
activation function to transform the input features into a new feature space. The self-attention layer, being the core of Transformer_1, 
employs the multi-head attention mechanism, where each head attempts to capture different representations. The pooling layer 
calculates the average for each feature, thus reducing the number of model parameters and facilitating subsequent feature integration. 
The output layer, in essence, is also a fully connected layer and employs the Sigmoid activation function for binary classification. 
Transformer_2, an enhancement of Transformer_1, introduces positional information into the input vector at each sequence position by 
using sine and cosine functions to generate a positional encoding for every position in the sequence. This positional encoding layer is 
between the fully connected layer and the self-attention layer, with the rest of the architecture mirroring that of Transformer_1. 

Furthermore, we also developed a model based on the Generative Adversarial Network (GAN) and another model on the Graph 
Neural Network (GNN). The GAN consists of a generator and a discriminator, where the former aims to produce fake data, and the 
latter endeavors to differentiate between real and fake data. Both the generator and discriminator are neural networks composed of an 
input layer, a fully connected layer, and an output layer. The distinction lies in the output layer of the generator using the Hyperbolic 
Tangent (Tanh) activation function to produce fake data, while the discriminator’s output layer uses the Sigmoid activation function 
for binary classification. The GNN updates node representations by aggregating information from neighboring nodes on the graph, 
capturing the graph’s topological structure and relationships between nodes. The GNN consists of two graph neural network layers and 
an output layer, where data is first multiplied with a learnable adjacency matrix and then further multiplied with a weight matrix. The 
Sigmoid activation function is still used to implement binary classification when the data passes through the output layer. 

The performance comparing the four aforementioned models with CNN-BiLSTM are illustrated in Appendix H, and all the pa-
rameters utilized can be found in Appendix I. It’s evident that, with the exception of a few stocks where the Recall outperforms CNN- 
BiLSTM, the rest lag significantly behind the CNN-BiLSTM. A primary reason for this observation is that although the Transformer, 
GAN, and GNN are outstanding models proven to be applicable in the time series domain, they are often constrained by the quantity of 
data, typically performing better with larger datasets. The stock data utilized in this study is based on weekly data, with a sample size of 
less than 1000, which accounts for the subpar performance of these four models. Moreover, the fact that the recall is considerably high 
while the other three metrics are not can be attributed to the majority of predictions being positive, resulting in a larger count of TP and 
TN, and a smaller count of FP and FN. As evidenced by the calculation formulas in Table 2, the Recall is notably higher than the other 
three metrics, such as the performance of Transformer_1 on stock 600519 and GNN on stock 600585. This is similar to cases where the 
Recall is very low because the majority of predictions are negative, as seen with Transformer_1 on stock 600276 and Transformer_2 on 
stock 600050. Such results don’t necessarily signify superior model performance but rather highlight the model’s inadequacy in 
classification capabilities. 

5.2.4. Grouping stocks by classification 
The classification outcomes unequivocally demonstrate the superior performance of the CNN-BiLSTM model, affirming its efficacy 

in forecasting the future trends of the 21 stocks under study. After that, 7 stocks (600031, 600036, 600196, 600519, 600585, 600690, 
600809) could rise in the future, and another 14 stocks could fall; therefore, we divided the stocks into three groups. We focused on the 

Table 3 
Classification results.  

Group Stock 

Group A 600031, 600036, 600196, 600519, 600585, 600690, 600809 
Group B 600000, 600028, 600030, 600048, 600050, 600104, 600276 
Group C 600436, 600547, 600570, 600588, 600837, 600887, 601398  
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Table 4 
Stock weights and optimization performance by comparing with classic portfolios.  

Group A 600031 600036 600196 600519 600585 600690 600809 Average Return System Risk Skew Kurt DtD SR IR 

P1 0.0988 0.1308 0.0016 0.3485 0.2745 0.0174 0.1293 1.05E-03 3.30E-02 – – – 2.051 – 
P2 0.1298 0.2001 0.0108 0.3194 0.1181 0.1659 0.0557 1.15E-03 3.49E-02 0.013 – – 2.149 0.305 
P3 0.0423 0.1718 0.0816 0.2977 0.2074 0.0603 0.1389 1.18E-03 3.40E-02 0.005 0.722 – 2.276 0.343 
P4 0.1429 0.1429 0.1429 0.1429 0.1429 0.1429 0.1429 1.11E-03 3.41E-02 – – – 2.487 0.361 
P* 0.1265 0.1877 0.1113 0.1431 0.1285 0.1158 0.1869 1.25E-03 3.23E-02 0.003 0.733 1.447 2.572 0.397  

Group B 600000 600028 600030 600048 600050 600104 600276 Average Return System Risk Skew Kurt DtD SR IR 

P1 0.0414 0.0408 0.1813 0.2608 0.0277 0.0932 0.3544 3.58E-04 3.45E-02 – – – 0.197 – 
P2 0.0069 0.0614 0.1650 0.3919 0.1225 0.1542 0.0975 2.90E-04 3.71E-02 0.056 – – 0.201 − 0.043 
P3 0.0210 0.0415 0.1815 0.3222 0.0736 0.1065 0.2531 2.01E-04 3.71E-02 0.107 1.721 – 0.210 − 0.076 
P4 0.1429 0.1429 0.1429 0.1429 0.1429 0.1429 0.1429 1.25E-04 3.77E-02 – – – 0.208 − 0.051 
P* 0.0511 0.1538 0.3641 0.1514 0.0973 0.0841 0.0986 3.88E-04 3.17E-02 0.073 1.587 1.267 0.313 0.098  

Group C 600436 600547 600570 600588 600837 600887 601398 Average Return System Risk Skew Kurt DtD SR IR 

P1 0.1153 0.2728 0.2280 0.0631 0.0166 0.1498 0.1544 4.89E-04 3.54E-02 – – – 0.209 – 
P2 0.1205 0.1073 0.1105 0.0883 0.0421 0.2053 0.3260 4.41E-04 3.47E-02 0.119 – – 0.410 − 0.095 
P3 0.0156 0.1188 0.1701 0.0927 0.0953 0.4262 0.0807 5.05E-04 3.64E-02 0.059 1.445 – 0.372 0.109 
P4 0.1429 0.1429 0.1429 0.1429 0.1429 0.1429 0.1429 4.34E-04 3.53E-02 – – – 0.303 − 0.097 
P* 0.2614 0.0669 0.1068 0.0649 0.0928 0.2173 0.1904 5.13E-04 3.04E-02 0.188 3.479 1.474 0.898 0.127 

Note: Skew, Kurt, DtD, SR, IR indicates that Skewness, Kurtosis, Distance-to-default, Sharpe ratio and Information ratio. P1, P2, P3, P4 and P* are M− V, M− V− S, M− V− S− K, same weights portfolio and 
proposed portfolio. 

M
. Lv et al.                                                                                                                                                                                                              



InformationSciences670(2024)120549

13

Table 5 
Stock weights and optimization performance by comparing with meta-heuristic-portfolios.  

Group A 600031 600036 600196 600519 600585 600690 600809 Average Return System Risk Skew Kurt DtD SR IR 

P5 0.1425 0.4164 0.0586 0.1383 0.0852 0.1117 0.0475 9.41E-04 3.20E-02 0.011 0.736 1.297 1.944 − 0.097 
P6 0.0237 0.0129 0.1338 0.1427 0.2479 0.3501 0.0888 1.17E-03 4.48E-02 0.001 0.638 2.485 1.437 0.296 
P7 0.1763 0.0175 0.0476 0.3672 0.1663 0.1514 0.0738 1.19E-03 3.47E-02 0.007 0.794 1.594 2.231 0.275 
P8 0.2023 0.0000 0.0000 0.3672 0.1276 0.0827 0.2146 9.25E-04 3.48E-02 0.015 0.992 1.041 2.389 0.073 
P9 0.1458 0.1535 0.0000 0.1369 0.0401 0.2463 0.2819 1.99E-04 4.47E-02 0.020 1.018 1.079 1.238 − 0.186 
P10 0.0852 0.0004 0.1627 0.0616 0.2384 0.3768 0.0784 8.99E-04 3.77E-02 0.006 0.747 1.610 1.910 0.175 
P11 0.1526 0.2400 0.0868 0.1165 0.0894 0.1825 0.1322 9.85E-04 3.39E-02 0.007 0.743 1.389 2.415 0.218 
P* 0.1265 0.1877 0.1113 0.1431 0.1285 0.1158 0.1869 1.25E-03 3.23E-02 0.003 0.733 1.447 2.572 0.397  

Group B 600000 600028 600030 600048 600050 600104 600276 Average Return System Risk Skew Kurt DtD SR IR 

P5 0.1171 0.0609 0.2382 0.0979 0.1996 0.1886 0.0976 1.13E-04 3.25E-02 0.096 1.842 1.198 0.175 0.042 
P6 0.0981 0.1837 0.1173 0 0.3228 0.2539 0.0242 5.53E-05 3.23E-02 0.092 1.658 0.796 − 0.224 − 0.140 
P7 0.0337 0.1407 0.1036 0.3493 0.2154 0.1264 0.0310 1.72E-04 3.60E-02 0.051 1.301 1.186 − 0.102 − 0.069 
P8 0.0000 0.0000 0.2520 0.2695 0.0000 0.0000 0.4712 2.92E-04 5.93E-02 0.237 2.973 1.084 0.194 − 0.081 
P9 0.0000 0.0103 0.0816 0.6442 0.0000 0.0079 0.2580 1.62E-04 4.24E-02 0.231 2.690 1.175 0.090 − 0.047 
P10 0.2193 0.0000 0.1067 0.0000 0.3975 0.0243 0.2523 3.47E-05 3.67E-02 0.163 2.644 0.981 − 0.322 0.074 
P11 0.0135 0.1902 0.0808 0.2372 0.1761 0.0876 0.2148 2.58E-04 3.44E-02 0.099 1.589 1.124 − 0.159 − 0.033 
P* 0.0511 0.1538 0.3641 0.1514 0.0973 0.0841 0.0986 3.88E-04 3.17E-02 0.073 1.587 1.267 0.313 0.098  

Group C 600436 600547 600570 600588 600837 600887 601398 Average Return System Risk Skew Kurt DtD SR IR 

P5 0.0985 0.0428 0.0327 0.3368 0.2671 0.1207 0.1012 3.35E-04 4.17E-02 0.113 2.347 1.200 0.308 0.087 
P6 0.0273 0.0108 0 0.4576 0.0027 0.1348 0.3667 8.10E-05 2.77E-02 0.198 2.538 0.930 0.359 0.063 
P7 0.0472 0.1030 0.1285 0.0374 0.1384 0.3581 0.1875 4.36E-04 3.09E-02 0.064 1.691 1.305 0.423 0.095 
P8 0.2904 0.2924 0.1284 0.0248 0.0000 0.0443 0.2233 3.41E-04 4.28E-02 0.234 4.324 0.956 0.573 0.046 
P9 0.1160 0.2809 0.1629 0.0727 0.0000 0.1924 0.1852 3.19E-04 4.37E-02 0.173 3.350 0.868 0.295 − 0.076 
P10 0.3874 0.1152 0.0761 0.1056 0.0166 0.2838 0.0150 4.18E-04 4.02E-02 0.273 4.618 1.786 0.585 0.118 
P11 0.0159 0.0938 0.0872 0.0707 0.1529 0.2324 0.3471 1.57E-04 2.96E-02 0.050 1.465 1.162 0.095 0.057 
P* 0.2614 0.0669 0.1068 0.0649 0.0928 0.2173 0.1904 5.13E-04 3.04E-02 0.188 3.479 1.474 0.898 0.127 

Note: P5, P6, P7, and P* are NSGA-portfolio, NSGA-II-portfolio, NSGA-III-portfolio, and proposed portfolio. P8, P9, P10, P11, and P* are PSO-portfolio, ICA-portfolio, SPEA2-portfolio, MOGOA-portfolio and 
proposed portfolio. 
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first group to earn income, and the other two groups were the control groups. The specific grouping results are shown in Table 3. 
Remark: Through comparison of different models, we used CNN-BiLSTM for making trend predictions about stocks. Finally, 7 stocks 
were classified into Group A for subsequent portfolio optimization. 

5.3. Portfolio optimization 

Regarding optimization, different optimization algorithms were used to optimize the weights of stocks. The parameters in these 
algorithms are shown in Appendix J. 

5.3.1. Comparison with classic portfolios 
Classic portfolio mainly refers to portfolios that have achieved good results and have been verified by many scholars (e.g., M− V 

portfolio). Now, we defined P1 as the M− V, P2 as the M− V− S, P3 as the M− V− S− K, and P4 as the same weight portfolio; P* was the 
proposed portfolio. Furthermore, in this comparison, aiming to ensure the accuracy of the verification results, we unified the opti-
mization algorithm as improved NSGA-III. In order to make the results more stable while preserving the emergence of new species, we 
set the crossover probability Pc = 0.7, mutation probability Pm = 0.3, and Mr = 0.02. Furthermore, Noff and Nmut were set to 36 and 
20, respectively, through the grid search method. The results are shown in Table 4. 

Analyzing the optimization performance, the Sharpe ratio and Information ratio of P* were found to be the highest among the five 
portfolios, with value of 2.572 and 0.397 respectively in Group A; P* performed better in the field of access return and system risk. In 
Groups B and C, even though metrics such as SR and IR decreased, P* was still the best performer; therefore, it can be concluded that 
the proposed portfolio was more efficient than several traditional portfolios. As for P*, the weights of 600031, 600036, 600196, 
600519, 600585, 600690, and 600809 in Group A were 0.1265, 0.1877, 0.1113, 0.1431, 0.1285, 0.1185, and 0.1869, respectively. 
The results were similar to P4 mainly because, after stock selection, no stocks had poor returns. Conversely, in Group B and C, P* 
allocated weights below 0.1, indicating their unsuitability for investment. This reflects the effectiveness of trend prediction based on 
deep learning. 

5.3.2. Comparison with Genetic-Portfolios 
When the same objective functions exist in various portfolios, different optimization algorithms will have a direct impact on the 

final results. Although improved NSGA-III was used in this paper, many other genetic algorithms have been used in other portfolio 
optimization problems. Therefore, we defined P5 as the portfolio optimized by GA, P6 as the portfolio optimized by NSGA-II, and P7 as 
the portfolio optimized by NSGA-III; P* was also our proposed portfolio. These results can be seen in Table 5. 

Taking the results in Group A as an example, SRP* = 2.572 > SRPi

̅̅ →
,i = 5,6,7, which means that in order to take the total risk of 1, P* 

can generate the excess return of 2.572, which is much higher than the remaining portfolios. IRP* = 0.397 > IRPi

̅̅→
=

[ − 0.097,0.296,0.275],i = 5,6,7, which shows that P5 is not as good as P1, and P6; furthermore, P7 is more profitable than P1, but P* 
has the highest return compared to P1. Similar conclusions are drawn in Groups B and C. Therefore, we can conclude that among 
various genetic-portfolios, the selected portfolio showed the best performance after improved NSGA-III optimization was applied. 

5.3.3. Comparison with Meta-heuristic-Portfolios 
In addition to some genetic algorithms, many meta-heuristic optimization algorithms can be used in portfolio optimization; 

therefore, we considered some portfolios optimized by Particle Swarm Optimization (PSO), Imperialist Competitive Algorithm (ICA), 
SPEA2, and Multi-objective Grasshopper Optimization Algorithm (MOGOA) and defined them as P8, P9, P10, and P11, respectively. P* 
was the portfolio optimized by improved NSGA-III. The detailed experimental results are shown in Table 5. 

PSO, ICA, and MOGOA are typical swarm intelligence optimization algorithms, which cannot have sophisticated internal designs; 
however, they are robust, stable, and adaptive based on simple individuals and rules. Conversely, SPEA2 is an evolutionary algorithm 
with a fixed archive size; it uses proximity estimation to make the search more accurate. For these four algorithms, we set archive 
maximum size and maximum iterations equal to 50 and 500. Moreover, regarding specific parameters, we set Iw = 0.99, Pκ = 2, and 
Gκ = 2 in PSO, and Ne = 5, Cc = 0.1, and Sp = 1 in ICA. However, these four algorithms did not optimize the portfolios for higher 
returns. For example, in Group A, the SR and IR of these portfolios were as follows: SRPi

̅̅ →
= [2.389,1.238,1.910,2.415] and IRPi

̅̅→
=

[0.073, − 0.186,0.175,0.218], i = 8,…,11, which is far below the metrics of P*. 

5.3.4. Comparison with state-of-the-art portfolios 
In the previous subsection, we examined classical, genetic, and meta-heuristic portfolios, identifying that the proposed portfolio 

utilizing the improved NSGA-III demonstrated superior performance. This section will detail how we found the current state-of-the-art 
(SOTA) portfolios and compared them with the proposed portfolio. 

The first SOTA model [13], named P12, extended the classical M− V portfolio by maximizing modified Sharpe ratio with cardinality, 
box, and budget constraints, and it proposed a level-based learning swarm optimizer (LLSO) [43] to solve this optimization problem. 
The second SOTA model [44], named P13, developed a hybrid genetic algorithm to solve the problem with the objective of expected 
return and skewness maximization as well as mean absolute semi-deviation minimization. The next SOTA model [45], named P14, 
proposed a co-evolutionary multi-swarm adaptive differential evolution algorithm to minimize the Mean-Conditional Value-at-Risk 
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(MCVaR) and solve the constrained optimization. The last SOTA model [46], named P15, used AdaBoost algorithm to forecast stock 
values for the next periods and then used mean-VaR to build the portfolio. In order to make the comparison results more reasonable, we 
used the stocks in Groups A, B, and C and did not use the prediction stage in P15 to select the stocks. The above-mentioned four SOTA 
models have previously proved that they can achieve sufficiently high returns; their performance on the data of this current study is 
recorded in Table 6. 

Table 6 reveals several key findings: (1) These four SOTA models can achieve high returns, with the exception of the P15 is negative; 
(2) P* performs better than the other four models; (3) All the models perform best in Group A, followed by Group C and least effectively 
in Group B. 

Therefore, several interesting conclusions can be drawn: (1) P15 is the only portfolio model that has not been optimized by the 
optimization algorithm, so the optimization algorithm is extremely important for the portfolio; (2) These four SOTA models fail to 
utilize data from listed companies or to fully leverage high-order moments, highlighting the importance of constructing the objective 
function; (3) Among several optimization algorithms, the improved NSGA-III stands out as the most effective.Remark: Several classic 
portfolios, genetic-portfolios, meta-heuristic-portfolios, and SOTA portfolios are compared to our proposed portfolios. Evidence sug-
gests that our proposed portfolio strategy yields the highest profits. Figs. 3 and 4 depict the allocation weights and performance metrics 
of each portfolio. 

6. Discussion 

Initially, the efficacy of stock classification requires test. Subsequently, to delve deeper into the hybrid system’s performance, this 
section explores various methodologies for evaluating robustness and efficiency, including sensitivity analysis, computational time 
analysis, and algorithm complexity analysis. Moreover, the potential misestimation of credit risk by the KMV model is also examined. 

6.1. Statistical test 

In order to test whether the classification results of CNN-BiLSTM are significantly different from those of other models, we conduct 
two statistical tests based on two metrics: Accuracy and F1-score. First, we use a statistical framework based on non-parametric 
Friedman test described by Demsar [47], which aims to test whether there are significant differences between all classification 
models. The Friedman statistic can be defined as: 

τχ2 =
12N

k(k + 1)

(
∑k

i=1
r2
i −

k(k + 1)2

4

)

, (27)  

where ri denotes the rank of the performance measures of algorithms i = 1, 2, ..., 8 over 21 stocks, so k and N are equal to 8 and 21. The 
Friedman statistic obeys a chi-square distribution of k − 1 degrees of freedom under the null hypothesis, and the null hypothesis in-

Table 6 
Metrics of return by comparing with SOTA models.  

Group A SR IR 

P12 1.739 0.077 
P13 2.193 0.336 
P14 1.849 0.211 
P15 1.037 − 0.105 
P* 2.572 0.397  

Group B SR IR 

P12 0.274 0.063 
P13 0.282 0.066 
P14 0.173 0.047 
P15 − 0.085 − 0.021 
P* 0.313 0.098  

Group C SR IR 

P12 0.739 0.106 
P13 0.632 0.079 
P14 0.481 0.040 
P15 0.608 − 0.083 
P* 0.898 0.127  
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dicates that there is no difference in the results of all algorithms. 
The Friedman statistic equals 155.42 (p-value = 0.000) based on Accuracy ranks and 114.58 (p-value = 0.000) based on F1-score 

ranks, which indicates that there are significant differences in terms of ranks. Then, the Wilcoxon signed-ranks test [48] is further used 
to test whether CNN-BiLSTM differs from the rest of the models. Table 7 presents the p-value of the results of Wilcoxon signed-ranks 
test; and all p-values [49] are far lower than the significance level 0.1, 0.05, and 0.01. Therefore, the null hypothesis is rejected, which 
demonstrates that the proposed CNN-BiLSTM and other classification models are significant different. The above can prove the 
robustness of the proposed CNN-BiLSTM. 

6.2. Sensitivity analysis 

6.2.1. Parameter sensitivity analysis 
In the hybrid system, optimization represents the pivotal process, hence, considerable emphasis was placed on the key parameters 

of the improved NSGA-III. Furthermore, three hyperparameters were used for sensitivity analysis, including the maximum iterations 
℘, the population size I, and the division of reference points nd. Then, we combined the best values of these hyperparameters to set 
200, 300, 400, 500, and 600 for ℘, 30, 40, 50, 60, and 70 for I and 8, 9, 10, 11, and 12 for nd. The standard deviation of changes in 
metrics SR and IR is shown in Table 8. 

As shown in Table 8, most of the values in this table were between 0.01 and 0.05; this indicates that the algorithm was not 
particularly sensitive to the core parameters. Therefore, it further illustrates the stability and robustness of our proposed system. 
Specifically, we could also draw the following conclusion: the indicator IR was less sensitive than SR; nd was the one that had the least 
impact on the final result in the three key parameters; the value in Group A was less sensitive than that in Groups B and C. 

6.2.2. Data sensitivity analysis 
Sensitivity analysis, leveraging varying data sets, elucidates the potential fluctuation in final outcomes in response to data alter-

ations. In this study, the three datasets of Groups A, B, and C in this research were quite different, representing three trends in which 
prices were likely to rise, fall, or remain unchanged in the future, so we could not directly compare the three datasets horizontally. To 
address this, a longitudinal comparison methodology was employed for data sensitivity analysis. Specifically, in the previously con-
structed portfolio optimization, data from Jan. 4, 2016 to Mar. 31, 2022 were adopted, and the training set and test set were divided. 
The training set was used for determining the weight of each stock, and the test set was used for outputting the metrics. Furthermore, 

Fig. 3. The weights of each portfolio.  
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the data from Mar. 31, 2022 to Mar. 31, 2023 were used for validating the results in this study as an entirely new test set. Appendix K 
records the SR and IR for all portfolio models in the new test set. 

Appendix K Delineates the Sharpe and information ratios across models, aligning with Section 5’s experimental outcomes. It is 
evident that P* excels within Group A, showcasing superior metric values, thus affirming its robustness even under the situation of new 
data. While certain models in groups B and C exhibited enhanced SR or IR compared to P*, considering the stocks to be invested had to 
belong to Group A, we did not have to pay too much attention to the metrics of groups B and C. Even so, no model could achieve both 
SR and IR ahead of P*. A remarkable observation was the consistently negative IR in models P4, P5, and P15 across all datasets, 
underscoring their inferiority to the M− V portfolio. Consequently, when subjected to a new data set, the proposed portfolio model P* 
was still found to be optimal 

6.3. Computational time analysis 

In addition to focusing on the effectiveness of the model, computational time is also a critical metric, reflecting the efficiency of 
models. Although the models’ performance has been previously elaborated, a comparative analysis of their running times is essential. 
Table 9 records the computational time of each model. 

As shown in the table above, there is no doubt that P4 demonstrated the shortest execution time, but it had the worst performance. 
Afterward, the running time of the three portfolios P1, P2, and P3 were found to be relatively short, and P1 < P2 < P3, primarily due to 
their objective functions comprising fewer than five objectives. In particular, we observed that the computational time grew longer as 
the number of objectives increased; this conforms to the pattern of the optimization algorithm. In the improved NSGA-III, the 
complexity increased exponentially as the number of objectives increased by one. The complexity issue is discussed in detail in Section 
6.4. According to Tables 3 and 4, the performance of P7, P8, and P11 is close to P*, and their running times are not much different. 
Specifically, the running times of these portfolios are sorted as follows: P11 > P*>P7 > P8. The short running time of P7 is attributed to 
the absence of chaotic mapping during population initialization; which, in comparison to P*, results in a shorter overall running time. 
P8 and P11 both employing swarm-based optimization algorithms, exhibit distinct operational efficiencies, which is mainly because of 
the single-objective of P8 and the multi-objective of P11. Therefore, taking all these factors into consideration, we believe that the 
computational time of the portfolio of P* is reasonable. 

Fig. 4. The metrics of each portfolio.  
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Table 7 
The Wilcoxon signed-ranks test.  

Algorithm role Algorithm Metric 

Accuracy F1-score 

Control Convolutional Neural Network-Bi-directional Long Short-Term Memory 
(CNN-BiLSTM) 

– –  

Benchmarks Support Vector Classification 
(SVC) 

4.0151*** 

(0.000) 
4.0151*** 

(0.000) 
K-Nearest Neighbor 
(KNN) 

4.0160*** 

(0.000) 
4.0151*** 

(0.000) 
Naive Bayes 
(NB) 

4.0148*** 

(0.000) 
4.0151*** 

(0.000) 
Decision Tree 
(DT) 

4.0148*** 

(0.000) 
4.0151*** 

(0.000) 
Back Propagation Neural 
Network (BPNN) 

4.0169*** 

(0.000) 
4.0151*** 

(0.000) 
Long Short-Term Memory 
(LSTM) 

4.0151*** 

(0.000) 
4.0151*** 

(0.000) 
Bi-directional Long Short-Term Memory (BiLSTM) 3.9801*** 

(0.000) 
3.9804*** 

(0.000) 
Convolutional Neural Network 
(CNN) 

4.0160*** 

(0.000) 
4.0151*** 

(0.000) 
Transformer based on self-attention 
(Transformer_1) 

4.0148*** 

(0.000) 
4.0151*** 

(0.000) 
Transformer based on encoding 
(Transformer_2) 

4.0152*** 

(0.000) 
3.9804*** 

(0.000) 
Generative Adversarial Network 
(GAN) 

4.0160*** 

(0.000) 
3.9803*** 

(0.000) 
Graph Neural Network 
(GNN) 

3.9802*** 

(0.000) 
4.0151*** 

(0.000) 

Note: *** indicates significance on 99% level. The p-value for Wilcoxon signed-ranks test is shown between brackets. 

Table 8 
The sensitivity analysis of improved NSGA-III in hybrid system.  

Hyperparameters Dataset SR IR 

℘ Group A  0.0423  0.0204 
Group B  0.0579  0.0273 
Group C  0.0503  0.0249  

I Group A  0.0359  0.0199 
Group B  0.0376  0.0245 
Group C  0.0418  0.0270  

nd Group A  0.0267  0.0095 
Group B  0.0234  0.0130 
Group C  0.0304  0.0147  

Table 9 
The results of computational time of all models (s).  

Model P1 P2 P3 P4 P5 P6 P7 P8 

Group A 81.8 124 205 1.35 462 486 500 319 
Group B 75.9 137 214 1.27 489 503 495 304 
Group C 86.4 119 232 1.16 443 489 496 337  

Model P9 P10 P11 P12 P13 P14 P15 P* 

Group A 423 541 673 389 531 156 189 507 
Group B 405 516 589 376 507 176 201 496 
Group C 411 537 634 393 525 147 193 512  
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6.4. Algorithm complexity analysis 

The efficiency of a system’s algorithms dictates its computational time, with high algorithmic complexity often leading to reduced 
efficiency and stability. This paper delves into the time complexity of improved NSGA-III, which is the core of portfolio optimization. 
Through the examination of its time complexity, this research aims to promote its practical application and ensure its viability over 
time. 

For a detailed analysis, the NSGA-III algorithm was segmented into four distinct modules: Module 1 (Generation), Module 2 
(Normalize), Module 3 (Associate), and Module 4 (Niching). 

In Module 1, the nondominated sorting of a population of size 2N with M-dimensional vectors required the complexity of 
O(N ⋅ logM− 2 ⋅ N). In Module 2, it took the cost of O(M ⋅ N) to identify ideal points, O(M ⋅ N) to perform objectives translation, O(M2 ⋅ N)

to identify extreme points, and O(M3) to determine interceptions to find the inverse matrix of a matrix of size M× M; finally, we needed 
O(N) complexity for at least 2N population regularization. In Module 3, all operations that were associated with up to 2N group 
members with H reference points required O(M ⋅ N ⋅ H) computations. In Module 4, O(H) comparisons were required when niching was 
performed, but O(L) complexity was required if a worst-case scenario occurred. In the niching algorithm, the calculation was per-
formed at most L times, so it required O(L2) or O(LH) costs of computation. In all of our analysis, we assumed that N was greater than or 
equal to H. When using the tent chaotic mapping algorithm to improve NSGA-III, we considered the complexity of O(a ⋅ M), where a is 
the number of chaotic iterations. 

Based on the above-mentioned calculations and analyses, the worst-case complexity of improved NSGA-III was found to be O(N2 ⋅ 
logM− 2 ⋅ N) or O(N2 ⋅ M), whichever was larger. 

6.5. KMV mis-estimate credit Risk? 

The KMV method, a popular tool for estimating credit risk, may produce inaccurate measurements of credit, resulting in un-
derestimations during bull markets and overestimations during bear markets. Therefore, this chapter aimed to investigate whether our 
proposed portfolio model could outperform other comparison models in addressing this issue. To achieve this goal, we partitioned the 
dataset into two subgroups corresponding to bear and bull markets, respectively, and conducted experiments on each subset. Ac-
cording to the movement of the Shanghai Composite Index, we defined the stock market from Jan. 4, 2020 to Feb. 26, 2021 as a bull 
market and the market from Oct. 29, 2021 to Mar. 31, 2022 as a bear market. The evaluation focused on two key performance in-
dicators: the SR and IR, with detailed comparisons presented in Appendix L. 

Based on the findings presented here, it can be inferred that P* (the proposed portfolio model) outperformed other models in both 
the bear and bull markets. It is commonly acknowledged that most models exhibit superior performance during bull markets in 
comparison to bear markets. Nonetheless, P* and some benchmark models demonstrated the capacity to generate considerable positive 
returns even in a bear market. This is particularly noteworthy, as the returns exceeded those provided by the risk-free interest rate and 
the M− V portfolio model. In conclusion, the possible defects of the KMV had little impact on the results of this study. 

7. Conclusion 

Portfolio management represents a critical aspect of investment decision-making in the real world, with investors universally 
seeking portfolios that offer high returns at low risk levels. This study introduced a hybrid system that encompasses both stock se-
lection and portfolio optimization to address these investment challenges.  

• Stock Selection: The study innovatively integrated a convolutional neural network with a bi-directional recurrent neural network 
to develop a CNN-BiLSTM model for trend classification prediction. Numerical experiments demonstrated that CNN-BiLSTM 
outperformed numerous traditional classification models and neural network models, showcasing its efficacy in accurately pre-
dicting stock trends.  

• Portfolio Optimization: A novel five-objective optimization problem was formulated, incorporating mean, variance, skewness, 
kurtosis, and distance-to-default as objectives. The improved NSGA-III algorithm was applied to solve this complex problem. 
Compared with traditional, genetic, and heuristic portfolios, the proposed portfolio achieved higher returns and lower risks, 
indicating its superior investment performance.  

• Robustness and Efficiency: Through sensitivity analysis and computational time analysis, the proposed portfolio was shown to 
exhibit greater robustness and efficiency than competing portfolio strategies, enhancing its appeal to investors. 

The proposed hybrid system stands out for its ability to mitigate investment risks while enhancing returns, offering a promising 
framework for future research and practical applications. It can be applied not only to the stocks in SSE 50 but also to a broader range 
of stocks. However, the system has certain limitations that suggest avenues for future research:  

• Predictive Inputs: The current model primarily focuses on stock-related data, overlooking potentially influential external factors 
such as market sentiment and public opinion, which could enhance the accuracy of stock trend predictions. 
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• Optimization Efficiency: The efficiency of the portfolio optimization algorithm presents opportunities for improvement, sug-
gesting that future efforts could focus on either selecting more effective optimization algorithms or significantly enhancing existing 
ones. 
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