
European Journal of Operational Research 305 (2023) 53–63

Contents lists available at ScienceDirect

European Journal of Operational Research

journal homepage: www.elsevier.com/locate/ejor

Discrete Optimization

Ant colony optimization for path planning in search and rescue

operations

Michael Morin

a , ∗, Irène Abi-Zeid

a , Claude-Guy Quimper b

a Department of Operations and Decision Systems, Université Laval, Québec, Canada
b Department of Computer Science and Software Engineering, Université Laval, Québec, Canada

a r t i c l e i n f o

Article history:

Received 2 August 2021

Accepted 8 June 2022

Available online 12 June 2022

Keywords:

Evolutionary computations

Search and rescue

Optimal search path planning

Ant colony optimization

Humanitarian operations

a b s t r a c t

In search and rescue operations, an efficient search path, colloquially understood as a path maximizing

the probability of finding survivors, is more than a path planning problem. Maximizing the objective

adequately, i.e., quickly enough and with sufficient realism, can have substantial positive impact in terms

of human lives saved. In this paper, we address the problem of efficiently optimizing search paths in

the context of the NP-hard optimal search path problem with visibility, based on search theory. To that

end, we evaluate and develop ant colony optimization algorithm variants where the goal is to maximize

the probability of finding a moving search object with Markovian motion, given a finite time horizon

and finite resources (scans) to allocate to visible regions. Our empirical results, based on evaluating 96

variants of the metaheuristic with standard components tailored to the problem and using realistic size

search environments, provide valuable insights regarding the best algorithm configurations. Furthermore,

our best variants compare favorably, especially on the larger and more realistic instances, with a standard

greedy heuristic and a state-of-the-art mixed-integer linear program solver. With this research, we add to

the empirical body of evidence on an ant colony optimization algorithms configuration and applications,

and pave the way to the implementation of search path optimization in operational decision support

systems for search and rescue.

© 2022 Elsevier B.V. All rights reserved.

1

t

a

p

c

m

u

d

e

a

m

d

c

p

h

a

t

(

c

n

s

s

p

fi

s

o

d

i

t

e

t

s

o

o

h

0

. Introduction

The act of searching is an important part of many humani-

arian operations, such as search and rescue (SAR), minesweeping

nd of many surveillance or homeland security operations for the

urpose of protecting individuals, resources or infrastructures from

urrent or future threats. Teams of searchers on the ground (hu-

ans and/or canine), in aircraft, in vessels as well as autonomous

nmanned vehicles (robots) may search for survivors, land or un-

erwater mines, or illicit activities and abnormal behaviors. In the

vent of natural disasters, such as earthquakes, floods, landslides,

nd other catastrophes involving collapsed buildings, aircraft, or

aritime vessels, SAR operations must be quickly organized and

eployed in order to locate and rescue survivors. This is also the

ase for smaller scale, albeit more frequent emergencies, such as

ersons who might have disappeared in water, a child who might

ave been lost, a confused person who might have wandered off,

 hiker missing in the woods, etc. In Canada alone, there are

housands of air, maritime and ground SAR incidents every year
∗ Corresponding author.

E-mail address: Michael.Morin@osd.ulaval.ca (M. Morin) .

a

a

i

ttps://doi.org/10.1016/j.ejor.2022.06.019

377-2217/© 2022 Elsevier B.V. All rights reserved.
 Minister of National Defence, 2013). Searching is, of course, also

onducted by law enforcement agencies who wish to locate and

eutralize threats.

But, how and where to search? The answer lies in efficient

earch planning that ensures the best use of scarce and constrained

earch resources. This implies defining search areas and/or search

aths that maximize the chances of an operation’s success, namely

nding the search objects. Search planning is extremely complex

ince it is normally conducted under time pressure, in the presence

f uncertain whereabouts, uncertain detectability, uncertain con-

itions of the search objects, and in degraded and rapidly chang-

ng conditions. The recent European migrant crisis and the human

ragedies in the Mediterranean have emphasized the importance of

fficient searches to quickly locate and rescue survivors.

In response to the first large-scale search operations, namely

he hunt for enemy submarines off the Atlantic Coast during WWII,

earch theory was developed as one of the earlier subdisciplines

f Operations Research, first classified and later published in the

pen literature (Charnes & Cooper, 1958). One of the problems

ddressed by search theory is the optimal search path (OSP) for

 moving search object with uncertain location and detectabil-

ty, an NP-hard problem (Trummel & Weisinger, 1986). In recent

https://doi.org/10.1016/j.ejor.2022.06.019
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ejor
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ejor.2022.06.019&domain=pdf
mailto:Michael.Morin@osd.ulaval.ca
https://doi.org/10.1016/j.ejor.2022.06.019

M. Morin, I. Abi-Zeid and C.-G. Quimper European Journal of Operational Research 305 (2023) 53–63

y

o

a

t

A

s

f

b

c

t

L

2

c

s

s

u

m

p

a

t

z

a

c

l

c

o

n

i

t

p

i

W

t

a

d

o

o

M

a

g

i

t

a

s

t

o

a

O

p

m

d

2

d

d

t

t

o

o

g

s

o

w

a

o

p

c

Y

s

o

t

i

m

l

o

t

s

c

t

g

v

d

s

o

F

f

l

t

s

a

t

r

t

l

N

t

b

o

M

a

M

h

P

m

t

t

s

e

d

c

f

d

c

i

Z

2

t

d

3

j

a

ears, search theory has been used for planning of search paths

f autonomous robots in structured environments or of unmanned

erial vehicles in large areas outdoors (Goerzen, Kong, & Met-

ler, 2010; Lau, Huang, & Dissanayake, 2008; Sato & Royset, 2010).

pplications include humanitarian operations, mine countermea-

ures (Paull, Saeedi, Seto, & Li, 2012; Williams, 2010), evacuations

ollowing a disaster (Yuan & Wang, 2009), seabed surveys in har-

ors and waterways (Fang & Anstee, 2010), and search and res-

ue/recovery operations (Berger, Boukhtouta, Benmoussa, & Ket-

ani, 2012; Lo, Berger, & Noel, 2012; Morin, Lamontagne, Abi-Zeid,

ang, & Maupin, 2009; Morin, Lamontagne, Abi-Zeid, & Maupin,

010; Stone, Royset, Washburn et al., 2016).

In the OSP formulation, it is generally assumed that a searcher

an only scan its location. This, however, is an unrealistic as-

umption in an operational context, since regions other than the

earcher’s location may be visible from afar. To remedy this sit-

ation and adapt the problem representation to real-life, we for-

ulated in Morin et al. (2009 , 2010) the optimal searcher path

roblem with visibility (OSPV) and proposed algorithms based on

nt colony optimization (ACO) a population-based, general stochas-

ic local search technique (Dorigo & Blum, 2005; Hoos & Stüt-

le, 2004). ACO have been applied to a wide area of problems

nd some of their recent successes in practical applications in-

lude Jovanovic, Tuba, & Voß (2019) for the block relocation prob-

em, Yu et al. (2019) for 3D path planning with dense obsta-

les, Verbeeck, Sörensen, Aghezzaf, & Vansteenwegen (2014) on

rienteering, i.e., the problem of selecting destinations and plan-

ing an optimal path to these selected locations, for humanitar-

an relief (Zhu, Gong, Xu, & Gu, 2019), for disaster relief opera-

ions (Yi & Kumar, 2007), and for unmanned aerial vehicles path

lanning (Mirjalili, Song Dong, & Lewis, 2020).

In this paper, we generalize and improve our previous results by

ntroducing the Ant Search Path with Visibility (ASPV) algorithm.

e describe and discuss the outcomes of a thorough experimen-

ation, conducted using 96 algorithmic variants, where a variant is

 combination of pheromone initialization scheme, pheromone up-

ate scheme, diversification and intensification mechanisms. Based

n realistic problem instances sizes, we compare the performance

f our best ASPV algorithm variants with those obtained through a

ixed-Integer Linear Program (MILP) using the ILOG CPLEX solver

s well as with a simple greedy heuristic. We show that our al-

orithms produce search paths with higher probabilities of success

n shorter time. Our results provide an empirical contribution to

he literature on the performance of ACO algorithms in general,

nd a first practical contribution towards the implementation of

earch pattern optimization in the Advanced Search Planning Tool,

he Canadian decision support systems for SAR currently used in

perations.

The rest of the paper is organized as follows. Section 2 provides

n overview of related literature. Section 3 formally describes the

SPV problem. Section 4 presents the ASPV algorithm as well as

heromone boosting and restarts. Section 5 describes the experi-

ental methodology. Section 6 contains the results along with a

iscussion. We conclude in Section 7 .

. Related literature

Problems of search theory may be formulated differently

epending on the characteristics of the situation being ad-

ressed (Stone, 2004; Vermeulen & Van Den Brink, 2005), and on

he measure of performance used, such as the probability of de-

ection or the expected time to detection (Richardson, 2014). One

f the main distinctions is whether the search object is moving

r stationary. In two-sided search problems (also known as search

ames), the search object is active, i.e., its moves depend on the

earcher’s actions. It may be cooperative (e.g. rendez-vous search)
54
r evading (e.g. pursuit-evasion). In a one-sided search problem, i.e.,

hen the object’s motion model does not depend on the searcher’s

ctions, problems are again divided into two groups depending

n the searcher’s movement constraints: the optimal search path

roblems where the searcher is constrained to follow a path, also

alled path-constrained moving target search problem (Eagle &

ee, 1990), and the optimal search density problems where no

uch constraint is formulated (Lau et al., 2008). Two main types

f motion models are considered: conditionally deterministic mo-

ion where the trajectory of a search object depends only on its

nitial position and Markovian motion models where an object’s

ovement at a given point in time solely depends on its current

ocation (Raap, Meyer-Nieberg, Pickl, & Zsifkovits, 2017a). One type

f search problem is detection search , where the search stops after

he first detection (i.e., there is no target tracking as in surveillance

earch).

Search effort may be continuous or discrete. In the continuous

ase, effort may be allocated as finely as necessary over the en-

ire search space (e.g., time spent by an aircraft over a set of re-

ions) (Stewart, 1979). In this case, the objective function is con-

ex and the constraints of the problem form a convex set. As for

iscrete search effort, it may be measured by the total number of

earchers to deploy over an area of interest or by the total number

f scans to allocate to a set of visible regions (Berger & Lo, 2015;

oraker, Royset, & Kaminer, 2016; Raap, Zsifkovits, & Pickl, 2017b).

The optimal search path (OSP) is a single-sided detection search

or a moving object with uncertain location and detectability. A so-

ution to the OSP problem is a path on a graph that maximizes

he probability of finding the object. This is different from clas-

ical path planning where the aim is often to plan a path from

n initial point to a known destination. The OSP has been an ac-

ive research topic since the introduction in 1979 of the first algo-

ithm to solve it (Stewart, 1979). It is still attracting a lot of atten-

ion due to its applications in the robotics literature (Grogan, Pel-

erin, & Gamache, 2018; Raap, Preuß, & Meyer-Nieberg, 2019). It is

P -hard problem (Trummel & Weisinger, 1986), and a lot of work

o date has consisted of developing bounding techniques for the

ranch and bound (BB) algorithm presented by Stewart (1979) or

f using a model and solve approaches with a bound (Simard,

orin, Quimper, Laviolette, & Desharnais, 2015) or without such

 bound (Morin, Papillon, Abi-Zeid, Laviolette, & Quimper, 2012;

orin & Quimper, 2014). Another approach has been to use meta-

euristics such as ACO (Ding & Pan, 2011; Perez-Carabaza, Besada-

ortas, Lopez-Orozco, & Jesus, 2018). For a recent survey of the

oving target search optimization literature, the reader is referred

o Raap et al. (2019) .

The Optimal Search Path with Visibility (OSPV) generalizes

he classical OSP problem by taking into account the fact that a

earcher can scan visible regions different from its location (Morin

t al., 2010). The introduction of the possibility to search from a

istance adds realism to the model, albeit at the price of an in-

reased solution space size. Nonetheless, it is a crucial assumption

or achieving models that reflect the way searching is actually con-

ucted. For example, inter-region visibility is already taken into ac-

ount to evaluate predefined search patterns in operational mar-

time SAR decision support systems such as SAR Optimizer (Abi-

eid, Morin, & Nilo, 2019) and SAROPS (Kratzke, Stone, & Frost,

010). However, these systems do not currently propose nor op-

imize search paths. The research presented here is a step in that

irection.

. Optimal search path with visibility: problem formulation

The OSPV problem is a single-sided detection search for an ob-

ect moving in a discrete environment of N regions according to

 Markovian model. The goal is to construct a search plan over T

M. Morin, I. Abi-Zeid and C.-G. Quimper European Journal of Operational Research 305 (2023) 53–63

t

d

p

e

(

s

o

d

t

s

v

t

t

t

P

w

y

e

∑
r

e

E

r

r

a

a

t

(

m

(

d

n

c

A

r

s

t

O

a

t

i

w

M

t

t

a

l

s

a

1

t

w

j

n

b

i

w

b

p

b

c

r

t

T

a

o

t

C

w

F

a

t

E

t

s

i

s

t

a

(

(

b

4

t

u

“

o

ime steps that maximizes the probability of finding the object un-

er the searcher’s visibility and accessibility constraints. A search

lan consists of a discrete path and Q discrete effort allocations at

ach time step. A unit allocation of search effort is an observation

a scan) by the searcher from its location to a visible region, pos-

ibly its own location. A searcher may actually consist of a team

f agents following a common path while scanning one or many

ifferent regions simultaneously.

Let T = { 1 , . . . , T } be the set of time steps, R = { 0 , . . . , N − 1 }
he set of regions in the search environment, Q = { 0 , . . . , Q } the

et of possible effort allocations (scans) that may be assigned to

isible regions in one time step, and A : R → 2 R and V : R → 2 R

he searcher’s accessibility and visibility maps. The searcher’s posi-

ion at a time t ∈ T is y t ∈ R and its effort allocation in region r at

 ∈ T is e t (r) ∈ Q . A search plan P is defined by

 = 〈 Y, E 〉 = 〈 [y 1 , y 2 , . . . , y T] , [e 1 , e 2 , . . . , e T] 〉 , (1)

here

 t ∈ A (y t−1) , ∀ t ∈ T , (2)

 t (r) > 0 ⇒ r ∈ V (y t) , ∀ t ∈ T , ∀ r ∈ R , (3)

∈R

e t (r) = Q , ∀ r ∈ T , (4)

 0 (r) = 0 , ∀ r ∈ R . (5)

q. (2) indicates that the searcher may only move to an accessible

egion and Eq. (3) indicates that effort can be allocated only to a

egion visible from the searcher’s location. The total search effort

llocated in one time step is equal to Q (Eq. (4)), the amount of

vailable search effort per time step, and no search is conducted at

ime 0 (Eq. (5)). The search P is feasible iff it respects Eqs. (1) –

5) . A feasible search plan P is optimal iff it maximizes a perfor-

ance measure, the cumulative overall probability of success or COS

 Eq. (12)). In order to understand this performance measure, we

efine three types of events: presence, detection and motion.

A presence event C

r
t occurs when the object is located (but not

ecessarily detected) in region r at time t . A motion event M

sr
t oc-

urs when the object moves from region s to region r at time t .

 detection event D

sr
tq occurs when an allocation of q scans from

egion s detects an object located in r at time t . 1 Under the as-

umption that searchers are located in the same region, we refer

o the detection event as D

r
t without loss of generality. Since the

SPV is a detection search problem, the search will stop as soon

s a detection occurs.

Motion model The object’s motion model is assumed to be sta-

ionary Markovian. It is described by a matrix M where M (s, r)

s the probability of an object moving from region s to region r

ithin one time step. For all t ∈ T , we have

 (s, r)
def = Pr { M

sr
t } . (6)

Detection model Given s, r ∈ R , t ∈ T and q ∈ Q , pod t (s, r, q) is

he conditional probability of a detection event in region r at time

when a searcher in region s assigns q scans to region r. This prob-

bility, conditional to the object’s presence in r, is defined as fol-

ows:

pod t (s, r, q)
def = P r{ D

r
t }|{ C r t } . (7)

In practice, a pod is derived from a sensor’s (e.g., a visual

earch) characteristics under given environmental conditions, as
1 No false detections are taken into account in the OSPV problem formalism.

l

i

p

55
 function of a given search object type at a given range (Frost,

999). In the OSPV, we make the common assumption that the de-

ection law is exponential (Stone, 2004) defined by

pod t (s, r, q) = 1 − exp (−W t (s, r) × q) , (8)

here W t (s, r) is the sweep width, a detectability index of the ob-

ect (defined in Section 5.4 since it is instance-specific). The expo-

ential detection law provides a lower bound for detection proba-

ilities obtained with other detection laws (Frost & Stone, 2001).

Presence model The a priori knowledge on the object’s presence

n region r is defined as

poc 0 (r)
def = Pr { C

r
0 } , (9)

here Pr
{
C

r
0

}
is the prior probability that the object is in region r

efore the search is initiated. For r ∈ R and t ∈ T , poc t (r) , the joint

robability of the object arriving at t from any region s and not

eing detected in region s before t (also called the probability of

ontainment), is

poc t (r)
def = Pr { C

r
t } =

∑

s ∈R

Pr { M

sr
t−1 } Pr { C

s
t−1 } (1 − Pr { D

s
t−1 | C

s
t−1 }) .

(10)

Performance measures The probability of finding the object in

egion r at time t is pos t (r) , the local probability of success. It is

he joint probability of a presence event and of a detection event:

pos t (r)
def = Pr { C

r
t ∩ D

r
t } = Pr { C

r
t } × Pr { D

r
t | C

r
t } . (11)

he objective is to maximize the total probability of success across

ll regions and time steps, i.e., the cumulative probability of success

f a search plan. Since only a single success is possible in a detec-

ion search, we define this probability as

OS(P) =

∑

t∈T

∑

r∈R

pos t (r) , (12)

here the local probability of success is

pos t (r) = poc t (r) pod t (y t , r, e t (r)) . (13)

ollowing an unsuccessful search at time t − 1 , the updated prob-

bility of containment at time t is given by:

poc t (r) =

∑

s ∈R

M (s, r) [poc t−1 (s) − pos t−1 (s)] . (14)

A MILP for the OSPV problem A MILP can be formulated for

he OSPV where the objective is to find a search plan maximizing

q. (12) . This is possible since the pod function, the poc 0 distribu-

ion, the Markovian motion matrix M and the initial searcher’s po-

ition y 0 are all known. As a consequence, the poc update equation,

.e., Eq. (14) , can be linearized. Binary decision variables and con-

traints can be used to define the search plan (Eqs. (1) –(3)) to op-

imize under effort constraints (Eqs. (4) and (5)). Continuous vari-

bles can be used to keep trace of the probability models (Eqs. (8) ,

12) and (14)). The complete MILP model for the single scan case

 Q = 1) and its extension to the case of multiple scans (Q ≥ 1) can

e found in Morin et al. (2009) and Morin et al. (2010) respectively.

. Using ants for search path planning with visibility

Ant colony optimization, or ACO, is a metaheuristic optimiza-

ion technique that probabilistically constructs and updates a pop-

lation of candidate solutions to a problem based on a common

memory”, called the pheromone trails. At each cycle (iteration)

f an ACO algorithm, each ant in the colony builds a single so-

ution by selecting components (unit parts of a solution) accord-

ng to the shared knowledge of components’ quality, stored in the

heromone trails. For instance, in our case, there are two types of

M. Morin, I. Abi-Zeid and C.-G. Quimper European Journal of Operational Research 305 (2023) 53–63

Table 1

Variant components with acronyms, names and section numbers .

Type Name Section Name Section

Initialization iU: Uniform 4.2 iO: OSPV 4.2

iR: Random 4.2

Updates uAA: All-Ants 4.5 uGB: Global-best 4.5

uIB: Iteration-best 4.5 uORBU: On restart-best upd. 4.6

uRB: Restart-best 4.6 uOGBU: On global-best upd. 4.5

Restarts rG: Geometric 4.6 rN: Without 4.6

rL: Luby 4.6

Boosting bY: With 4.3 bN: Without 4.3

s

c

c

t

v

n

c

i

(

p

c

e

h

r

b

s

i

a

c

e

s

n

I

c

t

&

b

o

i

w

a

l

u

4

I
d

t

c

a

t

p

m

e

v

t

b

n

t

Algorithm 1: ASPV(Ospv , C, ρ).

Input : An OSPV problem Ospv , the size of the colony C , and

the evaporation rate ρ .

Output : The incumbent search plan P best .

begin

τ path , τ eff ← Initialize() ;
while stopping criterion is not met do

C ← Generate() ;
P best , τ path , τ eff ← Update() ;

end

return P best ;

end

c

s

o

4

s

w

i

t

v

r

p

i

i

k

t

p

v

l

τ

τ

w

r

a

t

t

i

a

olution components, a destination r at time t and an effort allo-

ation to one or many regions at time t . The probability of an ant

hoosing a given component to be part of its solution (called the

ransition probability) is a function of the component’s pheromone

alue and, when available, of the value associated to the compo-

ent by a heuristic, called heuristic information . An ACO algorithm

ycle consists of stochastically generating one solution per ant us-

ng the trails (the generation process), and of updating these trails

the update process) as a function of the pheromone model, which

rovides an update rule dictating which and when the generated

andidate solutions are used to update the trails, and an update

quation to quantify a solution component’s quality.

Various strategies can help ACO algorithms converge towards

igh quality solutions namely intensification, diversification, and

estarts. Intensification is the process by which ants converge to

etter solutions whereas diversification is the process by which

tagnation, i.e., numerous cycles without improvement when such

mprovement is possible, is avoided (Hoos & Stützle, 2004). Restarts

re a widely used diversification mechanism that proved to be suc-

essful in a variety of metaheuristics (Hoos & Stützle, 2004). They

nable the algorithm to reinitialize its solving process in the ab-

ence of local improvements. One particular intensification mecha-

ism is based on pheromone boosting introduced in Solnon (2002) .

t could be seen as a diversification mechanism or as an intensifi-

ation mechanism depending on the way it is used. An exhaustive

reatment of ACO algorithms can be found in López-Ibáñez, Stützle,

 Dorigo (2016) .

In order to solve the OSPV, we developed the ASPV algorithm,

ased on ACO principles, and defined 96 algorithm variants based

n four main components of traditional ACO: pheromone initial-

zation, pheromone update, with or without restarts, and with or

ithout boosting (Table 1). For clarity purposes, whenever a vari-

nt is named using solely the acronyms defined in Table 1 , they are

isted in the following order: pheromone initialization, pheromone

pdate, restart, and boosting.

.1. ASPV algorithm main routine

Algorithm 1 outlines the main routine of ASPV. Functions

nitialize() , Generate() , and Update() are variant-

ependent placeholders. Given an OSPV problem instance Ospv ,
he total number C of candidate solutions to generate at each

ycle and the pheromone evaporation rate ρ , used in order to

void stagnation in a local optimum, the algorithm first initializes

he pheromone trails using the function Initialize() in two

heromone tables: one T × N table τ path for the pheromone on the

ove components, and one T × N table τ eff for the pheromone on

ffort unit s allocation component s. Whenever needed, pheromone

alues normalization is carried out for each table independently so

hat the sum of their pheromone values equals 1. In some variants,

oosting is also performed during initialization.

In each cycle, the function Generate() is used to construct a

ew candidate solution set C based on the pheromone trails. Then,

he function Update() is used to update τ path , τ eff , and the in-
56
umbent (best-so-far) solution P best . Depending on the variant, in

ome cycles, a restart may occur. The stopping criterion is based

n a time limit.

.2. Initialize pheromones

In most ACO algorithms, pheromone trails are initialized to the

ame values (Dorigo & Stützle, 2019). We call this first variant,

here all initial pheromone values are equal, uniform pheromone

nitialization (iU). In order to ensure a strong diversification be-

ween restarts, we introduce a random pheromone initialization (iR)

ariant where the initial pheromone values are generated from a

andom uniform distribution between 0 and 1. In both variants, the

heromone values are normalized so that their sum in each table

s equal to 1. Both uniform (iU) and random (iR) pheromone initial-

zation are generic. However, we hypothesize that problem-specific

nowledge can help the algorithm in finding a high quality solu-

ion. We therefore introduce an OSPV-based pheromone initialization

rocedure (iO). In this variant, the algorithm fixes the pheromone

alues of each region s and of each region r visible from s as fol-

ows:

path
ts =

∑

r∈R

pocm t (r) pod t (s, r, 1) , (15)

eff
ts = pocm t (s) , (16)

here pocm t (r) is the probability that the search object reaches

egion r at step t in the absence of search with pocm 0 = poc 0 :

pocm t (r) =

∑

s ∈R

M (s, r) pocm t−1 (s) . (17)

It should be noted that, in Eq. (15) , pod t (s, r, 1) is the prob-

bility of detection for a single scan from region s to region r at

ime t . As a result, the pheromone trails in τ path
ts correspond to

he overall probability of success at a time t in a region s assum-

ng a single unit of effort can be allocated to each visible region

nd that no search has been done prior to time step t . For the τ eff

ts

M. Morin, I. Abi-Zeid and C.-G. Quimper European Journal of Operational Research 305 (2023) 53–63

v

i

o

t

i

i

a

b

l

4

p

O

i

d

S

p

(

t

h

t

fi

s

t

o

i

u

i

T

t

e

t

i

e

w

a

v

4

b

t

a

a

t

g

c

t

f

t

P

a

t

S

s

O

r

4

v

i

a

a

p

τ

τ

w

d

c

b

p

τ

τ

s

s

r

t

t

c

(

c

d

p

c

a

i

i

l

r

4

B

a

l

s

c

o

R

t

r

u

u

q

(

alue, we simply assume that no searches take place. Although this

s not true in the OSPV problem context, the information on the

bject’s motion initially embedded in the trails can still be impor-

ant during the solving process. Once all values have been set us-

ng Eqs. (15) and (16) , a small randomly generated epsilon value

s added to the trail values before normalization. This ensures that

 region r with low pocm t (r) still has a probability of being chosen

y an ant. Furthermore, it favors diversification as it gives a little

ess or a little more importance to Eqs. (15) and (16) .

.3. Boost pheromone initialization using a greedy heuristic

Pheromone boosting basically consists of initializing the

heromone values to promising values. As such, it is not unlike the

SPV-based pheromone update (iO). The idea of such a preprocess-

ng step was introduced and illustrated in Ant-Solver which was

esigned to solve constraint satisfaction problems (Solnon, 2002).

ome form of pheromone boosting, or preprocessing, was also ap-

lied in other problems such as the traveling salesperson problem

TSP), e.g., Dai, Ji, & Liu (2009) used a minimum spanning tree of

he TSP graph to initialize the pheromone.

Our approach to boosting is to use a problem-specific greedy

euristic to find a search plan P boost to perform a first update of

he trails right after initialization. This can be seen as an intensi-

cation mechanism that directs the ants towards a promising sub-

pace of the solution space. To greedily construct P boost = 〈 Y, E 〉 ,
he algorithm first chooses the accessible region with the highest

verall success probability as the new searcher’s destination. That

s, it evaluates each possible destination by allocating each effort

nit greedily to visible regions from that destination, i.e., it max-

mizes the local success by scanning one visible region at a time.

hen it selects the accessible region where the overall success, i.e.,

he sum of all local successes, is the highest. Such a sequential

ffort allocation is possible, since we use an exponential detec-

ion law making the detection process memoryless. When P boost

s found, it is used to update the pheromone trails using a given

vaporation rate ρboost . Although ρboost and ρ could be different,

e use the same values to avoid an additional parameter in the

lgorithm.

We use bY to denote variants with boosting and bN to denote

ariants without.

.4. Generate candidate solutions

Candidate solutions are generated at each cycle of the algorithm

y the Generate() function, which constructs C candidate solu-

ions. A candidate solution P cand ∈ C consists of a searcher’s path

nd a sequence of effort allocations. At each time step t ∈ T , the

nt chooses a feasible searcher’s move from y t−1 to y t and defines

he allocation vector e t by distributing Q effort units to visible re-

ions from y t . Each part of a solution, or solution component, is

hosen by an ant with some transition probability depending on

he pheromone values associated with the component.

Let P cand .y t ← r and P cand .e t (r) ++ be the solution components

or moving to region r and for allocating an additional effort unit

o region r in search plan P cand at time t . A feasible searcher’s move

cand .y t ← r is chosen with a transition probability of

p P cand .y t ← r =

τ path
tr ∑

r ′ ∈ A (y t−1)
τ path

tr ′
, (18)

nd Q feasible effort allocations P cand .e t (r) ++ are chosen with a

ransition probability of

p P cand .e t (r) ++ =

τ eff
tr ∑

r ′ ∈ V (y) τ
eff
tr ′

. (19)

t t

57
olutions are built by adding one component at a time, first a fea-

ible searcher’s move, then Q feasible effort allocation and so on.

nce C solutions have been generated, the Generate() function

eturns and the algorithm launches the update process.

.5. Update pheromones

The Update() function updates the pheromone trails and is

ariant-independent in our ASPV algorithm. However, the “when”

s variant-dependent. That is, the solutions used for the update

nd the cycle during which the update takes place depend on the

lgorithm variant. Whenever a solution P is used to update the

heromone trails, τ path
tr and τ eff

tr are modified as follows:

path
tr ← τ path

tr +

ρ

S

(
os t +

COS(P)

T

)
, (20)

eff
tr ← τ eff

tr +

ρ

S

(∑

r∈R

pos t (r) +

∑

r∈R

P.e t (r) COS(P)

QT

)
, (21)

here S is a normalization factor that depends on how many up-

ates were carried out in the cycle, and os t is the overall suc-

ess at a time step t , i.e., os t =

∑

r∈R

pos t (r) . After all updates have

een carried out, we use the evaporation rate ρ to decrease the

heromone values as follows:

path
tr ← (1 − ρ) τ path

tr , (22)

eff
tr ← (1 − ρ) τ eff

tr . (23)

We defined a total of six variants of pheromone update

chemes. Four can be used with and without restarts: The first

cheme is an all-ants pheromone updates procedure (uAA) that is

eminiscent of ant systems (Dorigo, Maniezzo, & Colorni, 1996). In

his setting, all candidate solutions generated in the cycle are used

o update the pheromone trails, and updates are performed every

ycle. The second scheme is an iteration-best pheromone update

uIB) procedure where only the best candidate solution of each

ycle is used for the update. The third scheme, global-best up-

ates (uGB), uses the best-so-far incumbent solution to update the

heromone at each cycle. All three variants are discussed in re-

ent literature on ACO (López-Ibáñez et al., 2016). Finally, we have

n “on global-best updates” (uOGBU) scheme consisting in updat-

ng the pheromone only when the best candidate solution of an

teration is better than the best-so-far (global-best) incumbent so-

ution. Two further pheromone update schemes are used only with

estarts and are further discussed in Section 4.6 .

.6. Update pheromones with restarts

Restarting is a frequent strategy used in solvers, especially in

oolean satisfiability problems solvers (Audemard & Simon, 2012)

nd in constraint optimization or constraint satisfaction prob-

ems solvers (Wu & van Beek, 2007). A restart is used when a

pecific number of cycles without improvement of the best in-

umbent since the last restart is reached. Generally, the number

f cycles without improvement follows a sequence of constants
¯
 = 〈 ̄r 0 , ̄r 1 , . . . 〉 called the restart strategy, where r̄ i ∈ N is the to-

al number of allowed cycles without improvement following i

estarts.

Universal, problem independent, restart strategies are often

sed in solvers, e.g., Gecode (Schulte, Tack, & Lagerkvist, 2019). We

sed two such strategies: a geometric sequence and a Luby se-

uence. The geometric restart strategy was notably tested by Walsh

1999) and provided good results. It consists of a sequence such

hat r̄ = cb i where c is a chosen constant and b is a chosen
i

M. Morin, I. Abi-Zeid and C.-G. Quimper European Journal of Operational Research 305 (2023) 53–63

b

d

s

t

t

︸
I

f

a

a

r

t

i

d

f

b

b

t

(

b

c

u

b

t

d

g

s

5

u

t

c

f

u

r

p

a

c

d

S

5

a

s

t

e

a

i

r

s

o

t

t

q

a

e

s

v

a

k

v

o

3

p

M

o

t

r

b

n

m

t

p

E

r

g

E

o

o

u

p

A

s

5

w

s

m

s

a

R

w

a

v

i

s

R

T

u

p

R

w

o

a

o
ase. The Luby restart strategy (and Luby sequence) was intro-

uced by Luby, Sinclair, & Zuckerman (1993) as an optimal univer-

al restart strategy for Las Vegas algorithms. Starting at 1, the en-

ire sequence is repeated and a new value corresponding to double

hat of the last value is introduced at the end of the sequence:

1 , ︷︷︸
init

1 , 2 , ︸︷︷︸
step 1

1 , 1 , 2 , 4 , ︸ ︷︷ ︸
step 2

1 , 1 , 2 , 1 , 1 , 2 , 4 , 8 , ︸ ︷︷ ︸
step 3

1 , . . . (24)

n practice, the terms of the Luby sequence can be multiplied by a

actor to allow for more time between restarts. When no restarts

re used by a given variant, the acronym rN is used in the vari-

nt name. Geometric restarts are denoted by the rG acronym. Luby

estarts are denoted by the rL acronym.

In the ASPV algorithm context, a restart is a reinitialization of

he pheromone trails, which varies as a function of the pheromone

nitialization scheme and of whether boosting is used or not. A

istinction is made, when restarts are used, between the best-so-

ar and the restart-best solution. We call “global-best solution” the

est incumbent across all restarts and “restart-best solution” the

est incumbent since the last restart. This distinction is impor-

ant for the algorithm variants; when using the global-best updates

uGB) or the “on global-best updates” (uOGBU), the best incum-

ent across all restarts is used to update the trails (either at each

ycle for a uGB variant or when a better solution is found for a

OGBU variant).

Two other pheromone update variants use the best incum-

ent since the last restart. That is, the restart-best (uRB) and

he “on restart-best updates” (uORBU) pheromone update proce-

ures, which respectively corresponds to global-best (uGB) and “on

lobal-best updates” (uOGBU) using the restart-best solution in-

tead of the global-best solution.

. Experiments

In this section, we describe the experiments conducted to eval-

ate the 96 proposed ACO algorithm variants in order to determine

he best variant. These experiments consisted of three phases: The

onfiguration phase enables us to find the best parameter pairs

or each variant. The “multiruns” evaluation phase (M-Eval) enables

s to determine how the performance of an ACO varies between

uns on a given instance. The “across-instances” evaluation (A-Eval)

hase provides a better understanding of an ACO performance on

 variety of instances as reported in Birattari (2004) . Finally, we

ompare the results of the best ACO variant with the MILP model

escribed in Section 3 and with the greedy heuristic described in

ection 4.3 , hereinafter named Greedy.

.1. ASPV configuration and evaluation

In order to configure each of the 96 variants, we first gener-

ted a total of 100 unique pairs of evaporation factors ρ and colony

izes C from a uniform distribution in the interval [0 . 001 , 0 . 1] (up

o four decimal places) and in [10 , 10 0 0] respectively. The 100 gen-

rated parameters pairs, which that cover a wide range of values,

re displayed in the supplementary material. For rG variants us-

ng a geometric restart strategy, we chose c = 1 and b = 2 as pa-

ameters. The obtained geometric sequence grows fast even with

uch small values, which results, very quickly, in long runs with-

ut restarting. For rL variants involving Luby restarts, each term in

he sequence was multiplied by 256 in order to avoid a too short

ime interval between restarts. Nonetheless, the resulting Luby se-

uence grows more slowly than the geometric sequence.

During the configuration phase , each of the 96 algorithm vari-

nts was run using each of the 100 parameter pairs on 50 differ-

nt instances of the OSPV problem with varying complexity as de-

cribed in Section 5.4 (a total of 50 0 0 runs per variant). For each
58
ariant, the parameter pair with the highest average performance

cross all instances was deemed the best for that variant and was

ept for the evaluation phase. In the M-Eval phase, each algorithm

ariant, configured according to the best parameter pair, was run

n another 50 instances not seen during the configuration phase

0 times (a total of 1500 runs per variant). Furthermore, for com-

arison purposes, the greedy heuristic from Section 4.3 and the

ILP model of the OSPV problem from Section 3 were also run

n each of the 50 M-eval problem instances. In the A-Eval phase,

he five best ACO algorithms identified in the M-Eval phase, were

un once on 1500 new instances (7500 runs in total). The A-Eval

enchmark consisted of 30 instances for each pair of horizon T and

umber of scans Q described in Section 5.4 . The average perfor-

ance of the ACO was compared to that of Greedy on this par-

icular benchmark. The MILP model was excluded from the A-Eval

hase since it did not fare well on the largest instances of the M-

val phase.

The framework used to generate the problem instances and to

un the algorithms was developed using the C++ programming lan-

uage. The experiments of the configuration phase and of the M-

val phase were run in parallel using GNU Parallel (Tange, 2011)

n Intel Xeon Gold 6148 Skylake (2.4 gigahertz) CPUs. Up to 8 GB

f memory were allowed per core for the MILP solver. Due to the

navailability of the Skylake CPUs, the experiments of the A-Eval

hase were run in parallel using GNU Parallel (Tange, 2011) on an

MD Ryzen 9 5900X CPU. The problem instances and the allowed

olving time for each instance size are specified in Section 5.4 .

.2. Performance metrics

In order to evaluate the performances of the algorithm variants,

e use the relative cumulative overall probability of success of a

earch plan P , normalized as a function of the minimum and the

aximum cumulative probabilities of success attained, by the con-

idered variants or algorithms, in the allowed time.

For the configuration phase, the performance metric is defined

s follows:

COS conf (P i c, v , P

i
v)

=

⎧ ⎨

⎩

C OS(P i c, v) − min
P ′ ∈P i v

C OS(P ′)

max
P ′ ∈P i v

COS(P ′) − min
P ′ ∈P i v

COS(P ′) , if max
P ′ ∈P i v

COS(P ′) = min

P ′ ∈P i v
COS(P ′) ;

1 , otherwise ,

(25)

here P i c, v is the search plan obtained by configuration c of vari-

nt v on instance i . Recall that we have 100 configuration pairs, 96

ariants and 50 instances. P

i
v is the set of 100 plans correspond-

ng to the 100 parameter configurations of variant v run on in-

tance i . We then compute, for each configuration c of variant v ,
COS conf (c, v) , the average of RCOS conf (P i c, v , P

i
v) over the instances i .

he configuration c with the highest RCOS conf (c, v) is selected to be

sed for variant v in the evaluation phases (M-Eval and A-Eval).

For the M-Eval phase where we select the best ACO variant, the

erformance metric is defined as follows:

COS eval (P i, j
v , P

i)

=

⎧ ⎨

⎩

C OS(P i,r v) −min
P ′ ∈P i

C OS(P ′)

max
P ′ ∈P i

COS(P ′) −min
P ′ ∈P i

COS(P ′) , if max
P ′ ∈P i

COS(P ′) = min

P ′ ∈P i
COS(P ′) ;

1 , otherwise ,

(26)

here P
i, j
v is the search plan obtained by the jth run of variant v

n instance i . Recall that we have 30 runs per instance and variant,

nd 96 variants. P

i is the set of 2880 plans obtained for any variant

n instance i . We then compute, for each variant v , RCOS eval (v) ,

M. Morin, I. Abi-Zeid and C.-G. Quimper European Journal of Operational Research 305 (2023) 53–63

t

i

i

s

a

E

P
t

c

p

r

f

m

C

M

w

g

e

i

a

5

a

t

p

d

f

a

e

a

t

s

s

m

M

f

b

t

t

a

l

w

M

r

5

r

s

i

i

v

(

(

Table 2

Solving wall clock time in seconds for each time horizon T .

T Allowed time (seconds) T Allowed time (seconds)

4 60 49 720

9 120 64 960

16 240 81 1200

25 360 100 1500

36 540 121 1800

w

F

t

W

w

W

c

r

i

r

t

o

a

o

r

o

{

i

s

e

t

w

f

e

e

(

e

(

a

6

g

r

t

t

M

A

o

m

6

r

i

R

p

fi

t

he average of RCOS eval (P
i, j
v , P

i) over the runs j and the instances

 . The ACO variant with the highest value of the metric RCOS eval (v)
s selected as the best ACO variant.

For the comparison between the best ACO variant, the MILP

olved by IBM ILOG CPLEX 12.9 (hereinafter referred to as CPLEX)

nd Greedy during the M-Eval phase, the performance metric of

q. (26) is used. However, in that equation, the set of search plans

i includes the COS of the benchmark methods, i.e., Greedy and

he best performing configuration of CPLEX (we describe the tested

onfigurations in Section 5.3). Still, the metric used for comparison

urposes is RCOS eval (i, v) , the average of RCOS eval (P
i, j
v , P

i) over the

uns j.

For the A-Eval phase where we further compare the best ACOs

rom the M-Eval phase with Greedy, we used the RCOS eval (P
i, j
v , P

i)

etric from Eq. (26) , and we computed the mean signed relative

OS difference between variant v and Greedy as follows:

SDG (v) =

1

|I|
∑

i ∈I

(
RCOS eval (P i, j

v , P

i) − RCOS eval (P i, j

Greedy
, P

i)
)
,

(27)

here P

i contains the COS of our five best ACO variants and of our

reedy heuristic for instance i , j = 1 since there is a single run of

ach algorithm (ACO variants and Greedy) per instance, and set I
s a set of instances, e.g., 30 instances with a given time horizon T

nd number of scans Q (as described in Section 5.4).

.3. MILP solver configuration

One of our objectives was to compare the best ACO variant with

n MILP formulation (described at the end of Section 3). We solved

he MILP model using ILOG CPLEX 12.9. It is well known that the

erformance of CPLEX depends on its configuration and that the

efault configuration performs well on a variety of problems. In

act, when conducting a search for a solution, a MILP solver, such

s CPLEX, builds a search tree. Each node of the search tree is

ither a partial solution or a subproblem (depending on the ex-

ct algorithm used by the solver). Complete solutions are found at

he leaves of the tree. The node selection strategy that guides the

olver in the selection of the next node to explore, i.e., the next

ubtree, can therefore influence the search process. Another ele-

ent that is important in configuring the CPLEX algorithm is the

IP emphasis parameter which biases the solver towards finding

easible solutions or proving the optimality of the current incum-

ent solution.

Our experiment was designed with six CPLEX configurations:

he default configuration, emphasis on feasibility , emphasis on op-

imality , default configuration with a scaling of the probabilities by

 factor of 10 5 , best estimate node selection , and depth-first node se-

ection . Since the performance of CPLEX is meant as a benchmark,

e include in P

i , for the computation of RCOS eval (i, v) during the

-Eval phase, the highest COS value among the 6 CPLEX configu-

ations for each of the 50 instances i .

.4. Generated search environments characteristics

In order to generate OSPV problem instances, the search envi-

onment was represented by a grid of l cells by l cells. The acces-

ibility map was defined by the distance that a searcher can travel

n one time step, i.e., an accessibility radius a max , and the visibil-

ty map was defined by the maximal effort allocation range, i.e., a

isibility radius v max :

r ∈ A (s) ⇔ dist (s, r) ≤ a max) , ∀ s, r ∈ R , (28)

r ∈ V (s) ⇔ dist (s, r) ≤ v max) , ∀ s, r ∈ R , (29)
59
here dist (s, r) is the distance between s and r in distance units.

or our instances, the detectability index (W) from Eq. (8) is such

hat

 t (s, r) =

{
v max −dist (s,r)

area (r)
if r ∈ V (s) ;

0 if r / ∈ V (s) ,
∀ t ∈ T , ∀ s, r ∈ R , (30)

here area (r) is the area of region r (in square distance units).

e assume that the detectability of the object in a region r de-

reases as the distance between the current searcher’s region s and

increases. This detectability becomes 0 when the maximum vis-

bility range v max is reached. The initial searcher’s position y 0 is

andomly generated from a uniform distribution over regions. The

poc 0 (t) distribution is obtained from a uniform random distribu-

ion over the interval [0,1] and then normalized to obtain a sum

f 1. The probability that the object moves from a region s to an

ccessible region r is obtained from a uniform random distribution

n the interval [0,1] whereas it is null to any non-accessible region

′ .
We generated instances of increasing complexity, namely grids

f l by l cells with l ∈ { 2 , 3 , . . . , 11 } for a number of regions N ∈
 2 2 , 3 2 , . . . , 11 2 } , where the time horizon T = N. In comparison,

nstances found in the literature for similar problems related to

earch path planning use a horizon of 20 steps (Perez-Carabaza

t al., 2018) or of up to 40 steps (Sato & Royset, 2010). In addition,

hese do not take into account the visibility dimension like we do,

hich increases the size of the search space of an algorithm by a

actor representing the number of feasible allocations of Q units of

ffort growing exponentially in T .

For the configuration and the M-Eval phases, we generated, for

ach grid size, an instance with Q ∈ { 1 , 2 , . . . , 5 } and we set T = N

50 different instances per phase). For the A-Eval phase, we gen-

rated 30 instances per pair of horizon T and number of scans Q

1500 instances). The allowed solving time was set per instance as

 function of the time horizon T (Table 2).

. Results and discussion

We present and discuss the M-Eval phase results where each al-

orithm variant was applied to 50 previously unseen instances (30

uns per instance) using their best configuration parameters as de-

ermined in the configuration phase described in the supplemen-

ary material. We then compare the five best ASPV variants of the

-Eval phase to Greedy on 1500 new problem instances for the

-Eval phase and report the results of the best variant. The results

f the remaining four variants are included in the supplementary

aterial.

.1. Comparison between ACO variants (M-Eval phase)

Fig. 1 shows, for each ASPV variant, the distribution of the

elative C OS, RC OS eval (P
i, j
v , P

i) , over 30 runs of each of the 50

nstances. Variants are ordered in decreasing order of average

COS eval (P
i, j
v , P

i) , RCOS eval (v) , across all instances which is dis-

layed as a blue diamond. For each variant, the box displays the

rst quartile, the median, and the third quartile. Whiskers ex-

ends from the first (resp. the third) quartile to the lowest value

M. Morin, I. Abi-Zeid and C.-G. Quimper European Journal of Operational Research 305 (2023) 53–63

Fig. 1. Distribution of the RCOS eval values (calculated on a per instance basis) for all 30 runs of each ASPV variant on all instances; blue diamonds represent the per variant

average RCOS eval (v) (M-Eval phase). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

n

t

u

a

i

m

s

5

o

f

a

(

t

t

u

w

u

e

u

d

f

s

f

m

ot smaller (resp. highest value not larger) than 1.5 times the in-

erquartile range from the first quartile down (resp. third quartile

p). Outliers are represented as black dots.

We notice that, except for the variant in position 20, only vari-

nts using the OSPV pheromone initialization procedure (iO) made

t to the top 20 performers (considering the RCOS eval (v) perfor-

ance criterion). This supports the implementation of a problem-

pecific pheromone initialization, iO, for the OSPV.

The fact that the boosting procedure (bY) is used in 4 of the top

 variants also supports this point since boosting, in our terminol-

gy, involves a first round of pheromone updates using a solution

rom a greedy procedure. Boosting, nonetheless, appears to have

 lesser impact than problem specific pheromone initialization

iO).
60
Both Luby (rL) and geometric (rB) restarts, are used in 16 out of

he top 20 variants, which illustrates their benefit as a diversifica-

ion mechanism in our context.

As for the worst performers, the “all ants” (uAA) pheromone

pdate procedure is over-represented in the last quartile (the 24

orst performers). In fact, 18 out of 24 of the worst performers

se “all ants” (uAA) pheromone updates. The other worst perform-

rs use the “on updates of the global-best” (uOGBU) pheromone

pdate. We notice that uAA is the least restrictive update proce-

ure (all other things being equal, updates are performed the most

requently), whereas uOGBU pheromone update is the most re-

trictive (all other things being equal, updates are performed less

requently). Some uOGBU variants, however, did perform well and

ade it to the top 20. Those “good” uOGBU variants are two vari-

M. Morin, I. Abi-Zeid and C.-G. Quimper European Journal of Operational Research 305 (2023) 53–63

Table 3

Average relative C OS , RC OS eval (i, iO – uIB – rG – bY) of the top ASPV variant, RCOS eval (P i,b
CPLEX

, P i) of CPLEX

for its best configuration b, and RCOS eval (P i, 1
Greedy

, P i) for the single run of Greedy; for the ASPV algorithm,

the 95% confidence interval over 30 runs around the mean is reported; italic font indicates that the method

is dominant, but not strictly dominant; bold font indicates that the method is strictly dominant; the com-

plete table is included in the supplementary material (M-Eval phase).

Number of scans (Q)

Method T 1 2 3 4 5

9 [1 , 1] [0.99,0.99] [1 , 1] [0 . 97 , 0 . 97] [1 , 1]

25 [0 . 96 , 0 . 98] [0 . 95 , 0 . 97] [0 . 94 , 0 . 96] [0 . 9 , 0 . 92] [0 . 94 , 0 . 96]

iO - uIB - rG - bY 49 [0 . 97 , 0 . 97] [0 . 96 , 0 . 97] [0 . 96 , 0 . 97] [0 . 97 , 0 . 98] [0 . 95 , 0 . 96]

81 [0 . 88 , 0 . 90] [0 . 92 , 0 . 94] [0 . 95 , 0 . 96] [0 . 97 , 0 . 98] [0 . 97 , 0 . 98]

121 [0 . 82 , 0 . 86] [0 . 87, 0 . 90] [0 . 95 , 0 . 96] [0 . 92 , 0 . 93] [0 . 94 , 0 . 95]

9 0 . 98 0 . 95 0 . 96 0 . 89 0 . 94

25 0 . 47 0 . 89 0 . 92 0 . 89 0 . 96

Greedy 49 0 . 66 0 . 68 0 . 92 0 . 93 0 . 80

81 0 . 64 0 . 35 0 . 58 0 . 81 0 . 93

121 0 . 49 0 . 87 0 . 35 0 . 80 0 . 82

9 1 1 1 0 . 87 0 . 88

Best of CPLEX 25 1 0 . 35 0 . 41 0 . 30 –

≥ 36 – – – – –

a

(

t

m

t

b

a

b

t

a

m

b

r

f

t

o

a

e

v

i

m

6

a

i

G

p

r

r

f

–

a

t

a

o

o

a

c

m

t

s

b

s

h

h

t

l

b

6

M

i

G

A

t

a

t

T

p

I

G

t

A

o

i

t

t

6

A

O

i

u

s

u

O

p

nts with OSPV-based pheromone initialization (iO) and boosting

bY). The 16th best variant employed Luby restarts (rL). However,

he restart procedure in the context of an uOGBU does not give

any opportunities for pheromone updates; the global-best solu-

ion, used to decide when updates are performed, does not change

etween restarts. The 16th and 17th best variants both used iO

nd bY, two problems specific pheromone initialization (including

oosting). As a result, it appears best, in the ASPV, to avoid the

wo extreme update procedures (uAA and uOGBU) unless a mech-

nism for better convergence is implemented. In fact, the various

iddle-of-the-road approaches to trails updating, namely iteration-

est (uIB), restart-best (uRB), global-best, and “on updates of the

estart-best” (uORBU), all performed well in general.

Finally, regarding the spread and distribution of the global per-

ormance of variants based the RCOS eval (v) metric, we notice that

he worst variant, iU – uAA – rN – bN, has an average performance

f 0 . 32 whereas the best performer, iO – uIB – rG – bY, has an

verage performance of 0 . 914 . A total of 13 variants have an av-

rage performance across all instances lower or equal to 0 . 5 , 21

ariants have an average performance in the interval (0 . 5 , 0 . 8) , 32

n (0 . 8 , 0 . 85] , 28 in (0 . 85 , 0 . 9] , and only 2 have an average perfor-

ance above 0 . 9 .

.2. Benchmarking ACO variants against a MILP and a greedy

pproach (M-Eval phase)

In light of the results presented in Section 6.1 , we retained the

O – uIB – rG – bY variant for comparison with the MILP and

reedy results in the M-Eval phase.

Table 3 shows the performance of the three considered ap-

roaches, grouped by instance, for a subset of instances (complete

esults are included in the supplementary material). Each cell rep-

esents the result of 30 runs for ASPV per instance, the best run

or CPLEX, or a single Greedy run. The results reported for the iO

uIB – rG – bY ASPV variant are the 95 % confidence intervals

round the mean RCOS eval (i, v) over 30 runs. For CPLEX, we report

he best performing configuration for each instance. We performed

 single run of Greedy since it is a deterministic algorithm with-

ut configuration parameters. Italic font indicates that the method,

r algorithm, is dominant, but not strictly dominant: there exists

nother approach with an equivalent performance or we cannot

onclude the difference is significant. Bold font indicates that the
61
ethod is strictly dominant, we can conclude that it outperforms

he other approaches.

We can see that, in most cases and especially on larger in-

tances, the top ASPV variant outperforms both Greedy and the

est CPLEX configuration in the allowed time. When T and Q are

mall, CPLEX has a good performance. It outperforms the meta-

euristic in four cases. Of course, the benefits of using a meta-

euristic such ACO is often on the largest instances, since those are

he realistic ones. In our case, CPLEX cannot find a good initial so-

ution in the allowed time for instances where T ≥ 36 (represented

y a dash).

.3. Further evaluation of the five best ASPV variants (A-Eval phase)

Fig. 2 shows the performance of the best ASPV variant from the

-Eval phase, iO – uIB – rG – bY, against that of Greedy on new

nstances. The mean signed difference between the variant and

reedy, MSDG , is displayed for each instance group. We see that

SPV outperforms Greedy in the vast majority of the runs and that

he MSDG is higher than 0 . 5 in favor of the iO – uIB – rG – bY vari-

nt on 41 groups out of 50. Each point on the graph corresponds

o a single instance among the 1500 instances in the benchmark.

here are a few specific instances where the variant did not im-

rove the solution over Greedy in the allowed time (red squares).

n practice, these can be considered as ties since the solution of

reedy is readily available and can be used as the retained solu-

ion. As such, there would be no real negative impact to using the

SPV algorithm to search for a better solution in practice. More-

ver, for the vast majority of instances ASPV finds a solution that

s as good (black circles) or better (blue triangles) than Greedy in

he allocated time. Similar conclusions can be drawn for the other

op four variants (see the supplementary material).

.4. Summary of results

Our results show that ASPV perform best on the M-Eval and

-Eval instances, supporting its generalization potential to other

SPV instances, following a rigorous configuration phase involv-

ng multiple variants. In addition, we conclude that restarts, when

sed in conjunction with a suitable pheromone update scheme

uch as uIB (iteration-best), uRB (restart-best), or uORBU (on

pdates of the restart-best solution) are quite efficient for the

SPV. Problem-specific pheromone initialization and boosting also

roved useful in our context since most top ASPV variants use

M. Morin, I. Abi-Zeid and C.-G. Quimper European Journal of Operational Research 305 (2023) 53–63

Fig. 2. Performance of the best ASPV variant from the M-Eval phase, RCOS eval (P i, 1
iO – uIB – rG – bY

, P i) , against performance of Greedy, RCOS eval (P i, 1
Greedy

, P i) , for the 1500

new problem instances of the A-Eval phase grouped by number of scans Q (on columns) and horizon T (on rows); the MSDG (average of the y -axis value minus x -axis value),

rounded to the 2nd decimal, is presented for each group; blue triangles are cases where the ASPV variant solution is best, red squares are cases where the greedy solution

is best, and black circles are ties (A-Eval phase). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

t

c

t

7

(

v

i

t

w

t

u

a

p

c

t

p

v

t

O

t

d

a

a

m

u

o

s

O

a

w

d

e

l

p

v

s

s

b

2

l

(

u

a

v

r

A

g

s

s

p

p

A

c

(

b

a

S

f

R

A

A

B

hese mechanisms. Furthermore, the best ASPV variant provides

learly superior results to the greedy heuristic, which in turn tends

o outperform CPLEX on the larger instances.

. Conclusion

In this paper, we presented the ant search path with visibility

ASPV) algorithm, an ant colony optimization (ACO) algorithm de-

eloped specifically for the optimal search path problem with vis-

bility (OSPV), a path planning problem with visibility from search

heory. Since the OSPV problem’s complexity grows exponentially

ith the total search time available (T) and combinatorially with

he number of scans (Q), our tailored ACO metaheuristic proved

seful for obtaining high quality search plans.

In addition to providing a metaheuristic implementation for an

ctive research area in search theory, namely, the optimal search

ath problem and its variants, we added to the body of empiri-

al evidence in the ACO literature. In fact, we benchmarked a to-

al of 96 algorithm variants, where a variant is a combination of

heromone initialization scheme, pheromone update scheme, di-

ersification mechanism in the form of restarts, and intensifica-

ion mechanism in the form of a pheromone boosting procedure.

ur best variant involved problem-specific pheromone initializa-

ion, iteration-best pheromone updates, a geometric restart proce-

ure and pheromone boosting. This variant as well as most vari-

nts, outperformed a state-of-the-art general-purpose MILP solver

s well as a problem-specific greedy heuristic on our largest and

ore realistic benchmark instances. This supports the practical

sefulness of ACO for path planning problems based on search the-

ry, and adds practical results for detection search problems.

Moreover, our findings are in line with recent results and ob-

ervations from the ACO literature. First, our best variants, in the

SPV context, use restarts based on a predefined schedule using

n increasing sequence of allowed cycles without improvement. It

as also observed in the literature on ACO that restarts improve

iversification and convergence for other problems (López-Ibáñez

t al., 2016). Second, we observed, in the context of the OSPV, a

ack of convergence from the less restrictive pheromone updates

rocedures, e.g., the “all ants” (uAA) updates, and a better con-

ergence for the variants where the “best” solution contributes
62
trongly to the pheromone trails. This is consistent with the ob-

ervation that more “elitist” ACO implementations tend to have

etter convergence than more “permissive” ones (Dorigo & Stützle,

019). Third, in our experiments, the best variants share the fol-

owing characteristics: a problem-specific pheromone initialization

iO) with boosting (bY), a restart-best update or an iteration-best

pdate procedure (either uRB or uIB) along with restarts (either

 Luby or geometric restart schedule, rL or rG). This enables the

ariants to better balance exploitation (intensification) and explo-

ation (diversification) which is a core characteristic of successful

CO (Dorigo & Stützle, 2019).

Finally, the OSPV problem formulation and the best ASPV al-

orithm variants open the door to search pattern optimization. As

uch, they are milestones in the development of operational deci-

ion support systems for search and rescue planning (where search

atterns are currently fixed), further improving search operations

lanning and increasing the potential to save lives.

cknowledgments

Computer resources were provided in part by Cal-

ul Québec (www.calculquebec.ca) and Compute Canada

 www.computecanada.ca). Funding: This research was funded

y NSERC [grant number RGPIN-2021-03495, DGECR-2021-00189]

nd by FRQNT [grant number 2017-B3-199085].

upplementary material

Supplementary material associated with this article can be

ound, in the online version, at doi: 10.1016/j.ejor.2022.06.019 .

eferences

bi-Zeid, I., Morin, M., & Nilo, O. (2019). Decision support for planning maritime
search and rescue operations in Canada. In Proceedings of the 21st international

conference on enterprise information systems (pp. 328–339). Science and Technol-
ogy Publications .

udemard, G., & Simon, L. (2012). Refining restarts strategies for SAT and UNSAT.

In International conference on principles and practice of constraint programming
(pp. 118–126). Springer .

erger, J., Boukhtouta, A., Benmoussa, A., & Kettani, O. (2012). A new mixed-integer
linear programming model for rescue path planning in uncertain adversarial en-

vironment. Computers and Operations Research, 39 (12), 3420–3430 .

http://www.calculquebec.ca
http://www.computecanada.ca
https://doi.org/10.1016/j.ejor.2022.06.019
http://refhub.elsevier.com/S0377-2217(22)00494-5/sbref0001
http://refhub.elsevier.com/S0377-2217(22)00494-5/sbref0002
http://refhub.elsevier.com/S0377-2217(22)00494-5/sbref0003

M. Morin, I. Abi-Zeid and C.-G. Quimper European Journal of Operational Research 305 (2023) 53–63

B

B

C

D

D

D

D

D

E

F

F

F

F

G

G

H

J

K

L

L

L

L

M

M

M

M

M

M

P

P

R

R

R

R

S

S

S

S

S

S

S

T

T

V

V

W

W

W

Y

Y

Y

Z
erger, J., & Lo, N. (2015). An innovative multi-agent search-and-rescue path plan-
ning approach. Computers and Operations Research, 53 , 24–31 .

irattari, M. (2004). On the estimation of the expected performance of a meta-
heuristic on a class of instances. Technical report . Université Libre de Bruxelles,

Brussels, Belgium .
harnes, A., & Cooper, W. W. (1958). The theory of search: Optimum distribution of

search effort. Management Science, 5 (1), 44–50 .
ai, Q., Ji, J., & Liu, C. (2009). An effective initialization strategy of pheromone for

ant colony optimization. In Proceedings of the 4th international conference on

bio-inspired computing (pp. 398–401). Beijing, China: IEEE .
ing, Y. F., & Pan, Q. (2011). Path planning for mobile robot search and rescue based

on improved ant colony optimization algorithm. In Applied mechanics and mate-
rials: vol. 66 (pp. 1039–1044). Trans Tech Publ .

origo, M., & Blum, C. (2005). Ant colony optimization theory: A survey. Theoretical
Computer Science, 344 (2–3), 243–278 .

origo, M., Maniezzo, V., & Colorni, A. (1996). The ant system: Optimization by a

colony of cooperating agents. IEEE Transactions on Systems, Man, and Cybernetic-
s-Part B, 26 (1), 29–41 .

origo, M., & Stützle, T. (2019). Ant colony optimization: Overview and recent ad-
vances. In M. Gendreau, & J.-Y. Potvin (Eds.), Handbook of metaheuristics: vol. 272

(pp. 311–351). Springer International Publishing .
agle, J., & Yee, J. (1990). An optimal branch-and-bound procedure for the con-

strained path, moving target search problem. Naval Research Logistics, 38 (1),

110–114 .
ang, C., & Anstee, S. (2010). Coverage path planning for harbour seabed surveys

using an autonomous underwater vehicle. In Oceans’10 IEEE Sydney (pp. 1–8).
IEEE .

oraker, J., Royset, J. O., & Kaminer, I. (2016). Search-trajectory optimization: Part I,
formulation and theory. Journal of Optimization Theory and Applications, 169 (2),

530–549 .

rost, J. R. (1999). Principles of search theory, part I: Detection. Response, 17 (2), 1–7 .
rost, J. R., & Stone, L. D. (2001). Review of search theory: Advances and applica-

tions to search and rescue decision support. Technical report . U.S. Department of
Transportation, United States Coast Guard .

oerzen, C., Kong, Z., & Mettler, B. (2010). A survey of motion planning algorithms
from the perspective of autonomous UAV guidance. Journal of Intelligent and

Robotic Systems, 57 (1), 65–100 .

rogan, S., Pellerin, R., & Gamache, M. (2018). The use of unmanned aerial vehi-
cles and drones in search and rescue operations—A survey. Proceedings of the

PROLOG , 1–13 .
oos, H. H., & Stützle, T. (2004). Stochastic local search: Foundations and applications .

Amstredam, The Netherlands: Elsevier .
ovanovic, R., Tuba, M., & Voß, S. (2019). An efficient ant colony optimization al-

gorithm for the blocks relocation problem. European Journal of Operational Re-

search, 274 (1), 78–90. https://doi.org/10.1016/j.ejor.2018.09.038 .
ratzke, T. M., Stone, L. D., & Frost, J. R. (2010). Search and rescue optimal plan-

ning system. In Proceedings of the 13th conference on information fusion (fusion)
(pp. 1–8). IEEE .

au, H., Huang, S., & Dissanayake, G. (2008). Discounted MEAN bound for the opti-
mal searcher path problem with non-uniform travel times. European journal of

operational research, 190 (2), 383–397 .
o, N., Berger, J., & Noel, M. (2012). Toward optimizing static target search path plan-

ning. In 2012 IEEE symposium on computational intelligence for security and de-

fence applications (pp. 1–7). IEEE .
uby, M., Sinclair, A., & Zuckerman, D. (1993). Optimal speedup of Las Vegas algo-

rithms. Information Processing Letters, 47 (4), 173–180 .
ópez-Ibáñez, M., Stützle, T., & Dorigo, M. (2016). Ant colony optimization: A com-

ponent-wise overview. In R. Martí, P. Panos, & M. G. Resende (Eds.), Handbook
of heuristics (pp. 311–351). Springer International Publishing .

inister of National Defence (2013). Quadrennial search and rescue re-

view. https://www.publicsafety.gc.ca/cnt/rsrcs/pblctns/archive- nss- qdrnnl- rvw/
archive- nss- qdrnnl- rvw- en.pdf , Accessed: 2021-07-23.

irjalili, S., Song Dong, J., & Lewis, A. (2020). Ant colony optimizer: Theory, litera-
ture review, and application in AUV path planning. In S. Mirjalili, J. Song Dong,

& A. Lewis (Eds.), Nature-inspired optimizers: Theories, literature reviews and ap-
plications . In Studies in computational intelligence (pp. 7–21). Cham: Springer In-

ternational Publishing. https://doi.org/10.1007/978- 3- 030- 12127-3 _ 2 .

orin, M., Lamontagne, L., Abi-Zeid, I., Lang, P., & Maupin, P. (2009). The op-
timal searcher path problem with a visibility criterion in discrete time and

space. In Proceedings of the 12th international conference on information fusion
(pp. 2217–2224). Seattle, WA, USA: ISIF IEEE .

orin, M., Lamontagne, L., Abi-Zeid, I., & Maupin, P. (2010). The ant search al-
gorithm: An ant colony optimization algorithm for the optimal searcher path

problem with visibility. In A. Farzindar, & V. Keselj (Eds.), Advances in artifi-

cial intelligence: 23rd canadian conference on artificial intelligence (pp. 196–207).
Springer, Heidelberg .
63
orin, M., Papillon, A.-P., Abi-Zeid, I., Laviolette, F., & Quimper, C.-G. (2012). Con-
straint programming for path planning with uncertainty. In International con-

ference on principles and practice of constraint programming (pp. 988–1003).
Springer .

orin, M., & Quimper, C.-G. (2014). The Markov transition constraint. In Interna-
tional conference on ai and or techniques in constriant programming for combina-

torial optimization problems (pp. 405–421). Springer .
aull, L., Saeedi, S., Seto, M., & Li, H. (2012). Sensor-driven online coverage planning

for autonomous underwater vehicles. IEEE/ASME Transactions on Mechatronics,

18 (6), 1827–1838 .
erez-Carabaza, S., Besada-Portas, E., Lopez-Orozco, J. A., & Jesus, M. (2018). Ant

colony optimization for multi-UAV minimum time search in uncertain domains.
Applied Soft Computing, 62 , 789–806 .

aap, M., Meyer-Nieberg, S., Pickl, S., & Zsifkovits, M. (2017a). Aerial vehicle search–
path optimization: A novel method for emergency operations. Journal of Opti-

mization Theory and Applications, 172 (3), 965–983 .

aap, M., Preuß, M., & Meyer-Nieberg, S. (2019). Moving target search optimiza-
tion—A literature review. Computers and Operations Research, 105 , 132–140 .

aap, M., Zsifkovits, M., & Pickl, S. (2017b). Trajectory optimization under kinemati-
cal constraints for moving target search. Computers and Operations Research, 88 ,

324–331 .
ichardson, H. R. (2014). Search theory. In N. Balakrishnan, T. Colton, B. Everitt,

W. Piegorsch, F. Ruggeri, & J. L. Teugels (Eds.), Wiley statsref: Statistics ref-

erence online . American Cancer Society. https://doi.org/10.1002/9781118445112.
stat00134 .

ato, H., & Royset, J. O. (2010). Path optimization for the resource-constrained
searcher. Naval Research Logistics, 57 (5), 422–440 .

chulte, C., Tack, G., & Lagerkvist, M. (2019). Modeling and Programming with
Gecode.

imard, F., Morin, M., Quimper, C.-G., Laviolette, F., & Desharnais, J. (2015). Bound-

ing an optimal search path with a game of cop and robber on graphs. In
International conference on principles and practice of constraint programming

(pp. 403–418). Springer .
olnon, C. (2002). Boosting ACO with a preprocessing step. In E. Boers, J. Gottlieb,

P. Lanzi, R. Smith, S. Cagnoni, E. Hart, . . . H. Tijink (Eds.), Applications of evolu-
tionary computing: Evoworkshops (pp. 163–172). Berlin: Springer .

tewart, T. (1979). Search for a moving target when the searcher motion is re-

stricted. Computers and Operations Research, 6 , 129–140 .
tone, L. D. (2004). Theory of optimal search . New York: Academic Press .

tone, L. D., Royset, J. O., Washburn, A. R., et al., (2016). Optimal search for moving
targets . Springer .

ange, O. (2011). GNU parallel—The command-line power tool. ;login: The USENIX
Magazine, 36 (1), 42–47. https://doi.org/10.5281/zenodo.16303 .

rummel, K., & Weisinger, J. (1986). The complexity of the optimal searcher path

problem. Operations Research, 34 (2), 324–327 .
erbeeck, C., Sörensen, K., Aghezzaf, E.-H., & Vansteenwegen, P. (2014). A fast solu-

tion method for the time-dependent orienteering problem. European Journal of
Operational Research, 236 (2), 419–432. https://doi.org/10.1016/j.ejor.2013.11.038 .

ermeulen, J., & Van Den Brink, M. (2005). The search for an alerted moving target.
Journal of the Operational Research Society, 56 (5), 514–525 .

alsh, T. (1999). Search in a small world. In Proceedings of the sixteenth international
joint conference on artificial intelligence (pp. 1172–1177). San Francisco, CA, USA:

Morgan Kaufmann Publishers Inc. .

illiams, D. P. (2010). On optimal AUV track-spacing for underwater mine detection.
In 2010 IEEE international conference on robotics and automation (pp. 4755–4762).

IEEE .
u, H., & van Beek, P. (2007). On universal restart strategies for backtracking

search. In Principles and practice of constraint programming – CP 2007: vol. 4741
(pp. 681–695). Berlin, Heidelberg: Springer Berlin Heidelberg .

i, W., & Kumar, A. (2007). Ant colony optimization for disaster relief operations.

Transportation Research Part E: Logistics and Transportation Review, 43 (6), 660–
672. https://doi.org/10.1016/j.tre.20 06.05.0 04 .

u, X., Chen, W.-N., Gu, T., Yuan, H., Zhang, H., & Zhang, J. (2019). ACO-A ∗: Ant
colony optimization plus A ∗ for 3-D traveling in environments with dense ob-

stacles. IEEE Transactions on Evolutionary Computation, 23 (4), 617–631. https:
//doi.org/10.1109/TEVC.2018.2878221 .

uan, Y., & Wang, D. (2009). Path selection model and algorithm for emergency

logistics management. Computers and industrial engineering, 56 (3), 1081–1094 .
hu, L., Gong, Y., Xu, Y., & Gu, J. (2019). Emergency relief routing models for injured

victims considering equity and priority. Annals of Operations Research, 283 (1),
1573–1606. https://doi.org/10.1007/s10479- 018- 3089- 3 .

http://refhub.elsevier.com/S0377-2217(22)00494-5/sbref0004
http://refhub.elsevier.com/S0377-2217(22)00494-5/sbref0005
http://refhub.elsevier.com/S0377-2217(22)00494-5/sbref0006
http://refhub.elsevier.com/S0377-2217(22)00494-5/sbref0007
http://refhub.elsevier.com/S0377-2217(22)00494-5/sbref0008
http://refhub.elsevier.com/S0377-2217(22)00494-5/sbref0009
http://refhub.elsevier.com/S0377-2217(22)00494-5/sbref0010
http://refhub.elsevier.com/S0377-2217(22)00494-5/sbref0011
http://refhub.elsevier.com/S0377-2217(22)00494-5/sbref0012
http://refhub.elsevier.com/S0377-2217(22)00494-5/sbref0013
http://refhub.elsevier.com/S0377-2217(22)00494-5/sbref0014
http://refhub.elsevier.com/S0377-2217(22)00494-5/sbref0015
http://refhub.elsevier.com/S0377-2217(22)00494-5/sbref0016
http://refhub.elsevier.com/S0377-2217(22)00494-5/sbref0017
http://refhub.elsevier.com/S0377-2217(22)00494-5/sbref0018
http://refhub.elsevier.com/S0377-2217(22)00494-5/sbref0019
https://doi.org/10.1016/j.ejor.2018.09.038
http://refhub.elsevier.com/S0377-2217(22)00494-5/sbref0021
http://refhub.elsevier.com/S0377-2217(22)00494-5/sbref0022
http://refhub.elsevier.com/S0377-2217(22)00494-5/sbref0023
http://refhub.elsevier.com/S0377-2217(22)00494-5/sbref0024
http://refhub.elsevier.com/S0377-2217(22)00494-5/sbref0025
https://www.publicsafety.gc.ca/cnt/rsrcs/pblctns/archive-nss-qdrnnl-rvw/archive-nss-qdrnnl-rvw-en.pdf
https://doi.org/10.1007/978-3-030-12127-3_2
http://refhub.elsevier.com/S0377-2217(22)00494-5/sbref0028
http://refhub.elsevier.com/S0377-2217(22)00494-5/sbref0029
http://refhub.elsevier.com/S0377-2217(22)00494-5/sbref0030
http://refhub.elsevier.com/S0377-2217(22)00494-5/sbref0031
http://refhub.elsevier.com/S0377-2217(22)00494-5/sbref0032
http://refhub.elsevier.com/S0377-2217(22)00494-5/sbref0033
http://refhub.elsevier.com/S0377-2217(22)00494-5/sbref0034
http://refhub.elsevier.com/S0377-2217(22)00494-5/sbref0035
http://refhub.elsevier.com/S0377-2217(22)00494-5/sbref0036
https://doi.org/10.1002/9781118445112.stat00134
http://refhub.elsevier.com/S0377-2217(22)00494-5/sbref0038
http://refhub.elsevier.com/S0377-2217(22)00494-5/sbref0040
http://refhub.elsevier.com/S0377-2217(22)00494-5/sbref0041
http://refhub.elsevier.com/S0377-2217(22)00494-5/sbref0042
http://refhub.elsevier.com/S0377-2217(22)00494-5/sbref0043
http://refhub.elsevier.com/S0377-2217(22)00494-5/sbref0044
https://doi.org/10.5281/zenodo.16303
http://refhub.elsevier.com/S0377-2217(22)00494-5/sbref0046
https://doi.org/10.1016/j.ejor.2013.11.038
http://refhub.elsevier.com/S0377-2217(22)00494-5/sbref0048
http://refhub.elsevier.com/S0377-2217(22)00494-5/sbref0049
http://refhub.elsevier.com/S0377-2217(22)00494-5/sbref0050
http://refhub.elsevier.com/S0377-2217(22)00494-5/sbref0051
https://doi.org/10.1016/j.tre.2006.05.004
https://doi.org/10.1109/TEVC.2018.2878221
http://refhub.elsevier.com/S0377-2217(22)00494-5/sbref0054
https://doi.org/10.1007/s10479-018-3089-3

	Ant colony optimization for path planning in search and rescue operations
	1 Introduction
	2 Related literature
	3 Optimal search path with visibility: problem formulation
	4 Using ants for search path planning with visibility
	4.1 ASPV algorithm main routine
	4.2 Initialize pheromones
	4.3 Boost pheromone initialization using a greedy heuristic
	4.4 Generate candidate solutions
	4.5 Update pheromones
	4.6 Update pheromones with restarts

	5 Experiments
	5.1 ASPV configuration and evaluation
	5.2 Performance metrics
	5.3 MILP solver configuration
	5.4 Generated search environments characteristics

	6 Results and discussion
	6.1 Comparison between ACO variants (M-Eval phase)
	6.2 Benchmarking ACO variants against a MILP and a greedy approach (M-Eval phase)
	6.3 Further evaluation of the five best ASPV variants (A-Eval phase)
	6.4 Summary of results

	7 Conclusion
	Acknowledgments
	Supplementary material
	References

