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a b s t r a c t 

In search and rescue operations, an efficient search path, colloquially understood as a path maximizing 

the probability of finding survivors, is more than a path planning problem. Maximizing the objective 

adequately, i.e., quickly enough and with sufficient realism, can have substantial positive impact in terms 

of human lives saved. In this paper, we address the problem of efficiently optimizing search paths in 

the context of the NP-hard optimal search path problem with visibility, based on search theory. To that 

end, we evaluate and develop ant colony optimization algorithm variants where the goal is to maximize 

the probability of finding a moving search object with Markovian motion, given a finite time horizon 

and finite resources (scans) to allocate to visible regions. Our empirical results, based on evaluating 96 

variants of the metaheuristic with standard components tailored to the problem and using realistic size 

search environments, provide valuable insights regarding the best algorithm configurations. Furthermore, 

our best variants compare favorably, especially on the larger and more realistic instances, with a standard 

greedy heuristic and a state-of-the-art mixed-integer linear program solver. With this research, we add to 

the empirical body of evidence on an ant colony optimization algorithms configuration and applications, 

and pave the way to the implementation of search path optimization in operational decision support 

systems for search and rescue. 

© 2022 Elsevier B.V. All rights reserved. 
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. Introduction 

The act of searching is an important part of many humani- 

arian operations, such as search and rescue (SAR), minesweeping 

nd of many surveillance or homeland security operations for the 

urpose of protecting individuals, resources or infrastructures from 

urrent or future threats. Teams of searchers on the ground (hu- 

ans and/or canine), in aircraft, in vessels as well as autonomous 

nmanned vehicles (robots) may search for survivors, land or un- 

erwater mines, or illicit activities and abnormal behaviors. In the 

vent of natural disasters, such as earthquakes, floods, landslides, 

nd other catastrophes involving collapsed buildings, aircraft, or 

aritime vessels, SAR operations must be quickly organized and 

eployed in order to locate and rescue survivors. This is also the 

ase for smaller scale, albeit more frequent emergencies, such as 

ersons who might have disappeared in water, a child who might 

ave been lost, a confused person who might have wandered off, 

 hiker missing in the woods, etc. In Canada alone, there are 

housands of air, maritime and ground SAR incidents every year 
∗ Corresponding author. 
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 Minister of National Defence, 2013 ). Searching is, of course, also 

onducted by law enforcement agencies who wish to locate and 

eutralize threats. 

But, how and where to search? The answer lies in efficient 

earch planning that ensures the best use of scarce and constrained 

earch resources. This implies defining search areas and/or search 

aths that maximize the chances of an operation’s success, namely 

nding the search objects. Search planning is extremely complex 

ince it is normally conducted under time pressure, in the presence 

f uncertain whereabouts, uncertain detectability, uncertain con- 

itions of the search objects, and in degraded and rapidly chang- 

ng conditions. The recent European migrant crisis and the human 

ragedies in the Mediterranean have emphasized the importance of 

fficient searches to quickly locate and rescue survivors. 

In response to the first large-scale search operations, namely 

he hunt for enemy submarines off the Atlantic Coast during WWII, 

earch theory was developed as one of the earlier subdisciplines 

f Operations Research, first classified and later published in the 

pen literature ( Charnes & Cooper, 1958 ). One of the problems 

ddressed by search theory is the optimal search path (OSP) for 

 moving search object with uncertain location and detectabil- 

ty, an NP-hard problem ( Trummel & Weisinger, 1986 ). In recent 

https://doi.org/10.1016/j.ejor.2022.06.019
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ejor
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ejor.2022.06.019&domain=pdf
mailto:Michael.Morin@osd.ulaval.ca
https://doi.org/10.1016/j.ejor.2022.06.019
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ears, search theory has been used for planning of search paths 

f autonomous robots in structured environments or of unmanned 

erial vehicles in large areas outdoors ( Goerzen, Kong, & Met- 

ler, 2010; Lau, Huang, & Dissanayake, 2008; Sato & Royset, 2010 ). 

pplications include humanitarian operations, mine countermea- 

ures ( Paull, Saeedi, Seto, & Li, 2012; Williams, 2010 ), evacuations 

ollowing a disaster ( Yuan & Wang, 2009 ), seabed surveys in har- 

ors and waterways ( Fang & Anstee, 2010 ), and search and res- 

ue/recovery operations ( Berger, Boukhtouta, Benmoussa, & Ket- 

ani, 2012; Lo, Berger, & Noel, 2012; Morin, Lamontagne, Abi-Zeid, 

ang, & Maupin, 2009; Morin, Lamontagne, Abi-Zeid, & Maupin, 

010; Stone, Royset, Washburn et al., 2016 ). 

In the OSP formulation, it is generally assumed that a searcher 

an only scan its location. This, however, is an unrealistic as- 

umption in an operational context, since regions other than the 

earcher’s location may be visible from afar. To remedy this sit- 

ation and adapt the problem representation to real-life, we for- 

ulated in Morin et al. (2009 , 2010) the optimal searcher path 

roblem with visibility (OSPV) and proposed algorithms based on 

nt colony optimization (ACO) a population-based, general stochas- 

ic local search technique ( Dorigo & Blum, 2005; Hoos & Stüt- 

le, 2004 ). ACO have been applied to a wide area of problems 

nd some of their recent successes in practical applications in- 

lude Jovanovic, Tuba, & Voß (2019) for the block relocation prob- 

em, Yu et al. (2019) for 3D path planning with dense obsta- 

les, Verbeeck, Sörensen, Aghezzaf, & Vansteenwegen (2014) on 

rienteering, i.e., the problem of selecting destinations and plan- 

ing an optimal path to these selected locations, for humanitar- 

an relief ( Zhu, Gong, Xu, & Gu, 2019 ), for disaster relief opera-

ions ( Yi & Kumar, 2007 ), and for unmanned aerial vehicles path 

lanning ( Mirjalili, Song Dong, & Lewis, 2020 ). 

In this paper, we generalize and improve our previous results by 

ntroducing the Ant Search Path with Visibility (ASPV) algorithm. 

e describe and discuss the outcomes of a thorough experimen- 

ation, conducted using 96 algorithmic variants, where a variant is 

 combination of pheromone initialization scheme, pheromone up- 

ate scheme, diversification and intensification mechanisms. Based 

n realistic problem instances sizes, we compare the performance 

f our best ASPV algorithm variants with those obtained through a 

ixed-Integer Linear Program (MILP) using the ILOG CPLEX solver 

s well as with a simple greedy heuristic. We show that our al- 

orithms produce search paths with higher probabilities of success 

n shorter time. Our results provide an empirical contribution to 

he literature on the performance of ACO algorithms in general, 

nd a first practical contribution towards the implementation of 

earch pattern optimization in the Advanced Search Planning Tool, 

he Canadian decision support systems for SAR currently used in 

perations. 

The rest of the paper is organized as follows. Section 2 provides 

n overview of related literature. Section 3 formally describes the 

SPV problem. Section 4 presents the ASPV algorithm as well as 

heromone boosting and restarts. Section 5 describes the experi- 

ental methodology. Section 6 contains the results along with a 

iscussion. We conclude in Section 7 . 

. Related literature 

Problems of search theory may be formulated differently 

epending on the characteristics of the situation being ad- 

ressed ( Stone, 2004; Vermeulen & Van Den Brink, 2005 ), and on 

he measure of performance used, such as the probability of de- 

ection or the expected time to detection ( Richardson, 2014 ). One 

f the main distinctions is whether the search object is moving 

r stationary. In two-sided search problems (also known as search 

ames), the search object is active, i.e., its moves depend on the 

earcher’s actions. It may be cooperative (e.g. rendez-vous search) 
54 
r evading (e.g. pursuit-evasion ). In a one-sided search problem, i.e., 

hen the object’s motion model does not depend on the searcher’s 

ctions, problems are again divided into two groups depending 

n the searcher’s movement constraints: the optimal search path 

roblems where the searcher is constrained to follow a path, also 

alled path-constrained moving target search problem ( Eagle & 

ee, 1990 ), and the optimal search density problems where no 

uch constraint is formulated ( Lau et al., 2008 ). Two main types 

f motion models are considered: conditionally deterministic mo- 

ion where the trajectory of a search object depends only on its 

nitial position and Markovian motion models where an object’s 

ovement at a given point in time solely depends on its current 

ocation ( Raap, Meyer-Nieberg, Pickl, & Zsifkovits, 2017a ). One type 

f search problem is detection search , where the search stops after 

he first detection (i.e., there is no target tracking as in surveillance 

earch). 

Search effort may be continuous or discrete. In the continuous 

ase, effort may be allocated as finely as necessary over the en- 

ire search space (e.g., time spent by an aircraft over a set of re- 

ions) ( Stewart, 1979 ). In this case, the objective function is con- 

ex and the constraints of the problem form a convex set. As for 

iscrete search effort, it may be measured by the total number of 

earchers to deploy over an area of interest or by the total number 

f scans to allocate to a set of visible regions ( Berger & Lo, 2015;

oraker, Royset, & Kaminer, 2016; Raap, Zsifkovits, & Pickl, 2017b ). 

The optimal search path (OSP) is a single-sided detection search 

or a moving object with uncertain location and detectability. A so- 

ution to the OSP problem is a path on a graph that maximizes 

he probability of finding the object. This is different from clas- 

ical path planning where the aim is often to plan a path from 

n initial point to a known destination. The OSP has been an ac- 

ive research topic since the introduction in 1979 of the first algo- 

ithm to solve it ( Stewart, 1979 ). It is still attracting a lot of atten-

ion due to its applications in the robotics literature ( Grogan, Pel- 

erin, & Gamache, 2018; Raap, Preuß, & Meyer-Nieberg, 2019 ). It is 

P -hard problem ( Trummel & Weisinger, 1986 ), and a lot of work 

o date has consisted of developing bounding techniques for the 

ranch and bound (BB) algorithm presented by Stewart (1979) or 

f using a model and solve approaches with a bound ( Simard, 

orin, Quimper, Laviolette, & Desharnais, 2015 ) or without such 

 bound ( Morin, Papillon, Abi-Zeid, Laviolette, & Quimper, 2012; 

orin & Quimper, 2014 ). Another approach has been to use meta- 

euristics such as ACO ( Ding & Pan, 2011; Perez-Carabaza, Besada- 

ortas, Lopez-Orozco, & Jesus, 2018 ). For a recent survey of the 

oving target search optimization literature, the reader is referred 

o Raap et al. (2019) . 

The Optimal Search Path with Visibility (OSPV) generalizes 

he classical OSP problem by taking into account the fact that a 

earcher can scan visible regions different from its location ( Morin 

t al., 2010 ). The introduction of the possibility to search from a 

istance adds realism to the model, albeit at the price of an in- 

reased solution space size. Nonetheless, it is a crucial assumption 

or achieving models that reflect the way searching is actually con- 

ucted. For example, inter-region visibility is already taken into ac- 

ount to evaluate predefined search patterns in operational mar- 

time SAR decision support systems such as SAR Optimizer ( Abi- 

eid, Morin, & Nilo, 2019 ) and SAROPS ( Kratzke, Stone, & Frost, 

010 ). However, these systems do not currently propose nor op- 

imize search paths. The research presented here is a step in that 

irection. 

. Optimal search path with visibility: problem formulation 

The OSPV problem is a single-sided detection search for an ob- 

ect moving in a discrete environment of N regions according to 

 Markovian model. The goal is to construct a search plan over T 
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ime steps that maximizes the probability of finding the object un- 

er the searcher’s visibility and accessibility constraints. A search 

lan consists of a discrete path and Q discrete effort allocations at 

ach time step. A unit allocation of search effort is an observation 

a scan) by the searcher from its location to a visible region, pos- 

ibly its own location. A searcher may actually consist of a team 

f agents following a common path while scanning one or many 

ifferent regions simultaneously. 

Let T = { 1 , . . . , T } be the set of time steps, R = { 0 , . . . , N − 1 }
he set of regions in the search environment, Q = { 0 , . . . , Q } the 

et of possible effort allocations (scans) that may be assigned to 

isible regions in one time step, and A : R → 2 R and V : R → 2 R 

he searcher’s accessibility and visibility maps. The searcher’s posi- 

ion at a time t ∈ T is y t ∈ R and its effort allocation in region r at

 ∈ T is e t (r) ∈ Q . A search plan P is defined by 

 = 〈 Y, E 〉 = 〈 [ y 1 , y 2 , . . . , y T ] , [ e 1 , e 2 , . . . , e T ] 〉 , (1) 

here 

 t ∈ A (y t−1 ) , ∀ t ∈ T , (2) 

 t (r) > 0 ⇒ r ∈ V (y t ) , ∀ t ∈ T , ∀ r ∈ R , (3) 

 

∈R 

e t (r) = Q , ∀ r ∈ T , (4) 

 0 (r) = 0 , ∀ r ∈ R . (5) 

q. (2) indicates that the searcher may only move to an accessible 

egion and Eq. (3) indicates that effort can be allocated only to a 

egion visible from the searcher’s location. The total search effort 

llocated in one time step is equal to Q ( Eq. (4) ), the amount of

vailable search effort per time step, and no search is conducted at 

ime 0 ( Eq. (5) ). The search P is feasible iff it respects Eqs. (1) –

5) . A feasible search plan P is optimal iff it maximizes a perfor- 

ance measure, the cumulative overall probability of success or COS

 Eq. (12) ). In order to understand this performance measure, we 

efine three types of events: presence, detection and motion. 

A presence event C 

r 
t occurs when the object is located (but not 

ecessarily detected) in region r at time t . A motion event M 

sr 
t oc- 

urs when the object moves from region s to region r at time t . 

 detection event D 

sr 
tq occurs when an allocation of q scans from 

egion s detects an object located in r at time t . 1 Under the as- 

umption that searchers are located in the same region, we refer 

o the detection event as D 

r 
t without loss of generality. Since the 

SPV is a detection search problem, the search will stop as soon 

s a detection occurs. 

Motion model The object’s motion model is assumed to be sta- 

ionary Markovian. It is described by a matrix M where M (s, r) 

s the probability of an object moving from region s to region r

ithin one time step. For all t ∈ T , we have 

 (s, r) 
def = Pr { M 

sr 
t } . (6) 

Detection model Given s, r ∈ R , t ∈ T and q ∈ Q , pod t (s, r, q ) is

he conditional probability of a detection event in region r at time 

when a searcher in region s assigns q scans to region r. This prob-

bility, conditional to the object’s presence in r, is defined as fol- 

ows: 

pod t (s, r, q ) 
def = P r{ D 

r 
t }|{ C r t } . (7) 

In practice, a pod is derived from a sensor’s (e.g., a visual 

earch) characteristics under given environmental conditions, as 
1 No false detections are taken into account in the OSPV problem formalism. 

l

i

p

55 
 function of a given search object type at a given range ( Frost,

999 ). In the OSPV, we make the common assumption that the de- 

ection law is exponential ( Stone, 2004 ) defined by 

pod t (s, r, q ) = 1 − exp (−W t (s, r) × q ) , (8) 

here W t (s, r) is the sweep width, a detectability index of the ob- 

ect (defined in Section 5.4 since it is instance-specific). The expo- 

ential detection law provides a lower bound for detection proba- 

ilities obtained with other detection laws ( Frost & Stone, 2001 ). 

Presence model The a priori knowledge on the object’s presence 

n region r is defined as 

poc 0 (r) 
def = Pr { C 

r 
0 } , (9) 

here Pr 
{
C 

r 
0 

}
is the prior probability that the object is in region r

efore the search is initiated. For r ∈ R and t ∈ T , poc t (r) , the joint

robability of the object arriving at t from any region s and not 

eing detected in region s before t (also called the probability of 

ontainment), is 

poc t (r) 
def = Pr { C 

r 
t } = 

∑ 

s ∈R 

Pr { M 

sr 
t−1 } Pr { C 

s 
t−1 } (1 − Pr { D 

s 
t−1 | C 

s 
t−1 } ) . 

(10) 

Performance measures The probability of finding the object in 

egion r at time t is pos t (r) , the local probability of success. It is 

he joint probability of a presence event and of a detection event: 

pos t (r) 
def = Pr { C 

r 
t ∩ D 

r 
t } = Pr { C 

r 
t } × Pr { D 

r 
t | C 

r 
t } . (11)

he objective is to maximize the total probability of success across 

ll regions and time steps, i.e., the cumulative probability of success 

f a search plan. Since only a single success is possible in a detec- 

ion search, we define this probability as 

OS(P ) = 

∑ 

t∈T 

∑ 

r∈R 

pos t (r) , (12) 

here the local probability of success is 

pos t (r) = poc t (r) pod t (y t , r, e t (r)) . (13) 

ollowing an unsuccessful search at time t − 1 , the updated prob- 

bility of containment at time t is given by: 

poc t (r) = 

∑ 

s ∈R 

M (s, r) [ poc t−1 (s ) − pos t−1 (s ) ] . (14) 

A MILP for the OSPV problem A MILP can be formulated for 

he OSPV where the objective is to find a search plan maximizing 

q. (12) . This is possible since the pod function, the poc 0 distribu- 

ion, the Markovian motion matrix M and the initial searcher’s po- 

ition y 0 are all known. As a consequence, the poc update equation, 

.e., Eq. (14) , can be linearized. Binary decision variables and con- 

traints can be used to define the search plan ( Eqs. (1) –(3) ) to op-

imize under effort constraints ( Eqs. (4) and (5) ). Continuous vari- 

bles can be used to keep trace of the probability models ( Eqs. (8) ,

12) and (14) ). The complete MILP model for the single scan case 

 Q = 1 ) and its extension to the case of multiple scans ( Q ≥ 1 ) can

e found in Morin et al. (2009) and Morin et al. (2010) respectively. 

. Using ants for search path planning with visibility 

Ant colony optimization, or ACO, is a metaheuristic optimiza- 

ion technique that probabilistically constructs and updates a pop- 

lation of candidate solutions to a problem based on a common 

memory”, called the pheromone trails. At each cycle (iteration) 

f an ACO algorithm, each ant in the colony builds a single so- 

ution by selecting components (unit parts of a solution) accord- 

ng to the shared knowledge of components’ quality, stored in the 

heromone trails. For instance, in our case, there are two types of 
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Table 1 

Variant components with acronyms, names and section numbers . 

Type Name Section Name Section 

Initialization iU: Uniform 4.2 iO: OSPV 4.2 

iR: Random 4.2 

Updates uAA: All-Ants 4.5 uGB: Global-best 4.5 

uIB: Iteration-best 4.5 uORBU: On restart-best upd. 4.6 

uRB: Restart-best 4.6 uOGBU: On global-best upd. 4.5 

Restarts rG: Geometric 4.6 rN: Without 4.6 

rL: Luby 4.6 

Boosting bY: With 4.3 bN: Without 4.3 
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Algorithm 1: ASPV( Ospv , C, ρ). 

Input : An OSPV problem Ospv , the size of the colony C , and 

the evaporation rate ρ . 

Output : The incumbent search plan P best . 

begin 

τ path , τ eff ← Initialize() ; 
while stopping criterion is not met do 

C ← Generate() ; 
P best , τ path , τ eff ← Update() ; 

end 

return P best ; 

end 
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a

olution components, a destination r at time t and an effort allo- 

ation to one or many regions at time t . The probability of an ant

hoosing a given component to be part of its solution (called the 

ransition probability ) is a function of the component’s pheromone 

alue and, when available, of the value associated to the compo- 

ent by a heuristic, called heuristic information . An ACO algorithm 

ycle consists of stochastically generating one solution per ant us- 

ng the trails (the generation process ), and of updating these trails 

the update process ) as a function of the pheromone model, which 

rovides an update rule dictating which and when the generated 

andidate solutions are used to update the trails, and an update 

quation to quantify a solution component’s quality. 

Various strategies can help ACO algorithms converge towards 

igh quality solutions namely intensification, diversification, and 

estarts. Intensification is the process by which ants converge to 

etter solutions whereas diversification is the process by which 

tagnation, i.e., numerous cycles without improvement when such 

mprovement is possible, is avoided ( Hoos & Stützle, 2004 ). Restarts 

re a widely used diversification mechanism that proved to be suc- 

essful in a variety of metaheuristics ( Hoos & Stützle, 2004 ). They 

nable the algorithm to reinitialize its solving process in the ab- 

ence of local improvements. One particular intensification mecha- 

ism is based on pheromone boosting introduced in Solnon (2002) . 

t could be seen as a diversification mechanism or as an intensifi- 

ation mechanism depending on the way it is used. An exhaustive 

reatment of ACO algorithms can be found in López-Ibáñez, Stützle, 

 Dorigo (2016) . 

In order to solve the OSPV, we developed the ASPV algorithm, 

ased on ACO principles, and defined 96 algorithm variants based 

n four main components of traditional ACO: pheromone initial- 

zation, pheromone update, with or without restarts, and with or 

ithout boosting ( Table 1 ). For clarity purposes, whenever a vari- 

nt is named using solely the acronyms defined in Table 1 , they are

isted in the following order: pheromone initialization, pheromone 

pdate, restart, and boosting. 

.1. ASPV algorithm main routine 

Algorithm 1 outlines the main routine of ASPV. Functions 

nitialize() , Generate() , and Update() are variant- 

ependent placeholders. Given an OSPV problem instance Ospv , 
he total number C of candidate solutions to generate at each 

ycle and the pheromone evaporation rate ρ , used in order to 

void stagnation in a local optimum, the algorithm first initializes 

he pheromone trails using the function Initialize() in two 

heromone tables: one T × N table τ path for the pheromone on the 

ove components, and one T × N table τ eff for the pheromone on 

ffort unit s allocation component s. Whenever needed, pheromone 

alues normalization is carried out for each table independently so 

hat the sum of their pheromone values equals 1. In some variants, 

oosting is also performed during initialization. 

In each cycle, the function Generate() is used to construct a 

ew candidate solution set C based on the pheromone trails. Then, 

he function Update() is used to update τ path , τ eff , and the in- 
56 
umbent (best-so-far) solution P best . Depending on the variant, in 

ome cycles, a restart may occur. The stopping criterion is based 

n a time limit. 

.2. Initialize pheromones 

In most ACO algorithms, pheromone trails are initialized to the 

ame values ( Dorigo & Stützle, 2019 ). We call this first variant, 

here all initial pheromone values are equal, uniform pheromone 

nitialization (iU). In order to ensure a strong diversification be- 

ween restarts, we introduce a random pheromone initialization (iR) 

ariant where the initial pheromone values are generated from a 

andom uniform distribution between 0 and 1. In both variants, the 

heromone values are normalized so that their sum in each table 

s equal to 1. Both uniform (iU) and random (iR) pheromone initial- 

zation are generic. However, we hypothesize that problem-specific 

nowledge can help the algorithm in finding a high quality solu- 

ion. We therefore introduce an OSPV-based pheromone initialization 

rocedure (iO). In this variant, the algorithm fixes the pheromone 

alues of each region s and of each region r visible from s as fol-

ows: 

path 
ts = 

∑ 

r∈R 

pocm t (r) pod t (s, r, 1) , (15) 

eff 
ts = pocm t (s ) , (16) 

here pocm t (r) is the probability that the search object reaches 

egion r at step t in the absence of search with pocm 0 = poc 0 : 

pocm t (r) = 

∑ 

s ∈R 

M (s, r) pocm t−1 (s ) . (17) 

It should be noted that, in Eq. (15) , pod t (s, r, 1) is the prob-

bility of detection for a single scan from region s to region r at 

ime t . As a result, the pheromone trails in τ path 
ts correspond to 

he overall probability of success at a time t in a region s assum- 

ng a single unit of effort can be allocated to each visible region 

nd that no search has been done prior to time step t . For the τ eff 

ts 
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alue, we simply assume that no searches take place. Although this 

s not true in the OSPV problem context, the information on the 

bject’s motion initially embedded in the trails can still be impor- 

ant during the solving process. Once all values have been set us- 

ng Eqs. (15) and (16) , a small randomly generated epsilon value 

s added to the trail values before normalization. This ensures that 

 region r with low pocm t (r) still has a probability of being chosen 

y an ant. Furthermore, it favors diversification as it gives a little 

ess or a little more importance to Eqs. (15) and (16) . 

.3. Boost pheromone initialization using a greedy heuristic 

Pheromone boosting basically consists of initializing the 

heromone values to promising values. As such, it is not unlike the 

SPV-based pheromone update (iO). The idea of such a preprocess- 

ng step was introduced and illustrated in Ant-Solver which was 

esigned to solve constraint satisfaction problems ( Solnon, 2002 ). 

ome form of pheromone boosting, or preprocessing, was also ap- 

lied in other problems such as the traveling salesperson problem 

TSP), e.g., Dai, Ji, & Liu (2009) used a minimum spanning tree of 

he TSP graph to initialize the pheromone. 

Our approach to boosting is to use a problem-specific greedy 

euristic to find a search plan P boost to perform a first update of 

he trails right after initialization. This can be seen as an intensi- 

cation mechanism that directs the ants towards a promising sub- 

pace of the solution space. To greedily construct P boost = 〈 Y, E 〉 , 
he algorithm first chooses the accessible region with the highest 

verall success probability as the new searcher’s destination. That 

s, it evaluates each possible destination by allocating each effort 

nit greedily to visible regions from that destination, i.e., it max- 

mizes the local success by scanning one visible region at a time. 

hen it selects the accessible region where the overall success, i.e., 

he sum of all local successes, is the highest. Such a sequential 

ffort allocation is possible, since we use an exponential detec- 

ion law making the detection process memoryless. When P boost 

s found, it is used to update the pheromone trails using a given 

vaporation rate ρboost . Although ρboost and ρ could be different, 

e use the same values to avoid an additional parameter in the 

lgorithm. 

We use bY to denote variants with boosting and bN to denote 

ariants without. 

.4. Generate candidate solutions 

Candidate solutions are generated at each cycle of the algorithm 

y the Generate() function, which constructs C candidate solu- 

ions. A candidate solution P cand ∈ C consists of a searcher’s path 

nd a sequence of effort allocations. At each time step t ∈ T , the

nt chooses a feasible searcher’s move from y t−1 to y t and defines 

he allocation vector e t by distributing Q effort units to visible re- 

ions from y t . Each part of a solution, or solution component, is 

hosen by an ant with some transition probability depending on 

he pheromone values associated with the component. 

Let P cand .y t ← r and P cand .e t (r) ++ be the solution components 

or moving to region r and for allocating an additional effort unit 

o region r in search plan P cand at time t . A feasible searcher’s move 

 

cand .y t ← r is chosen with a transition probability of 

p P cand .y t ← r = 

τ path 
tr ∑ 

r ′ ∈ A (y t−1 ) 
τ path 

tr ′ 
, (18) 

nd Q feasible effort allocations P cand .e t (r) ++ are chosen with a 

ransition probability of 

p P cand .e t (r) ++ = 

τ eff 
tr ∑ 

r ′ ∈ V (y ) τ
eff 
tr ′ 

. (19) 

t t

57 
olutions are built by adding one component at a time, first a fea- 

ible searcher’s move, then Q feasible effort allocation and so on. 

nce C solutions have been generated, the Generate() function 

eturns and the algorithm launches the update process. 

.5. Update pheromones 

The Update() function updates the pheromone trails and is 

ariant-independent in our ASPV algorithm. However, the “when”

s variant-dependent. That is, the solutions used for the update 

nd the cycle during which the update takes place depend on the 

lgorithm variant. Whenever a solution P is used to update the 

heromone trails, τ path 
tr and τ eff 

tr are modified as follows: 

path 
tr ← τ path 

tr + 

ρ

S 

(
os t + 

COS(P ) 

T 

)
, (20) 

eff 
tr ← τ eff 

tr + 

ρ

S 

(∑ 

r∈R 

pos t (r) + 

∑ 

r∈R 

P.e t (r) COS(P ) 

QT 

)
, (21) 

here S is a normalization factor that depends on how many up- 

ates were carried out in the cycle, and os t is the overall suc- 

ess at a time step t , i.e., os t = 

∑ 

r∈R 

pos t (r) . After all updates have

een carried out, we use the evaporation rate ρ to decrease the 

heromone values as follows: 

path 
tr ← (1 − ρ) τ path 

tr , (22) 

eff 
tr ← (1 − ρ) τ eff 

tr . (23) 

We defined a total of six variants of pheromone update 

chemes. Four can be used with and without restarts: The first 

cheme is an all-ants pheromone updates procedure (uAA) that is 

eminiscent of ant systems ( Dorigo, Maniezzo, & Colorni, 1996 ). In 

his setting, all candidate solutions generated in the cycle are used 

o update the pheromone trails, and updates are performed every 

ycle. The second scheme is an iteration-best pheromone update 

uIB) procedure where only the best candidate solution of each 

ycle is used for the update. The third scheme, global-best up- 

ates (uGB), uses the best-so-far incumbent solution to update the 

heromone at each cycle. All three variants are discussed in re- 

ent literature on ACO ( López-Ibáñez et al., 2016 ). Finally, we have 

n “on global-best updates” (uOGBU) scheme consisting in updat- 

ng the pheromone only when the best candidate solution of an 

teration is better than the best-so-far (global-best) incumbent so- 

ution. Two further pheromone update schemes are used only with 

estarts and are further discussed in Section 4.6 . 

.6. Update pheromones with restarts 

Restarting is a frequent strategy used in solvers, especially in 

oolean satisfiability problems solvers ( Audemard & Simon, 2012 ) 

nd in constraint optimization or constraint satisfaction prob- 

ems solvers ( Wu & van Beek, 2007 ). A restart is used when a

pecific number of cycles without improvement of the best in- 

umbent since the last restart is reached. Generally, the number 

f cycles without improvement follows a sequence of constants 
¯
 = 〈 ̄r 0 , ̄r 1 , . . . 〉 called the restart strategy, where r̄ i ∈ N is the to- 

al number of allowed cycles without improvement following i 

estarts. 

Universal, problem independent, restart strategies are often 

sed in solvers, e.g., Gecode ( Schulte, Tack, & Lagerkvist, 2019 ). We 

sed two such strategies: a geometric sequence and a Luby se- 

uence. The geometric restart strategy was notably tested by Walsh 

1999) and provided good results. It consists of a sequence such 

hat r̄ = cb i where c is a chosen constant and b is a chosen 
i 
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ase. The Luby restart strategy (and Luby sequence) was intro- 

uced by Luby, Sinclair, & Zuckerman (1993) as an optimal univer- 

al restart strategy for Las Vegas algorithms. Starting at 1, the en- 

ire sequence is repeated and a new value corresponding to double 

hat of the last value is introduced at the end of the sequence: 

1 , ︷︷︸ 
init 

1 , 2 , ︸︷︷︸ 
step 1 

1 , 1 , 2 , 4 , ︸ ︷︷ ︸ 
step 2 

1 , 1 , 2 , 1 , 1 , 2 , 4 , 8 , ︸ ︷︷ ︸ 
step 3 

1 , . . . (24) 

n practice, the terms of the Luby sequence can be multiplied by a 

actor to allow for more time between restarts. When no restarts 

re used by a given variant, the acronym rN is used in the vari-

nt name. Geometric restarts are denoted by the rG acronym. Luby 

estarts are denoted by the rL acronym. 

In the ASPV algorithm context, a restart is a reinitialization of 

he pheromone trails, which varies as a function of the pheromone 

nitialization scheme and of whether boosting is used or not. A 

istinction is made, when restarts are used, between the best-so- 

ar and the restart-best solution. We call “global-best solution” the 

est incumbent across all restarts and “restart-best solution” the 

est incumbent since the last restart. This distinction is impor- 

ant for the algorithm variants; when using the global-best updates 

uGB) or the “on global-best updates” (uOGBU), the best incum- 

ent across all restarts is used to update the trails (either at each 

ycle for a uGB variant or when a better solution is found for a 

OGBU variant). 

Two other pheromone update variants use the best incum- 

ent since the last restart. That is, the restart-best (uRB) and 

he “on restart-best updates” (uORBU) pheromone update proce- 

ures, which respectively corresponds to global-best (uGB) and “on 

lobal-best updates” (uOGBU) using the restart-best solution in- 

tead of the global-best solution. 

. Experiments 

In this section, we describe the experiments conducted to eval- 

ate the 96 proposed ACO algorithm variants in order to determine 

he best variant. These experiments consisted of three phases: The 

onfiguration phase enables us to find the best parameter pairs 

or each variant. The “multiruns” evaluation phase (M-Eval) enables 

s to determine how the performance of an ACO varies between 

uns on a given instance. The “across-instances” evaluation (A-Eval) 

hase provides a better understanding of an ACO performance on 

 variety of instances as reported in Birattari (2004) . Finally, we 

ompare the results of the best ACO variant with the MILP model 

escribed in Section 3 and with the greedy heuristic described in 

ection 4.3 , hereinafter named Greedy. 

.1. ASPV configuration and evaluation 

In order to configure each of the 96 variants, we first gener- 

ted a total of 100 unique pairs of evaporation factors ρ and colony 

izes C from a uniform distribution in the interval [ 0 . 001 , 0 . 1 ] (up 

o four decimal places) and in [ 10 , 10 0 0 ] respectively. The 100 gen- 

rated parameters pairs, which that cover a wide range of values, 

re displayed in the supplementary material. For rG variants us- 

ng a geometric restart strategy, we chose c = 1 and b = 2 as pa-

ameters. The obtained geometric sequence grows fast even with 

uch small values, which results, very quickly, in long runs with- 

ut restarting. For rL variants involving Luby restarts, each term in 

he sequence was multiplied by 256 in order to avoid a too short 

ime interval between restarts. Nonetheless, the resulting Luby se- 

uence grows more slowly than the geometric sequence. 

During the configuration phase , each of the 96 algorithm vari- 

nts was run using each of the 100 parameter pairs on 50 differ- 

nt instances of the OSPV problem with varying complexity as de- 

cribed in Section 5.4 (a total of 50 0 0 runs per variant). For each
58 
ariant, the parameter pair with the highest average performance 

cross all instances was deemed the best for that variant and was 

ept for the evaluation phase. In the M-Eval phase, each algorithm 

ariant, configured according to the best parameter pair, was run 

n another 50 instances not seen during the configuration phase 

0 times (a total of 1500 runs per variant). Furthermore, for com- 

arison purposes, the greedy heuristic from Section 4.3 and the 

ILP model of the OSPV problem from Section 3 were also run 

n each of the 50 M-eval problem instances. In the A-Eval phase, 

he five best ACO algorithms identified in the M-Eval phase, were 

un once on 1500 new instances (7500 runs in total). The A-Eval 

enchmark consisted of 30 instances for each pair of horizon T and 

umber of scans Q described in Section 5.4 . The average perfor- 

ance of the ACO was compared to that of Greedy on this par- 

icular benchmark. The MILP model was excluded from the A-Eval 

hase since it did not fare well on the largest instances of the M- 

val phase. 

The framework used to generate the problem instances and to 

un the algorithms was developed using the C++ programming lan- 

uage. The experiments of the configuration phase and of the M- 

val phase were run in parallel using GNU Parallel ( Tange, 2011 ) 

n Intel Xeon Gold 6148 Skylake (2.4 gigahertz) CPUs. Up to 8 GB 

f memory were allowed per core for the MILP solver. Due to the 

navailability of the Skylake CPUs, the experiments of the A-Eval 

hase were run in parallel using GNU Parallel ( Tange, 2011 ) on an

MD Ryzen 9 5900X CPU. The problem instances and the allowed 

olving time for each instance size are specified in Section 5.4 . 

.2. Performance metrics 

In order to evaluate the performances of the algorithm variants, 

e use the relative cumulative overall probability of success of a 

earch plan P , normalized as a function of the minimum and the 

aximum cumulative probabilities of success attained, by the con- 

idered variants or algorithms, in the allowed time. 

For the configuration phase, the performance metric is defined 

s follows: 

COS conf (P i c, v , P 

i 
v ) 

= 

⎧ ⎨ 

⎩ 

C OS(P i c, v ) − min 
P ′ ∈P i v 

C OS(P ′ ) 

max 
P ′ ∈P i v 

COS(P ′ ) − min 
P ′ ∈P i v 

COS(P ′ ) , if max 
P ′ ∈P i v 

COS(P ′ ) 
 = min 

P ′ ∈P i v 
COS(P ′ ) ;

1 , otherwise , 

(25) 

here P i c, v is the search plan obtained by configuration c of vari- 

nt v on instance i . Recall that we have 100 configuration pairs, 96 

ariants and 50 instances. P 

i 
v is the set of 100 plans correspond- 

ng to the 100 parameter configurations of variant v run on in- 

tance i . We then compute, for each configuration c of variant v , 
COS conf (c, v ) , the average of RCOS conf (P i c, v , P 

i 
v ) over the instances i . 

he configuration c with the highest RCOS conf (c, v ) is selected to be 

sed for variant v in the evaluation phases (M-Eval and A-Eval). 

For the M-Eval phase where we select the best ACO variant, the 

erformance metric is defined as follows: 

COS eval (P i, j 
v , P 

i ) 

= 

⎧ ⎨ 

⎩ 

C OS(P i,r v ) −min 
P ′ ∈P i 

C OS(P ′ ) 

max 
P ′ ∈P i 

COS(P ′ ) −min 
P ′ ∈P i 

COS(P ′ ) , if max 
P ′ ∈P i 

COS(P ′ ) 
 = min 

P ′ ∈P i 
COS(P ′ ) ;

1 , otherwise , 

(26) 

here P 
i, j 
v is the search plan obtained by the jth run of variant v

n instance i . Recall that we have 30 runs per instance and variant,

nd 96 variants. P 

i is the set of 2880 plans obtained for any variant

n instance i . We then compute, for each variant v , RCOS eval (v ) ,



M. Morin, I. Abi-Zeid and C.-G. Quimper European Journal of Operational Research 305 (2023) 53–63 

t

i  

i

s

a

E

P
t

c

p

r

f  

m

C

M

w

g  

e

i

a

5

a

t

p

d

f

a

e

a

t

s

s

m

M

f

b

t

t

a

l

w  

M

r

5

r

s

i

i

v

(

(

Table 2 

Solving wall clock time in seconds for each time horizon T . 

T Allowed time (seconds) T Allowed time (seconds) 

4 60 49 720 

9 120 64 960 

16 240 81 1200 

25 360 100 1500 

36 540 121 1800 
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he average of RCOS eval (P 
i, j 
v , P 

i ) over the runs j and the instances 

 . The ACO variant with the highest value of the metric RCOS eval (v )
s selected as the best ACO variant. 

For the comparison between the best ACO variant, the MILP 

olved by IBM ILOG CPLEX 12.9 (hereinafter referred to as CPLEX) 

nd Greedy during the M-Eval phase, the performance metric of 

q. (26) is used. However, in that equation, the set of search plans 

 

i includes the COS of the benchmark methods, i.e., Greedy and 

he best performing configuration of CPLEX (we describe the tested 

onfigurations in Section 5.3 ). Still, the metric used for comparison 

urposes is RCOS eval (i, v ) , the average of RCOS eval (P 
i, j 
v , P 

i ) over the 

uns j. 

For the A-Eval phase where we further compare the best ACOs 

rom the M-Eval phase with Greedy, we used the RCOS eval (P 
i, j 
v , P 

i )

etric from Eq. (26) , and we computed the mean signed relative 

OS difference between variant v and Greedy as follows: 

SDG (v ) = 

1 

|I| 
∑ 

i ∈I 

(
RCOS eval (P i, j 

v , P 

i ) − RCOS eval (P i, j 

Greedy 
, P 

i ) 
)
, 

(27) 

here P 

i contains the COS of our five best ACO variants and of our 

reedy heuristic for instance i , j = 1 since there is a single run of

ach algorithm (ACO variants and Greedy) per instance, and set I
s a set of instances, e.g., 30 instances with a given time horizon T 

nd number of scans Q (as described in Section 5.4 ). 

.3. MILP solver configuration 

One of our objectives was to compare the best ACO variant with 

n MILP formulation (described at the end of Section 3 ). We solved 

he MILP model using ILOG CPLEX 12.9. It is well known that the 

erformance of CPLEX depends on its configuration and that the 

efault configuration performs well on a variety of problems. In 

act, when conducting a search for a solution, a MILP solver, such 

s CPLEX, builds a search tree. Each node of the search tree is 

ither a partial solution or a subproblem (depending on the ex- 

ct algorithm used by the solver). Complete solutions are found at 

he leaves of the tree. The node selection strategy that guides the 

olver in the selection of the next node to explore, i.e., the next 

ubtree, can therefore influence the search process. Another ele- 

ent that is important in configuring the CPLEX algorithm is the 

IP emphasis parameter which biases the solver towards finding 

easible solutions or proving the optimality of the current incum- 

ent solution. 

Our experiment was designed with six CPLEX configurations: 

he default configuration, emphasis on feasibility , emphasis on op- 

imality , default configuration with a scaling of the probabilities by 

 factor of 10 5 , best estimate node selection , and depth-first node se- 

ection . Since the performance of CPLEX is meant as a benchmark, 

e include in P 

i , for the computation of RCOS eval (i, v ) during the

-Eval phase, the highest COS value among the 6 CPLEX configu- 

ations for each of the 50 instances i . 

.4. Generated search environments characteristics 

In order to generate OSPV problem instances, the search envi- 

onment was represented by a grid of l cells by l cells. The acces- 

ibility map was defined by the distance that a searcher can travel 

n one time step, i.e., an accessibility radius a max , and the visibil- 

ty map was defined by the maximal effort allocation range, i.e., a 

isibility radius v max : 

 

r ∈ A (s ) ⇔ dist (s, r) ≤ a max ) , ∀ s, r ∈ R , (28) 

 

r ∈ V (s ) ⇔ dist (s, r) ≤ v max ) , ∀ s, r ∈ R , (29) 
59 
here dist (s, r) is the distance between s and r in distance units. 

or our instances, the detectability index ( W) from Eq. (8) is such 

hat 

 t (s, r) = 

{
v max −dist (s,r) 

area (r) 
if r ∈ V (s ) ;

0 if r / ∈ V (s ) , 
∀ t ∈ T , ∀ s, r ∈ R , (30) 

here area (r) is the area of region r (in square distance units). 

e assume that the detectability of the object in a region r de- 

reases as the distance between the current searcher’s region s and 

increases. This detectability becomes 0 when the maximum vis- 

bility range v max is reached. The initial searcher’s position y 0 is 

andomly generated from a uniform distribution over regions. The 

poc 0 (t) distribution is obtained from a uniform random distribu- 

ion over the interval [0,1] and then normalized to obtain a sum 

f 1. The probability that the object moves from a region s to an

ccessible region r is obtained from a uniform random distribution 

n the interval [0,1] whereas it is null to any non-accessible region 

 

′ . 
We generated instances of increasing complexity, namely grids 

f l by l cells with l ∈ { 2 , 3 , . . . , 11 } for a number of regions N ∈
 2 2 , 3 2 , . . . , 11 2 } , where the time horizon T = N. In comparison,

nstances found in the literature for similar problems related to 

earch path planning use a horizon of 20 steps ( Perez-Carabaza 

t al., 2018 ) or of up to 40 steps ( Sato & Royset, 2010 ). In addition,

hese do not take into account the visibility dimension like we do, 

hich increases the size of the search space of an algorithm by a 

actor representing the number of feasible allocations of Q units of 

ffort growing exponentially in T . 

For the configuration and the M-Eval phases, we generated, for 

ach grid size, an instance with Q ∈ { 1 , 2 , . . . , 5 } and we set T = N

50 different instances per phase). For the A-Eval phase, we gen- 

rated 30 instances per pair of horizon T and number of scans Q

1500 instances). The allowed solving time was set per instance as 

 function of the time horizon T ( Table 2 ). 

. Results and discussion 

We present and discuss the M-Eval phase results where each al- 

orithm variant was applied to 50 previously unseen instances (30 

uns per instance) using their best configuration parameters as de- 

ermined in the configuration phase described in the supplemen- 

ary material. We then compare the five best ASPV variants of the 

-Eval phase to Greedy on 1500 new problem instances for the 

-Eval phase and report the results of the best variant. The results 

f the remaining four variants are included in the supplementary 

aterial. 

.1. Comparison between ACO variants (M-Eval phase) 

Fig. 1 shows, for each ASPV variant, the distribution of the 

elative C OS, RC OS eval (P 
i, j 
v , P 

i ) , over 30 runs of each of the 50

nstances. Variants are ordered in decreasing order of average 

COS eval (P 
i, j 
v , P 

i ) , RCOS eval (v ) , across all instances which is dis-

layed as a blue diamond. For each variant, the box displays the 

rst quartile, the median, and the third quartile. Whiskers ex- 

ends from the first (resp. the third) quartile to the lowest value 



M. Morin, I. Abi-Zeid and C.-G. Quimper European Journal of Operational Research 305 (2023) 53–63 

Fig. 1. Distribution of the RCOS eval values (calculated on a per instance basis) for all 30 runs of each ASPV variant on all instances; blue diamonds represent the per variant 

average RCOS eval (v ) (M-Eval phase). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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ot smaller (resp. highest value not larger) than 1.5 times the in- 

erquartile range from the first quartile down (resp. third quartile 

p). Outliers are represented as black dots. 

We notice that, except for the variant in position 20, only vari- 

nts using the OSPV pheromone initialization procedure (iO) made 

t to the top 20 performers (considering the RCOS eval (v ) perfor- 

ance criterion). This supports the implementation of a problem- 

pecific pheromone initialization, iO, for the OSPV. 

The fact that the boosting procedure (bY) is used in 4 of the top 

 variants also supports this point since boosting, in our terminol- 

gy, involves a first round of pheromone updates using a solution 

rom a greedy procedure. Boosting, nonetheless, appears to have 

 lesser impact than problem specific pheromone initialization 

iO). 
60 
Both Luby (rL) and geometric (rB) restarts, are used in 16 out of 

he top 20 variants, which illustrates their benefit as a diversifica- 

ion mechanism in our context. 

As for the worst performers, the “all ants” (uAA) pheromone 

pdate procedure is over-represented in the last quartile (the 24 

orst performers). In fact, 18 out of 24 of the worst performers 

se “all ants” (uAA) pheromone updates. The other worst perform- 

rs use the “on updates of the global-best” (uOGBU) pheromone 

pdate. We notice that uAA is the least restrictive update proce- 

ure (all other things being equal, updates are performed the most 

requently), whereas uOGBU pheromone update is the most re- 

trictive (all other things being equal, updates are performed less 

requently). Some uOGBU variants, however, did perform well and 

ade it to the top 20. Those “good” uOGBU variants are two vari- 
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Table 3 

Average relative C OS , RC OS eval (i, iO – uIB – rG – bY ) of the top ASPV variant, RCOS eval (P i,b 
CPLEX 

, P i ) of CPLEX 

for its best configuration b, and RCOS eval (P i, 1 
Greedy 

, P i ) for the single run of Greedy; for the ASPV algorithm, 

the 95% confidence interval over 30 runs around the mean is reported; italic font indicates that the method 

is dominant, but not strictly dominant; bold font indicates that the method is strictly dominant; the com- 

plete table is included in the supplementary material (M-Eval phase). 

Number of scans ( Q) 

Method T 1 2 3 4 5 

9 [ 1 , 1 ] [0.99,0.99] [ 1 , 1 ] [ 0 . 97 , 0 . 97 ] [ 1 , 1 ] 

25 [0 . 96 , 0 . 98] [ 0 . 95 , 0 . 97 ] [ 0 . 94 , 0 . 96 ] [ 0 . 9 , 0 . 92 ] [ 0 . 94 , 0 . 96] 

iO - uIB - rG - bY 49 [ 0 . 97 , 0 . 97 ] [ 0 . 96 , 0 . 97 ] [ 0 . 96 , 0 . 97 ] [ 0 . 97 , 0 . 98 ] [ 0 . 95 , 0 . 96 ] 

81 [ 0 . 88 , 0 . 90 ] [ 0 . 92 , 0 . 94 ] [ 0 . 95 , 0 . 96 ] [ 0 . 97 , 0 . 98 ] [ 0 . 97 , 0 . 98 ] 

121 [ 0 . 82 , 0 . 86 ] [ 0 . 87, 0 . 90 ] [ 0 . 95 , 0 . 96 ] [ 0 . 92 , 0 . 93 ] [ 0 . 94 , 0 . 95 ] 

9 0 . 98 0 . 95 0 . 96 0 . 89 0 . 94 

25 0 . 47 0 . 89 0 . 92 0 . 89 0 . 96 

Greedy 49 0 . 66 0 . 68 0 . 92 0 . 93 0 . 80 

81 0 . 64 0 . 35 0 . 58 0 . 81 0 . 93 

121 0 . 49 0 . 87 0 . 35 0 . 80 0 . 82 

9 1 1 1 0 . 87 0 . 88 

Best of CPLEX 25 1 0 . 35 0 . 41 0 . 30 –

≥ 36 – – – – –
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nts with OSPV-based pheromone initialization (iO) and boosting 

bY). The 16th best variant employed Luby restarts (rL). However, 

he restart procedure in the context of an uOGBU does not give 

any opportunities for pheromone updates; the global-best solu- 

ion, used to decide when updates are performed, does not change 

etween restarts. The 16th and 17th best variants both used iO 

nd bY, two problems specific pheromone initialization (including 

oosting). As a result, it appears best, in the ASPV, to avoid the 

wo extreme update procedures (uAA and uOGBU) unless a mech- 

nism for better convergence is implemented. In fact, the various 

iddle-of-the-road approaches to trails updating, namely iteration- 

est (uIB), restart-best (uRB), global-best, and “on updates of the 

estart-best” (uORBU), all performed well in general. 

Finally, regarding the spread and distribution of the global per- 

ormance of variants based the RCOS eval (v ) metric, we notice that 

he worst variant, iU – uAA – rN – bN, has an average performance 

f 0 . 32 whereas the best performer, iO – uIB – rG – bY, has an

verage performance of 0 . 914 . A total of 13 variants have an av-

rage performance across all instances lower or equal to 0 . 5 , 21

ariants have an average performance in the interval (0 . 5 , 0 . 8) , 32

n (0 . 8 , 0 . 85] , 28 in (0 . 85 , 0 . 9] , and only 2 have an average perfor-

ance above 0 . 9 . 

.2. Benchmarking ACO variants against a MILP and a greedy 

pproach (M-Eval phase) 

In light of the results presented in Section 6.1 , we retained the 

O – uIB – rG – bY variant for comparison with the MILP and 

reedy results in the M-Eval phase. 

Table 3 shows the performance of the three considered ap- 

roaches, grouped by instance, for a subset of instances (complete 

esults are included in the supplementary material). Each cell rep- 

esents the result of 30 runs for ASPV per instance, the best run 

or CPLEX, or a single Greedy run. The results reported for the iO 

uIB – rG – bY ASPV variant are the 95 % confidence intervals 

round the mean RCOS eval (i, v ) over 30 runs. For CPLEX, we report 

he best performing configuration for each instance. We performed 

 single run of Greedy since it is a deterministic algorithm with- 

ut configuration parameters. Italic font indicates that the method, 

r algorithm, is dominant, but not strictly dominant: there exists 

nother approach with an equivalent performance or we cannot 

onclude the difference is significant. Bold font indicates that the 
61 
ethod is strictly dominant, we can conclude that it outperforms 

he other approaches. 

We can see that, in most cases and especially on larger in- 

tances, the top ASPV variant outperforms both Greedy and the 

est CPLEX configuration in the allowed time. When T and Q are 

mall, CPLEX has a good performance. It outperforms the meta- 

euristic in four cases. Of course, the benefits of using a meta- 

euristic such ACO is often on the largest instances, since those are 

he realistic ones. In our case, CPLEX cannot find a good initial so- 

ution in the allowed time for instances where T ≥ 36 (represented 

y a dash). 

.3. Further evaluation of the five best ASPV variants (A-Eval phase) 

Fig. 2 shows the performance of the best ASPV variant from the 

-Eval phase, iO – uIB – rG – bY, against that of Greedy on new 

nstances. The mean signed difference between the variant and 

reedy, MSDG , is displayed for each instance group. We see that 

SPV outperforms Greedy in the vast majority of the runs and that 

he MSDG is higher than 0 . 5 in favor of the iO – uIB – rG – bY vari-

nt on 41 groups out of 50. Each point on the graph corresponds 

o a single instance among the 1500 instances in the benchmark. 

here are a few specific instances where the variant did not im- 

rove the solution over Greedy in the allowed time (red squares). 

n practice, these can be considered as ties since the solution of 

reedy is readily available and can be used as the retained solu- 

ion. As such, there would be no real negative impact to using the 

SPV algorithm to search for a better solution in practice. More- 

ver, for the vast majority of instances ASPV finds a solution that 

s as good (black circles) or better (blue triangles) than Greedy in 

he allocated time. Similar conclusions can be drawn for the other 

op four variants (see the supplementary material). 

.4. Summary of results 

Our results show that ASPV perform best on the M-Eval and 

-Eval instances, supporting its generalization potential to other 

SPV instances, following a rigorous configuration phase involv- 

ng multiple variants. In addition, we conclude that restarts, when 

sed in conjunction with a suitable pheromone update scheme 

uch as uIB (iteration-best), uRB (restart-best), or uORBU (on 

pdates of the restart-best solution) are quite efficient for the 

SPV. Problem-specific pheromone initialization and boosting also 

roved useful in our context since most top ASPV variants use 
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Fig. 2. Performance of the best ASPV variant from the M-Eval phase, RCOS eval (P i, 1 
iO – uIB – rG – bY 

, P i ) , against performance of Greedy, RCOS eval (P i, 1 
Greedy 

, P i ) , for the 1500 

new problem instances of the A-Eval phase grouped by number of scans Q (on columns) and horizon T (on rows); the MSDG (average of the y -axis value minus x -axis value), 

rounded to the 2nd decimal, is presented for each group; blue triangles are cases where the ASPV variant solution is best, red squares are cases where the greedy solution 

is best, and black circles are ties (A-Eval phase). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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hese mechanisms. Furthermore, the best ASPV variant provides 

learly superior results to the greedy heuristic, which in turn tends 

o outperform CPLEX on the larger instances. 

. Conclusion 

In this paper, we presented the ant search path with visibility 

ASPV) algorithm, an ant colony optimization (ACO) algorithm de- 

eloped specifically for the optimal search path problem with vis- 

bility (OSPV), a path planning problem with visibility from search 

heory. Since the OSPV problem’s complexity grows exponentially 

ith the total search time available ( T ) and combinatorially with 

he number of scans ( Q), our tailored ACO metaheuristic proved 

seful for obtaining high quality search plans. 

In addition to providing a metaheuristic implementation for an 

ctive research area in search theory, namely, the optimal search 

ath problem and its variants, we added to the body of empiri- 

al evidence in the ACO literature. In fact, we benchmarked a to- 

al of 96 algorithm variants, where a variant is a combination of 

heromone initialization scheme, pheromone update scheme, di- 

ersification mechanism in the form of restarts, and intensifica- 

ion mechanism in the form of a pheromone boosting procedure. 

ur best variant involved problem-specific pheromone initializa- 

ion, iteration-best pheromone updates, a geometric restart proce- 

ure and pheromone boosting. This variant as well as most vari- 

nts, outperformed a state-of-the-art general-purpose MILP solver 

s well as a problem-specific greedy heuristic on our largest and 

ore realistic benchmark instances. This supports the practical 

sefulness of ACO for path planning problems based on search the- 

ry, and adds practical results for detection search problems. 

Moreover, our findings are in line with recent results and ob- 

ervations from the ACO literature. First, our best variants, in the 

SPV context, use restarts based on a predefined schedule using 

n increasing sequence of allowed cycles without improvement. It 

as also observed in the literature on ACO that restarts improve 

iversification and convergence for other problems ( López-Ibáñez 

t al., 2016 ). Second, we observed, in the context of the OSPV, a 

ack of convergence from the less restrictive pheromone updates 

rocedures, e.g., the “all ants” (uAA) updates, and a better con- 

ergence for the variants where the “best” solution contributes 
62
trongly to the pheromone trails. This is consistent with the ob- 

ervation that more “elitist” ACO implementations tend to have 

etter convergence than more “permissive” ones ( Dorigo & Stützle, 

019 ). Third, in our experiments, the best variants share the fol- 

owing characteristics: a problem-specific pheromone initialization 

iO) with boosting (bY), a restart-best update or an iteration-best 

pdate procedure (either uRB or uIB) along with restarts (either 

 Luby or geometric restart schedule, rL or rG). This enables the 

ariants to better balance exploitation (intensification) and explo- 

ation (diversification) which is a core characteristic of successful 

CO ( Dorigo & Stützle, 2019 ). 

Finally, the OSPV problem formulation and the best ASPV al- 

orithm variants open the door to search pattern optimization. As 

uch, they are milestones in the development of operational deci- 

ion support systems for search and rescue planning (where search 

atterns are currently fixed), further improving search operations 

lanning and increasing the potential to save lives. 
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