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Abstract
The Internet of Things (IoT) paradigm, by transforming physical devices into innovative items, affects every aspect of our

daily lives. It has brought a slew of evolutionary and revolutionary services that were almost impossible to imagine until

recently. The numerous services and applications offered by IoT cover numerous fields, such as personal healthcare, urban

life, energy management, and manufacturing. A tremendous amount of data is produced to reach valuable information and

meet users’ needs. In addition, since the number of services and applications is increasing rapidly, an efficient method to

fulfill the growing demands in different application domains becomes challenging. To handle the mentioned problems, task

scheduling mechanisms have a significant influence. Despite the importance of these methods in the IoT, an in-depth and

systematic review of the current works in this area is clearly lacking. Therefore, we aim to overcome this gap by adopting

an organized manner. In fact, this paper aims to specify the challenging problems in IoT task scheduling, highlight the

effective works, and outline some hints for upcoming studies.
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1 Introduction

During the recent decade, scholars have gained much

interest in the Internet of Things (IoT) because of its

widespread applications in several real-life fields, particu-

larly for critical environments such as smart homes [1],

smart cities [2], and E-health [3]. The IoT brings out an

environment in which the virtual and physical devices are

equipped with processing, networking, detection,

identification, and authentication functions to communicate

with each other via the Internet to reach a common and

meaningful purpose [4, 5]. The IoT permits home appli-

ances to be more intelligent, everyday communication to

be more meaningful, and routine processes to be more

automated [6]. To extract useful information to enable

intelligent and ubiquitous IoT services, different methods,

such as data aggregation [7], service composition [8], load

balancing [9], data fusion [10], service discovery [11], and

data mining [12] are used. The IoT objects, employed in

various applications, sense and gather information about
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the physical world. In this regard, IoT applications are

impacted by several factors, including users’ requirements,

energy limitations of devices, the heterogeneous nature of

applications, the enormous need for communications, and

limited computation power [13]. To tackle the mentioned

problems, various types of algorithms have been intro-

duced, such as Medium Access Control (MAC) scheduling

[14], transmission power control [15], and task scheduling

[16].

IoT applications produce numerous tasks of variable

lengths that are often executed based on priority. Never-

theless, network endpoints possess heterogeneous charac-

teristics and limited resources. These tasks compete for the

limited resources available to heterogeneous devices in

heterogeneous environments. Therefore, appropriate nodes

should be assigned sufficient resources to execute these

tasks in accordance with their resource requirements [17].

The optimal order of tasks on heterogeneous nodes with

available resources can further enhance the performance of

the task execution process and maximize resource utiliza-

tion in terms of processor speed, bandwidth, memory, and

minimize energy consumption, cost, and delay [18]. Dif-

ferent applications (delay-tolerant or latency-sensitive)

submit heterogeneous tasks to IoT devices that are

dynamic, vary in length, and are often prioritized. These

tasks are queued to be executed on nodes with limited

resources. In this regard, the need for an efficient, rapid,

and convenient method of arranging these tasks in a

manner that maximizes resource utilization and minimizes

delay, cost, and energy consumption is of great importance

[19].

As a matter of fact, task scheduling algorithms aim to

schedule a broader range of tasks, such as transmission,

processing, and sampling, on the IoT nodes considering the

resources aiming to reach various purposes, including

maximizing the operational lifetime of sensor nodes,

reducing the communication costs among IoT objects, and

improving resource utilization [20]. These approaches

effectively distribute the existing tasks among computing

resources to minimize inter-partition communication and

computational latency [21]. Figure 1 illustrates the overall

task scheduling process in the IoT environment. A cen-

tralized node receives requests from IoT end-users’ appli-

cations in which a request evaluator assigns priorities to

different tasks. Different parameters are considered when

scheduling tasks, such as resource demand, communication

demand, and computation size. The task scheduler sched-

ules the tasks in a suitable sequence in which the tasks can

be fulfilled under problem-specific constraints [22]. Fig-

ure 2 illustrates an overview of the task scheduling

switcher that allows choosing the best scheduling method

within the computation deadline for each task.

The IoT environment presents different scheduling

challenges because of its heterogeneous nature, high scal-

ability, and attributes associated with real-time computing,

continuous processing, and shared sensing [23]. Traditional

scheduling policies such as round-robin and First Come

First Serve (FCFS) are inefficient enough to overcome this

issue. In fact, these methods ignore the constraints men-

tioned above. Adopting a greedy scheme allows the effi-

cient utilization of all available resources to obtain an

assignment with minimal time constraints. Despite the

most efficient results of this scheme, it remains impossible

to perform all tasks on all devices simultaneously. The

problem of discovering optimal solutions to these algo-

rithms is NP-Hard since they suffer from high computa-

tional complexity [21]. Over the last decade, various efforts

have been made and different task scheduling mechanisms

have been introduced, including utilizing fog and cloud

computing [24], meta-heuristic approaches [25], machine

learning algorithms [26], etc.

Over the last decade, several review papers have been

published to examine scheduling issues. Amalarethinam

and Josphin [27] reviewed the existing task scheduling

approaches in heterogeneous systems based on various

factors. In addition, an in-depth evaluation of task

scheduling methods in big data environments, such as

Mesos, Storm, Spark, and Hadoop, is proposed by Soual-

hia, Khomh [28]. Energy-aware task scheduling mecha-

nisms in cloud environments are reviewed by Hazra, Roy

[29]. Ramezani, Naderpour [30] investigated meta-heuris-

tic-based methods for cloud computing task scheduling.

Furthermore, Amini Motlagh, Movaghar [31] systemati-

cally reviewed task scheduling methods in cloud comput-

ing. A detailed assessment of task scheduling techniques in

fog computing is offered by Alizadeh, Khajehvand [32]. In

addition, multi-objective scheduling methods designed for

various cloud environments are reviewed by Hosseinzadeh,

Ghafour [33]. Also, Yang and Rahmani [34] examined the

task scheduling methods in fog computing in two main

groups, heuristic and meta-heuristic. Matrouk and Alatoun

[35] classified the present scheduling methods in fog

computing into five classes, including workflow schedul-

ing, job scheduling, resource allocation, resource schedul-

ing, and task scheduling. Finally, Kaur, Kumar [36]

categorized the task scheduling methods in fog computing

into four categories: heuristic, meta-heuristic, determinis-

tic, and hybrid.

Table 1 depicts a prominent picture of previous surveys,

outlining the significant focuses and contributions of

studies. The reviewed papers describe the task scheduling

problem from different perspectives and provide a solid

foundation for understanding various aspects of the prob-

lem. However, these studies have focused on fog, cloud,

and big data environments; thus, IoT-based task scheduling
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approaches have been ignored. Therefore, we aim to cover

this gap by adopting a systematic manner, aiming at

reviewing the papers relevant to task scheduling in the IoT.

A comprehensive assessment of existing task scheduling

techniques in the IoT is presented in this paper. While

conducting this systematic study, the primary methods are

discovered, previous challenges are highlighted, state-of-

the-art approaches are reviewed, and forthcoming research

gaps are outlined. Concisely, this paper contributes to the

following:

• Highlighting the current challenges in task scheduling

in the IoT.

• Reviewing the proposed task scheduling methods in

three groups, heuristic-based, non-heuristic-based, and

machine learning-based, and determining the main

strengths and weaknesses of methods.

• Discussing optimization models and describing their

formulas.

• Demonstrating the impact of meta-heuristic algorithms

in solving the task scheduling problem in the IoT and

reviewing recent solutions.

• Determining the impact of IoT task scheduling on

sustainable smart cities.

• Discussing open issues and outlining some potential

directions for future research.

The paper is arranged into six sections. The next section

discusses the research methodology. Section 3 reviews the

current work in task scheduling in the IoT classifying them

into four categories. Section 4 reports the obtained results

regarding scheduling constraints, task-resource mapping,

simulation tools and case studies, scheduling metrics, and

the nature of tasks. In Sect. 5, open issues and directions

for research are discussed. Finally, the conclusion is pro-

vided in Sect. 6.

2 Research methodology

In this section, we discuss the research methodology

adopted to analyze existing task scheduling mechanisms in

IoT. Our standards are based on the guidelines outlined by

Kitchenham, Brereton [38], which many researchers have

recently used to provide an accurate evaluation of the

proposed methods related to various problems [39–41]. As

shown in Fig. 3, the review procedure contains four major

stages. The first stage involves defining the research

objectives and questions. The relevant papers are searched

and selected in the second stage, considering some criteria.

We review the selected methods in the third stage based on

some qualitative metrics. Finally, the last stage aims to

report the obtained results, discuss unresolved issues, and

suggest potential future research directions. To construct a

Systematic Literature Review (SLR), fundamental research

questions are required to drive the research methodology.

Observing previous studies [9, 11], it is expected that the

following research questions will be addressed during the

methodological review.

Question 1: What are the significant challenging

problems of task scheduling methods? This question

specifies the issues addressed in previous methods and

outlines the problems that have not been addressed.

Question 2: What are the evaluation parameters for

analyzing and investigating task scheduling methods?

This question is intended to identify the important

qualitative metrics that can be used by researchers to

measure their innovation performance.

Question 3: What is the significance of meta-heuristic

algorithms in efficiently accomplishing task scheduling?

Fig. 1 Overview of task

scheduling process in IoT

Fig. 2 Overview of the task scheduling switcher
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This study focuses on highlighting each meta-heuristic

algorithm’s importance in addressing the IoT task

scheduling problem.

Question 4: What are the case studies adopted in task

scheduling methods? Case studies are considered in this

study to determine the feasibility of the task scheduling

method in real-world situations.

Question 5: What are the most common simulation

environments? This question aims to characterize the

Table 1 Related surveys and their main contributions

Authors Publication

year

Main contributions

Amalarethinam and

Josphin [27]

2015 Reviewing recent task scheduling techniques in heterogeneous systems considering various factors,

such as efficiency, speedup, resource utilization, and makespan

Soualhia, Khomh [28] 2017 Reviewing and categorizing the proposed scheduling models for big data environments, such as Mesos,

Storm, Spark, and Hadoop

Hazra, Roy [29] 2018 Discussing energy-efficient task scheduling methods in cloud computing in four main groups, including

an energy-aware genetic algorithm, an energy-aware technique based on vacation queue, an online

task scheduling technique based on DVFS, and scheduling high-performance computing tasks in

decentralized cloud platforms

Ramezani, Naderpour

[30]

2020 Highlighting the importance of evolutionary computation techniques in task scheduling in cloud

environments

Amini Motlagh,

Movaghar [31]

2020 Classifying task scheduling methods in cloud computing into three classes: a single cloud environment,

multi-cloud environment, and mobile environment

Alizadeh, Khajehvand

[32]

2020 Presenting a systematic study of task scheduling techniques in fog computing and reviewing existing

works in four groups: heuristic, dynamic, static, and hybrid

Hosseinzadeh, Ghafour

[33]

2020 Providing a comprehensive review of multi-objective workflow and task scheduling methods in cloud

computing

Yang and Rahmani [34] 2020 Studying task scheduling methods in fog computing and classifying them into heuristic and meta-

heuristic groups based on critical qualitative factors, including latency, performance, throughput,

makespan, cost, efficiency, response time, and resource utilization

Matrouk and Alatoun

[35]

2021 Reviewing task scheduling methods in fog computing in five classes, workflow scheduling, resource

allocation, job scheduling, resource scheduling, and task scheduling

Kaur, Kumar [37] 2021 Categorizing the recent task scheduling methods in fog computing into four main classes, including

heuristic, meta-heuristic, deterministic, and hybrid

Our study 2022 Discussing and reviewing the state-of-the-art task scheduling methods in the IoT, providing a

comprehensive assessment, highlighting challenges, and outlining research gaps

Fig. 3 The adopted research

methodology
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adopted simulation environments in the task scheduling

methods.

We conducted an extensive and detailed search to

review research papers of high repute. As shown in

Table 2, four of the largest and most comprehensive

databases in systems engineering, software engineering,

computer engineering, and computer science were selected

and searched. These electronic databases and indexing

systems were chosen due to their high accessibility and

their ability to export search results in standardized and

computation-friendly formats. A further strength of these

databases is that they are recognized as effective tools for

conducting systematic literature reviews [42]. A search

string was defined based on the keywords derived from the

research questions. All databases were searched using the

same search string according to necessary fields in digital

libraries, including title, abstract, and keywords. Our

search string is as follows:

(‘‘Internet of Things’’) AND (‘‘Task scheduling’’).

An automatic search process for published papers

between 2010 and 2022 based on the paper’s title was done

in November 2022, and 187 studies were found in journals,

conferences, and books. Afterward, review papers, working

reports, notes, and non-English studies were excluded from

the review process to choose the highest-quality papers. In

the final step, to select the proper studies for the review that

are directly focused on the task scheduling problem, the

authors carefully reviewed the full text of the remaining

studies. Finally, 38 papers were selected. The search results

included 11 papers in Web of Science, 7 in Scopus, 1 in

ACM Digital Library, and 19 in IEEE Xplore Digital

Library.

3 Review of IoT task scheduling mechanisms

This section presents an obvious trend of state-of-the-art

works associated with task scheduling in the IoT by

reviewing 38 studies in this field. The techniques selected

in the previous section are classified into five key groups:

traditional, heuristic-based, meta-heuristic-based, Rein-

forcement Learning (RL)-based, and Deep RL (DRL)-

based. The innovation, strengths, and weaknesses of each

method are outlined. Tables 3, 4, 5, 6, 7 show a brief

investigation of methods involved in each group, in which

the main idea, the research objective, the nature of tasks,

the adopted simulation environment, the applied case

study, and the weakness of each method are specified.

Figure 4 illustrates a taxonomy of task scheduling

algorithms. The first type of algorithms are traditional

algorithms reviewed in subSect. 3.1. The second type of

algorithms are heuristic algorithms, which are used for

solving optimization problems. An overview of existing

heuristic algorithms is presented in subSect. 3.2. SubSec-

tion 3.3 discusses meta-heuristic algorithms for solving

IoT task scheduling. Researchers have successfully applied

RL algorithms to solve the task scheduling problem in

dynamic and uncertain IoT environments. Algorithms

based on RL are discussed in subSect. 3.4. Some

researchers apply DRL-based algorithms in order to

develop adaptive task scheduling algorithms suited to

highly dynamic and unpredictable IoT environments. The

DRL algorithm can also be classified as a value-iteration or

policy-iteration-based algorithm, as discussed in

subSect. 3.5.

As illustrated in Fig. 5, IoT scheduling targets can be

categorized from two perspectives, end-user and provider.

Service providers supply users with on-demand and leased

resources. In contrast, these resources allow end-users to

submit tasks for processing. Each party has its own moti-

vation for participating in the IoT system. Providers are

concerned about maximizing the efficiency of their

resources, whereas end-users place a high priority on

application performance. Service providers should pay

more attention to parameters such as resource utilization,

energy consumption, and load balancing. At the same time,

users prefer to make their applications faster, so waiting

time and makespan are more relevant for them.

• Resource utilization: It is calculated by dividing the

number of computing units assigned to tasks by the

total number of computing units requested. It can be

calculated by Eq. 1, in which Ravl refers to available

resources and Rnu denotes unused resources [43].

RU ¼ Ravl � Rnu ð1Þ

• Communication cost: Communication costs refer to the

expenses incurred in processing the requests of users. It

can be calculated by multiplying the data set size by the

network traffic price [44].

Table 2 Indexing systems and

electronic databases
Name Type URL

Web of Science Indexing system www.webofknowledge.com

SCOPUS Indexing system www.scopus.com

ACM Digital Library Electronic database www.dl.acm.org

IEEE Xplore Digital Library Electronic database www.ieeexplore.ieee.org
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• Reliability: The term ‘‘reliability’’ refers to the guaran-

tee of uninterrupted service for all users. This is an

important indicator of performance, especially in

applications such as Vehicle-to-Vehicle (V2V) com-

munication and industrial automation, where an unre-

liable connection can lead to serious consequences [45].

• Makespan: The makespan refers to the total processing

time of all tasks. In fact, it denotes the time span

between the instant when the first task is scheduled and

the instant when the last task completes execution [46].

It can be calculated by Eq. 2.

M ¼ maxfCT tið Þ; tiTg ð2Þ

• Load balancing: Through load balancing, tasks are

distributed uniformly among resources, ensuring both

parallelization and utilization [47]. It can be calculated

by Eq. 3 and Eq. 4. In these equations, n stands for the

total number of resources, Uav refers to the average

utilization of the resources, U(Ri) indicates the

utilization of each resource, and L(Ri) denotes the load

on the ith resource.

U Rið Þ ¼ LðRiÞ
Makespan

ð3Þ

Uav ¼
P

iUðRiÞ
n

ð4Þ

• Average waiting time: The average waiting time is the

average amount of time a task spends waiting in the

queue of each allocated resource as calculated by Eq. 5,

in which n refers to the number of tasks and Tw

represents the task waiting time function [48].

Aw ¼
P

Tw

n
ð5Þ

• Response time: Response time is defined as the time

required to complete a service request [49]. In fact, it is

the sum of the service time and waiting time calculated

by Eq. 6.

Table 3 Overview of the discussed traditional task scheduling methods

References Main idea Research objective Nature of

tasks

Simulation

environment

Case study Weakness

[52] Proposing an efficient

partial computation

offloading and

adaptive algorithm

Improving the

average delay cost

and offloading ratio

Independent Anaconda 4.3 5G-enabled

vehicular

networks

Without evaluating resource

utilization

[54] Integrating unmanned

aerial vehicles and

mobile edge

computing

Improving the system

throughput while

guaranteeing the

fraction of served

users

Independent Real

environment

5G-enabled

unmanned

aerial vehicles

to community

offloading

As the search space increases,

trajectory design for the

cooperation of multiple

UAVs becomes more

complex than for a single

UAV

[55] Developing a multi-

objective distributed

scheduling model

based on multi-

cloud and task

schedulers

Minimizing energy

consumption,

improving resource

utilization, and

increasing cloud

throughput

Workflow

scheduling

N/A Smart cities It does not evaluate the

communication cost

[56] Developing an edge-

enabled IoT system

that incorporates

cross-edge job

processing

Improving the overall

revenue and job

completion ratio

Independent Matlab Wireless-

powered

mobile edge

computing

applications

Interconnections between

tasks have been ignored

[57] Providing a mixed-

integer linear

programming

formulation

Maximizing system

quality of security

and minimizing

system active

energy

consumption

Dependent N/A Heterogeneous

multiprocessor

system on a

chip

Emerging dynamic tasks have

been ignored

[58] Sustainable energy

harvesting for the

IoT through

adaptive task

scheduling

Extending the battery

life of IoT devices

and lowering

maintenance costs

Independent Real-world

prototype

Smart cities Unable to schedule time-

sensitive tasks
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Rt ¼ Wt þ St ð6Þ

• Throughput: Throughput measures how much data is

processed during a given period. This factor determines

the reliability and performance of a system. It is

calculated by the following formula, where d refers to

data size, Nd stands for the number of delivered task

data, and ts denotes the aggregate task simulation time

[50].

Tp ¼
dþ Nd

ts
ð7Þ

• Energy consumption: It indicates the total power

consumed by IoT resources when executing workflows,

calculated by Eq. 8. Tk stands for the user’s tasks

allocated to a processing component (Pk) [51].

Ej ¼
XN

k¼1

ðTk � PkÞ ð8Þ

3.1 Traditional mechanisms

This subsection first discusses traditional scheduling algo-

rithms and their strengths and weaknesses. Then, well-

known traditional algorithms for scheduling IoT tasks are

reviewed and compared. Static algorithms are based on the

assumption that all information about a task and IoT

resource is known in advance. These algorithms can be

easily understood and implemented due to their simplicity.

The most common traditional algorithms used to address

the task scheduling problem include round-robin, FCFS,

min-min, max–min, and Minimum Completion Time

(MCT). FCFS and round-robin algorithms deal with a

single machine while min–max and min-min algorithms

handle multiple machines.

In FCFS, the order of tasks is determined by their arrival

time. Tasks are placed at the tail of the task queue and then

they are processed according to their entry order by the

scheduler. A task with the earliest completion time is

selected and executed by the MCT algorithm. The max–

min algorithm executes large tasks on available machines

first, so small tasks may suffer from starvation. The min-

min algorithm selects and executes the smallest tasks on

available machines. Consequently, large tasks are delayed

for an extended period of time. After determining the

shortest completion time for the task, the algorithm allo-

cates resources to it. In round-robin, each task is assigned a

small interval of time within a processor, called a time slot

or time quantum. Prior to the expiration of the quantum, if

a task has completed its CPU burst, it is preempted and the

processor is assigned to the subsequent task in the queue.

Tasks that fail to complete their burst are moved to the tail

Table 4 Overview of the discussed heuristic-based task scheduling methods

References Main idea Research

objective

Nature of

tasks

Simulation

environment

Case study Weakness

[51] A dynamic

programming

algorithm for high-

level task

scheduling

Minimizing

overhead

Independent Real

environment

Smart cities It has not been tested on other IoT

platforms outside of the three

mentioned. Also, it has not been

proven to be secure against potential

attacks

[59] Deadline and costa-

ware scientific

workflow

Improving

success rate

and

makespan

Workflow

scheduling

N/A Wireless-

powered

mobile edge

computing

applications

More research is needed to test the

algorithm on more complex

workflows and to compare its

performance against other algorithms

[60] Online task

scheduling and

resource allocation

for intelligent

NOMA-based IoT

Cost reduction Independent Matlab Fog enabled

applications

It may not be feasible in practice due to

the high computational complexity

[61] Goal programming

approach

Minimizing

response

time and

cost

Independent Matlab Fog enabled

applications

It requires a lot of computing power to

run

[62] Task scheduling for

batteryless IoT

devices

Reducing

energy

consumption

Independent Real

environment

Smart cities It could add complexity to the system,

and it may not be possible to achieve

the same level of energy savings on

all types of hardware
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Table 5 Overview of the discussed meta-heuristic-based task scheduling methods

References Main idea Research objective Nature of

tasks

Simulation

environment

Case study Weakness

[63] Combining genetic algorithm

with several local search

methods

Minimizing

communication cost

and response time

Independent C RFID devices It has not been compared

to previous works

[64] Utilizing the genetic

algorithm to model the

multi-frame task

scheduling problem in the

heterogeneous embedded

systems

Improving the

success rate of tasks

allocation

Independent Matlab Heterogeneous

multiprocessor

It has ignored the

interconnection

between tasks

[65] The adaptive double-fitness

genetic task scheduling

method

Decreasing

communication cost

and execution time

Independent Not

mentioned

Fog enabled

applications

It suffers from high

complexity and has

neglected some vital

metrics, such as

resource utilization and

energy consumption

[66] Combining ACO and genetic

algorithms

Reducing makespan

and improving

resource utilization

Dependent C Heterogeneous

multiprocessor

It does not consider the

prioritization of tasks

[67] Introducing a deadline and

mobility-aware task

scheduling approach based

on the ACO algorithm

Improving total

profits and reducing

delay

Independent Not

mentioned

Latency

sensitive

applications

Without considering

dynamic changes of

resources

[68] Utilizing the max–min ant

system to overcome the

static task-graph

scheduling

Minimizing

makespan and

improving resource

utilization

Dependent VB Homogeneous

multiprocessor

Focusing on small-sized

task-graph input

samples and ignoring

the heterogeneous

multiprocessor and

many-core systems

[69] Utilizing the PSO algorithm

for task scheduling

Better search

capability with high

precision,

improving resource

utilization, and

minimizing delay

Independent Not

mentioned

Survivability

applications

It does not handle the
interconnection

between tasks

[70] Introducing an ACO-based

multi-task scheduling

method for mobile

crowdsensing service

markets

Improving the

workers’ benefits in

mobile

crowdsensing

service markets

Independent Not

mentioned

Mobile

crowdsensing

It does not support the

interconnection

between tasks

[59] Proposing a deadline and

cost-aware task scheduling

approach based on the

genetic algorithm

Performance

variation of VMs,

acquisition delay,

heterogeneous

dynamics, and on-

demand acquisition

Workflow

scheduling

Not

mentioned

Workflow

applications

It does not evaluate the

communication cost

among VMs

[71] Combining the ACO

algorithm and priority non-

preemptive method

Minimizing the

average waiting

time and turnaround

time

Independent Matlab General It does not address

resource utilization

[72] Utilizing the PSO algorithm

to overcome the problem of

resource management in

both heterogeneous and

homogeneous IoT-based

environments

Minimizing

makespan and

improving resource

utilization

Independent Matlab Logistics

management

applications

It has not addressed the

prioritization of tasks
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Table 5 (continued)

References Main idea Research objective Nature of

tasks

Simulation

environment

Case study Weakness

[73] Utilizing the PSO algorithm

and fuzzy theory

Improving resource

utilization

Independent iFogSim Smart cities It does not consider

energy consumption

and communication

cost

[74] Introducing a novel method

based on the marine

predators algorithm

Minimizing carbon

dioxide emission

rate, flow time,

makespan, and

energy consumption

Independent Java Fog enabled

applications

It has ignored the

interconnection

between tasks

[75] Developing a novel

mathematical formulation

Minimizing the

energy consumption

of fog nodes while

meeting the QoS

requirements of IoT

Independent C ? ? Fog enabled

applications

IoT devices offload

computation tasks to

smart gateways without

considering the

decision-making

process

[76] Combining the salp swarm

algorithm and modified

manta-ray foraging

optimizer

Improving the cloud

throughput and

reducing makespan

time

Independent Cloudsim General Unable to schedule time-

sensitive tasks

[77] Combining particle swarm

optimization and genetic

algorithms

Improving resource

utilization and

throughput, as well

as decreasing

request error rate

and response delay

Independent Matlab General It does not support the

interconnection

between tasks

[78] Quasi-oppositional Aquila

optimizer-based task

scheduling technique

Reducing makespan

and latency, as well

as improving

throughput and

resource utilization

Independent N/A General It has ignored the

interconnection

between tasks

Table 6 Overview of the discussed RL-based task scheduling methods

References Main idea Research objective Nature of

tasks

Simulation

environment

Case study Weakness

[81] Proposing a Q-learning

technique to overcome the

joint computation mode

selection and processing order

problem

Minimizing computational

and queuing delays of

devices and energy

consumption

Independent Not

mentioned

Wireless-

powered

mobile edge

computing

applications

Without

considering

the

prioritization

of tasks

[82] A novel task scheduling

technique based on Q-learning

with a global view

Improving the lifetime of the

IoT network, reducing

delay, and extending task

scheduling success rate

Independent Not

mentioned

General It does not

consider the

prioritization

of tasks

[21] A task scheduling policy based

on reinforcement learning

Minimizing communication

costs and improving

resource utilization

Dependent Not

mentioned

Fog enabled

applications

It has not

evaluated

energy

consumption

[83] Imitation learning-enabled

approach

Satisfying task latency

constraints and minimizing

system energy

consumption

Dependent Python 5G-enabled

vehicular

networks

Poor ability to

balance the

workload
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of the task queue. It is easy and simple to implement these

static algorithms. A survey of the well-known traditional

algorithms for scheduling IoT tasks is presented below.

Ning, Dong [52] have developed a partial computation

offloading framework for vehicular networks equipped

with Fifth Generation (5G). The framework enables vehi-

cles to either process tasks locally or offloads them to

Mobile Edge Computing (MEC) servers embedded within

RoadSide Units (RSUs) through Non-Orthogonal Multiple

Access (NOMA). NOMA represents one of the most sig-

nificant air interfaces in IoT networks for maximizing

spectrum utilization. It facilitates the connection of multi-

ple IoT devices with a single frequency block, thereby

enhancing IoT network connectivity [53]. In this paper, the

task scheduling process is performed in three main phases,

including channel resources allocation, offloading ratio

decision, and offloading payoff policy for vehicles. A

system-wide optimization problem that maximizes the

profit of both the network operator and the vehicles is

formulated by taking into account the mutual profits of the

vehicle and the network operator. The original optimiza-

tion problem is split into three subproblems due to the

Table 7 Overview of the discussed DRL-based task scheduling methods

References Main idea Research objective Nature of

tasks

Simulation

environment

Case study Weakness

[88] Introducing a deep reinforcement

learning-based task scheduling method

considering mobile edge computing and

mobile blockchain

Improving

generalization

and the rate of

arrived data

packages

Independent Not

mentioned

Mobile

blockchain

applications

The

interconnection

among tasks has

been neglected

[89] Task scheduling problem in space-air-

ground integrated network for delay-

oriented IoT services

Minimizing energy

consumption and

task processing

delay

Independent Python Space-air-

ground

integrated

networks

It ignores the

interconnection

between tasks

[90] Two-phase scheduling based on deep

learning

Reducing the

missed rate of

tasks

Independent Python Fog enabled

applications

Without

evaluating

energy

consumption

[91] Formulating the task scheduling process

as a partially observable stochastic

game

Reducing energy

consumption and

delay

Independent Python Serverless

edge

computing

networks

It does not

evaluate the

communication

cost

[92] Formulating the online task assignment

and scheduling problem as an energy-

constrained Deep Q-Learning process

as a kickoff

Reducing energy

consumption and

delay

Independent Python Fog enabled

applications

The

interconnection

among tasks has

been neglected

[93] Developing distributed deep

reinforcement learning

Achieving higher

task satisfaction

ratio

Independent Not

mentioned

NOMA-MEC Without

considering the

prioritization of

tasks

Fig. 4 Taxonomy of task

scheduling algorithms
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coupling of decision variables. First, a two-sided matching

algorithm is developed to allocate channel resources by

utilizing preference mapping and a list. Minimizing the

cost of transmission delay is the sole objective of the first

subproblem. A concave optimization problem is then for-

mulated as the second subproblem. Karush–Kuhn–Tucker

(KKT) conditions are applied to determine the offloading

ratio. The Nash Equilibrium (NE) between vehicle profits

and the profits of the network operator can be achieved

since incentives are compatible and vehicles are rational.

An adaptive non-cooperative game is therefore formulated

to obtain an offloading payout policy. The real-world

performance traces of taxis in Hangzhou (China) demon-

strate that the proposed solution is effective from both

system-wide and vehicle-level perspectives.

Diverse promising paradigms have brought remote ser-

vers closer to the edge of networks during the past two

decades, such as MEC and Mobile Cloud Computing

(MCC). MEC based on conventional base stations can

accelerate complex computations, communications, and

caching applications. However, these systems face three

significant challenges, including the scarcity of wireless

channel resources due to the increasing number of IoT

devices, the limited coverage range of a fixed base station,

and the latency sensitivity of application demands. Ning,

Dong [54] propose the integration of UAVs and MEC to

address these challenges by offering edge computing ser-

vices to users through computation offloading. The

deployment of 5G technology, along with several other

effective spectrum-sharing technologies, enables cellular

communications between UAVs and their users. The for-

mulated problem is a Mixed Integer Nonlinear Program

(MINLP) considering dependence within a community and

independence among communities. By separating the

variables of trajectory design and task scheduling deci-

sions, the MINLP problem is divided into two subprob-

lems. Relaxing the transmission rate constraint, a

community-based latency approximation algorithm based

on a piecewise function is proposed. The trajectory design

subproblem is solved by developing an average throughput

maximization-based auction algorithm. This paper also

presents a method for solving the task scheduling sub-

problem in a community where transmission rates are

constrained and tasks are atomic. The proposed algorithm

maximizes the system throughput while guaranteeing a

fraction of served users, and it can be used to achieve an

appropriate trade-off between mobility efficiency and sys-

tem throughput.

Cai, Geng [55] have developed a multi-objective dis-

tributed scheduling model based on multi-cloud and task

schedulers in IoT, considering six objectives, including

load balancing, resource utilization, energy consumption,

cost, and response time. To implement the model, the

authors developed a multi-objective intelligent algorithm

based on the sine function, in which the variation tendency

of diversity strategy in the population corresponds to the

sine function. The sine function penalty strategy calculates

the sine function value and multiplying it with the angle

value to change the diversity proportion. Individuals with

good performance are selected using the sind value as an

evaluation criterion. Pareto-dominated and sine-function

penalty selection strategies characterize this strategy. The

authors discuss six objectives of task scheduling in a multi-

cloud environment from both the user and provider per-

spectives. The total time and cost objectives include not

only the calculation of the completion time and user costs

of the task itself but also the transmission time and cost

between multiple clouds and the data center. Throughput is

a metric used to measure the efficiency of each cloud in

terms of executing tasks and achieving more per unit of

time. Energy consumption is influenced by the interests of

providers. Resource utilization is the percentage of tasks

that use the host resource, enabling tasks to be assigned to

the appropriate resource. Finally, load balancing enables

tasks to be distributed evenly among different virtual

machines.

Huang, Li [56] have focused on the dynamic resource

management and task scheduling problems in mobile edge

computing to earn the best revenue for edge service pro-

viders. In contrast to most task scheduling and resource

management algorithms formulated by an integer pro-

gramming problem and solved in an NP-hard manner, this

study investigates the problem structure in a novel way and

identifies a promising property in the form of totally uni-

modular constraints. This property further helps design

equivalent linear programming problems that can be solved

efficiently and elegantly at polynomial computational

Fig. 5 IoT task scheduling targets
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complexity. The cross-edge job processing framework is

formulated in an edge-enabled IoT system that adheres to a

layered structure of edge computing. The mobility of

devices, the overlapped signal coverage of edge base sta-

tions, the heterogeneous nature of tasks, and the compu-

tational resource capacity of edge servers have been

considered. The proposed approach has been verified using

simulations on a real-world dataset of base stations in the

Melbourne CBD area and end-users.

Zhou, Sun [57] have studied the problem of scheduling

tasks onto a heterogeneous multiprocessor system on a chip

(MPSoC) deployed in IoT for optimizing the quality of

security under task precedence, real-time, and energy

constraints. To maximize system security, they propose a

mixed-integer linear programming formulation to allocate

and schedule tasks on a heterogeneous MPSoC system

according to energy and real-time constraints. In order to

efficiently solve the formulated problem, a two-stage

analysis-based scheme is proposed, which determines the

allocation, operating frequency, and security service of

tasks to maximize system security qualities while satisfy-

ing design constraints. Simulator results show that the

proposed two-stage scheme is more energy-efficient and

secure than a number of existing representative approaches.

Energy harvesting-based IoT devices promise extended

battery life, lowered maintenance costs, and a lower envi-

ronmental impact. Despite this apparent potential, devel-

oping applications that ensure sustainable operation under

variable energy availability and dynamic energy needs

remains complex. An energy-aware task scheduler devel-

oped by Yang, Thangarajan [58] reduces this complexity

by automatically adjusting the task execution rate to match

the energy available in the environment. The proposed

mechanism can prioritize tasks according to their impor-

tance, energy consumption, or a weighted combination of

both. The approach differs from previous strategies in that

it is autonomous and self-adaptive, requiring not a priori

modeling of the environment or hardware platforms. This

mechanism is more efficient than previous approaches in

delivering sustainable operation for multiple tasks on

heterogeneous platforms in dynamic environments. As

calculated by simulations, the proposed mechanism has

minimal performance overhead related to memory, com-

putation, and energy, achieves Efficiency by allocating

surplus resources according to the developer’s priorities,

keeps up with platform changes quickly, and ensures

Sustainability by maintaining a user-defined optimal

charging level. It is imperative to point out that the pro-

posed approach can only be applied to tasks whose

schedule can be independently controlled, such as sensing

operations. The non-deterministic nature of its adaptive

scheduler makes it unable to schedule time-sensitive tasks.

3.2 Heuristic-based mechanisms

This subsection presents a review and comparison of

heuristic algorithms used by researchers to solve the IoT

task scheduling problem along with their metrics.

Scheduling problems can be optimized using heuristic

algorithms, which aim to provide an optimal solution in a

short period of time. These algorithms produce a sub-op-

timal but valid solution.

The majority of outdoor IoT applications rely on energy

harvesting systems to ensure virtually uninterrupted oper-

ation. This is because these systems allow the devices to

use energy from their environment, such as solar or wind

energy, instead of relying on batteries. This reduces the

need for maintenance and ensures that the devices can

remain in operation for a long time. However, the use of

energy harvesting raises issues regarding the efficacy of the

application and the energy neutrality of the devices. In this

context, Caruso, Chessa [51] present a novel dynamic

programming algorithm suitable for optimizing the

scheduling of tasks in IoT devices powered by solar panels.

The problem is shown to be NP-Hard, and the algorithm

obtains the optimal solution in pseudopolynomial time. The

algorithm uses a two-dimensional array to store the optimal

solutions for each subproblem. It then iterates through each

subproblem to obtain the optimal solution for the entire

problem. This makes it much more efficient than other

existing algorithms, as it only needs to iterate a few times

through the array instead of having to solve the entire

problem from scratch each time. Furthermore, the algo-

rithm is shown to be capable of being executed on three

popular IoT platforms (namely TMote, Raspberry PI, and

Arduino) with a small overhead. Moreover, the algorithm

has been proven to be highly efficient and easily adapt-

able for use on multiple platforms, enabling its widespread

adoption in IoT networks. However, the algorithm has not

been tested on other IoT platforms outside of the three

mentioned. Additionally, the algorithm has not been pro-

ven to be secure against potential attacks.

The deployment of large-scale IoT applications in cloud

environments has become increasingly common in recent

years. This has allowed for the development of highly

efficient and powerful applications that can provide users

with an improved user experience. Cloud computing fea-

tures such as pay-as-you-go, unlimited expansion, and

dynamic acquisition offer a number of conveniences for

IoT applications. It is a challenging task to satisfy QoS

requirements while allocating resources to tasks. This

requires careful planning, efficient resource management,

and a thorough understanding of the tasks and their

respective QoS requirements. Ma, Gao [59] propose an

algorithm that optimizes workflow execution while taking

Cluster Computing

123



into accou1nt cost and deadline considerations. According

to the topological structure of the virtual machine, they

divide tasks into different levels in order to ensure that

there is no dependency between tasks at a given level. This

means that the tasks at any given level are independent and

can be executed in any order without affecting the execu-

tion of the tasks at the other levels. This organization of

tasks into different levels makes it easier to debug and

maintain the virtual machine. The proposed algorithm uses

three strings to code genes in order to better reflect the

heterogeneous and resilient characteristics of cloud envi-

ronments. The HEFT algorithm is then used to generate

individuals in a timely and cost-effective manner. In order

to increase the diversity of solutions, novel crossover and

mutation schemes have been developed. The proposed

algorithm has been tested on workflows that simulate the

structured tasks of the IoT and performs well when com-

pared with state-of-the-art algorithms. However, more

research is needed to test the algorithm on more complex

workflows and to compare its performance against other

algorithms.

Fog computing is a distributed computing architecture

that allows tasks to be processed closer to the data source,

allowing for faster response times and decreased latency.

This makes it an ideal solution for IoT tasks that require

high levels of computation, since it can process data faster

and more efficiently. The development of non-orthogonal

multiple access (NOMA) has been recognized as a

promising technique to improve spectrum efficiency in

parallel with the development of fog computing. NOMA

allows multiple users to access the same radio frequency

resources simultaneously, thereby increasing the spectrum

efficiency. This makes it possible for multiple users to

access the same resources at the same time, which can

reduce the latency of fog computing tasks and improve the

response time. Additionally, the use of NOMA technology

can also reduce the amount of energy consumed by fog

computing nodes, thus making the system more efficient.

Wang, Zhou [60] propose a NOMA-based fog computing

framework for IoT systems, in which multiple task nodes

offload their tasks to multiple nearby helper nodes. This

allowed for the optimization of the total energy consumed

by the system, as well as the overall completion time of the

tasks. Additionally, this approach enabled the system to

handle more task nodes than could be handled by tradi-

tional fog computing architectures. An online learning

approach is used to solve the task scheduling and subcarrier

allocation problems. An iterative algorithm is proposed as

part of the online learning process to optimize both sub-

carrier allocation and task scheduling simultaneously. The

results of the simulation indicate that the proposed

scheme has the potential to reduce the sum cost signifi-

cantly when compared to the baseline scheme. However,

the proposed scheme may not be feasible in practice due to

the high computational complexity. In addition, the pro-

posed scheme may not be able to achieve the same per-

formance when the channel conditions are not known in

advance.

Fog computing can be an essential processing resource

for IoT devices that have limited processing power. The

goal of task scheduling in fog computing is to efficiently

distribute tasks among the limited computing resources

available, while taking into account the time constraints

associated with tasks and the cost of running the tasks. This

is done by analyzing the computing resources available, the

type of task to be executed, and the cost of executing the

task. Najafizadeh, Salajegheh [61] present a privacy-pre-

serving architecture for scheduling IoT tasks. A multi-ob-

jective algorithm based on this architecture is presented in

order to minimize service time and service costs. This

multi-objective algorithm balances the trade-off between

the two objectives and ensures that the privacy of the IoT

tasks is guaranteed. The results showed that their proposed

algorithm outperformed the existing algorithms in terms of

both solution quality and computational efficiency when

dealing with the four different scenarios. The goal pro-

gramming approach (GPA) allows the algorithm to con-

sider multiple objectives and find the optimal solution that

satisfies all constraints. GPA uses a set of objectives and

constraints to generate a set of feasible solutions, and then

it uses a mathematical optimization technique to select the

best one. Simulation results indicate that this algorithm has

a much shorter runtime than other algorithms, meaning it is

able to produce accurate results more quickly. Further-

more, it is also able to satisfy the privacy requirements of

IoT devices, ensuring that user data is kept secure and

private. However, there are some potential drawbacks to

using this algorithm. One is that it is resource-intensive,

meaning it requires a lot of computing power to run. This

could make it impractical for use on devices with limited

resources, such as IoT devices. Another potential drawback

is that the algorithm is designed to work with a specific

type of data, so it might not be able to handle other types of

data that might be encountered in IoT devices.

As the demand for IoT devices increases, the need for

safe and reliable energy sources grows. Batteries offer a

stable energy source, but they can contain harmful chem-

icals, making them difficult to dispose of safely. Addi-

tionally, batteries are limited in their capacity and may

need to be replaced or recharged regularly. This increases

the cost of running and maintaining these devices, as well

as the environmental impacts arising from the disposal of

used batteries. Energy harvesters capture energy from their

environment and convert it into electricity. This electricity

is stored in capacitors and used to power battery less

devices which can last longer and require less maintenance
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than those powered by batteries. A traditional computing

scheduler cannot handle intermittent computing, so Del-

gado and Famaey [62] propose a first step toward the

development of an energy-aware battery less device

scheduler. An energy-aware task scheduling algorithm is

presented that can optimize the scheduling of application

tasks to avoid power failures and provides insight into the

optimal look-ahead time for energy prediction. According

to the results of the study, making the task scheduler

energy aware prevents power failures and enables more

tasks to be completed successfully. However, there are

some potential drawbacks for implementing an energy-

aware task scheduler. For example, it could add complexity

to the system, and it may not be possible to achieve the

same level of energy savings on all types of hardware.

3.3 Meta-heuristic-based mechanisms

Meta-heuristic algorithms are discussed in this subsection

and are further classified into bio-inspired and swarm

intelligence algorithms. Over the past few years, it has

become increasingly popular to use meta-heuristic algo-

rithms to solve complex computational problems. In par-

ticular, their adaptive nature makes them suitable for

solving hard optimization problems that require creative

solutions. Meta-heuristic algorithms can make the process

of task scheduling under distributed computing conditions

more efficient and reliable by identifying the optimal

solution. In recent years, bio-inspired algorithms have

gained increasing importance in solving engineering opti-

mization problems. The simplicity of their implementation

and superior performance have recently attracted the

attention of researchers. They are robust and adaptive as

they are inspired by the processes of nature. As global

optimization tools, these algorithms have been applied to a

variety of optimization engineering problems.

A variety of telecommunication applications have been

explored using bio-inspired algorithms in recent years.

Swarm intelligence-based computation is concerned with

the collective behavior of self-organizing, decentralized

systems. It is primarily derived from the behavior of certain

animals and insects such as ants, termites, birds, and fish.

By studying the behavior of these animals and insects,

scientists have developed algorithms that mimic their

behavior and can be used to solve complex problems. In

swarm intelligence-based computation, multiple agents

work together in a decentralized system to solve a problem

or optimize a process. This robustness and adaptability

enable swarm intelligence to be an ideal design paradigm

when dealing with complex problems, such as IoT-based

systems. Therefore, swarm intelligence is an extremely

useful source of inspiration for the development of IoT-

based systems that can be modeled as a swarm of simple

devices or integrated with swarm intelligence-based algo-

rithms in order to achieve a number of global objectives.

Given the NP-Hard nature of the task scheduling prob-

lem, various meta-heuristics have been developed to solve

it over the last few years. For instance, to provide a solution

to the task scheduling issue in the IoT, Li, Wang [63] have

combined the Genetic Algorithm (GA) with several local

search methods. Each solution of the proposed algorithm

contains two vectors, the scheduling vector, which refers to

the task scheduling sequence, and the RFID device

assignment vector, which specifies the RFID device for

processing the task. To reach the initial population with a

high level of quality, some initial methods such as random

rule, high workload first rule, least workload first rule, and

lowest processing first are utilized. Generally, the proposed

algorithm is done in the following manner. Several solu-

tions are generated as an initial population. Each solution is

evaluated and two solutions are selected randomly. Then,

the crossover operator is performed on the two solutions

and two new-generated solutions are replaced with the

selected solutions. The mutation operator is performed on

the two solutions, the newly generated solutions are

assessed, and the best one is recorded. Using the

C ? ? programming language, they tested the perfor-

mance of their innovation. The most appropriate tasks are

determined by applying the initial population, mutation,

and crossover operator and considering the communication

cost and task sequence constraints.

Task optimization problem in IoT-based embedded

systems has been investigated by Wu [64]. The multi-frame

task scheduling issue in heterogeneous embedded systems

has been modeled to evaluate the availability of tasks using

GA. The following assumptions have been adopted in the

proposed model. To solve the task scheduling problem at

runtime, tasks are assigned to processors and then used in a

single processor. The non-divided execution mode enables

executing tasks on one processor and another part on other

processors. There is no dependency on tasks. This means

that resource sharing is not possible. The periodic task

model assigns tasks with varied execution times to multiple

processors without considering resource sharing. Commu-

nication among tasks has been ignored as well. The inter-

connection among tasks should be considered when

scheduling tasks and assigning them to multiple processors

to obtain an optimal allocation scheme.

Utilizing fog computing, Liu, Wei [65] have proposed a

scheduling algorithm called Adaptive Double-fitness

Genetic Task Scheduling (ADGTS). They aim to diminish

communication cost and execution time by operating IoT

objects with higher communication, memory, and pro-

cessing capacities as fog nodes. Task allocation to fog

nodes is performed considering multiple parameters, such

as communication capacities, delay requirements, and
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computing power. They use an adaptive mechanism for the

mutation operator, a traditional single-point algorithm for

the crossover operator, and the roulette selection method

for the selection operator. The fitness function contains the

communication cost and the makespan of the task execu-

tion. Compared to the conventional Min–Min methodol-

ogy, the suggested approach outperforms in terms of

communication cost and makespan. However, its high

complexity remains a problem. Moreover, some important

indicators, such as resource utilization and energy con-

sumption, have not been investigated.

To obtain an efficient task scheduling solution in an IoT-

based heterogeneous multiprocessor cloud environment,

Basu, Karuppiah [66] have proposed an intelligent bio-in-

spired method. Combining GA and ACO algorithm, they

implemented a hybrid algorithm that selects the most

effective combination of tasks at each stage. The proposed

approach ensures the appropriate convergence to reach an

optimal solution. It considers the dependency among tasks

to minimize the total execution time (makespan) of the

tasks. The proposed technique outperforms ACO and GA

in heterogeneous multiprocessor environments, but it has

not specified a method for task prioritization.

To address the application deadlines and IoT device

mobility, Fan, Liu [67] have proposed a deadline and

mobility-aware task scheduling approach that uses the

prediction of location based on the Dynamic Pattern Tree

(DPT). An improved ACO with links’ priorities has been

developed to solve the scheduling problem as a multidi-

mensional 0–1 knapsack problem. Several simulations

utilizing real-world mobility trace were performed to

demonstrate the effectiveness of the proposed mechanism,

and the obtained results indicate it is more efficient than

previous works regarding deadline-guarantee ratio and

total profits. However, the dynamic changes of resources

have been neglected.

To overcome the static task-graph scheduling in

homogeneous multiprocessor environments and offer a

high-performance method, Boveiri, Khayami [68] have

proposed a novel method based on Max–Min Ant System

(MMAS). To optimize the scheduling efficiency and

robustness of multiprocessor task graphs and obtain the

most optimal task order, they principally aim to manipulate

the priority values of requests. Using background knowl-

edge of the issue as heuristic values, the proposed approach

has become an efficient and robust method. To verify the

efficiency of the method, they utilized various random task

graphs with several shape parameters, and the obtained

results confirm its better performance than traditional

methods. However, they have just focused on small-sized

task-graph input samples in the cloud. Moreover, they have

ignored the heterogeneous multiprocessor and many-core

systems.

To optimize queue management while guaranteeing the

QoS levels, Al-Turjman, Hasan [69] have presented an

efficient scheduling approach developed based on Particle

Swarm Optimization (PSO) algorithm. The suggested

approach integrates cloud computing and IoT, where users’

applications in various real-world domains are scheduled

optimally. They have used the PSO algorithm to handle

massive incoming tasks suitable for Dynamic Dedicated

Server Scheduling (DDSS) and Heterogeneous DDSS (h-

DDSS). Fully Informed PSO (FIPSO) and Canonical PSO

(CPSO) algorithms have been utilized to ensure QoS in

survivability applications. These algorithms prioritize the

available cloud resources and incoming requests, consid-

ering different data traffic classes. Three strategies have

been proposed to update particle velocities and improve

convergence: service rate, arrival rates, and system uti-

lization ratio. The simulation results prove that the FIPSO

algorithm is superior to the CPSO algorithm with regard to

delay and throughput, but it does not handle the intercon-

nection among tasks.

Li, Jia [70] have utilized the ACO algorithm to provide a

multi-task scheduling approach aiming to improve the

workers’ benefits in mobile crowdsensing service markets

with IoT. Mobile crowdsensing is a novel sensing mode for

IoT that contains three main components platform, work-

ers, and requesters. Since each component in the crowd-

sensing market attempts to reach more benefits, the need

for different task assignment methods to fulfill the different

needs of each component becomes a challenging problem.

The authors of the paper have introduced a novel task

scheduling method from the workers’ perspective. A the-

oretical examination of the benefits calculation model was

performed to explore the factors affecting workers’

income. Moreover, by utilizing the STSP dataset available

online in multiple experiments, the proposed approach was

tested to improve workers’ productivity and reduce the cost

of completing multiple tasks. Nevertheless, the suggested

technique does not support the interconnection among

tasks.

A deadline and cost-aware task scheduling approach

based on GA has been proposed by Ma, Gao [59]. This

method relies on key cloud characteristics, such as per-

formance variation of Virtual Machines (VMs), acquisition

delay, heterogeneous dynamics, and on-demand acquisi-

tion, to reduce costs under time constraints. The tasks are

assigned to proper VMs using heuristic operations. The

simulation outcomes show that the suggested algorithm

obtains low execution costs and provides the highest suc-

cess rate under various deadline constraints. However, it

has not evaluated the communication cost among VMs.

Combining the ACO algorithm and priority non-pre-

emptive method, Prasanth, George [71] have proposed a

hybrid task scheduling approach to prioritize the tasks and
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discover the most effective path to assign them to the rel-

evant IoT node. The suggested mechanism consists of two

main modules, task pre-processor and task path selection.

The task pre-processor module, available inside the IoT

gateway, handles the preprocessing of individual tasks

based on the user’s query. This module separates the user

queries into multiple tasks and finds the proper sensor

nodes to execute them. In this regard, there are two main

types of tasks, spatial and temporal tasks. The spatial tasks

include the tasks that need information about a specific

location, and the temporal tasks contain the tasks that have

limited time to complete. The second module, task path

selection, is responsible for forwarding the task packets

among the task group and scheduling them by considering

their delay parameter. Regarding average waiting time and

turnaround time, the proposed algorithm outperforms the

traditional ACO algorithm but does not improve resource

utilization.

To overcome the resource management problem in

homogeneous and heterogeneous IoT-based environments

and provide an effective task scheduling approach in IoT-

enabled smart job-shop, Hasan and Al-Rizzo [72] have

utilized the CPSO algorithm. The proposed method aims to

reduce the makespan and improve resource utilization

compared to previous works. The decision mode used in

the scheduling algorithm is based on dynamic scheduling

rules. There are several unrelated machines that control the

defined framework comprising VMs. According to their

assumptions, each task in any VM has a unique processing

time. The users’ requests are sorted based on the processing

time, which is estimated or specified. Then, the objective

function is evaluated aiming to select the best solution with

a minimum makespan. However, there is no method

adopted for task prioritization.

Utilizing the PSO algorithm and fuzzy theory, Javan-

mardi, Shojafar [73] have proposed a fog-based task

scheduler in which the observations relevant to application

loop delay and network utilization have been considered.

The proposed approach is suitable for both delay-sensitive

and delay-tolerant applications. They aim to introduce a

novel method for optimally fog-based resources to enhance

network utilization and decrease the application loop delay.

In this regard, the computing features of the fog nodes,

such as bandwidth, RAM size, and CPU processing

capacity, together with the tasks’ features, such as CPU

need, have been considered. In the case of fog-layer over-

loading, the class of each application is taken into account

when making scheduling decisions. The proposed task

scheduling method optimally uses the fog resources, solves

fog task scheduling problems, and overcomes the local

minimum problem, but it does not consider energy con-

sumption and communication cost.

Abdel-Basset, Mohamed [74] have suggested an energy-

aware task scheduling method based on Marine Predators

Algorithm (MPA). Besides, the other two versions of MPA

have been proposed. In the first version, Modified MPA

(MMPA), MPA is modified to use the most recently

updated locations rather than the most recent best locations

to improve exploitation capabilities. The second version

improves the MMPA by re-initializing and mutating

toward the best strategy based on the ranking strategy. The

proposed approach outperforms the previous regards car-

bon dioxide emission rate, flow time, makespan, and

energy consumption, but it has ignored the interconnection

among tasks.

The high distribution level, dynamic nature, and

resource limitations of fog computing make it challenging

to deploy fog computing for heterogeneous and delay-

sensitive IoT tasks. To meet the QoS requirements of IoT

and reduce the overall energy consumption of fog nodes,

Azizi, Shojafar [75] have developed a novel mathematical

formulation. The proposed model also attempts to mini-

mize deadline violation time. Two semi-greedy-based

algorithms have also been introduced to efficiently map

IoT tasks to fog nodes, including priority-aware semi-

greedy and priority-aware semi-greedy with the multi-start

procedure. In contrast to greedy heuristic algorithms, semi-

greedy approaches avoid local optima due to randomness,

which is better for achieving quality results. Experimental

results indicate that the suggested algorithms meet the

deadline requirement for most IoT tasks, and the rest

continue to receive responses with a little time.

Attiya, Abd Elaziz [76] have introduced a novel way of

organizing and scheduling IoT applications within a cloud

computing environment. To solve the problem of

scheduling IoT tasks in cloud computing, they have pro-

posed a hybrid swarm intelligence approach, combining the

Salp Swarm Algorithm (SSA) and a modified Manta-Ray

Foraging Optimizer (MRFO). The exploitation ability of

MRFO is improved through the use of SSA operators. The

proposed approach includes two main phases, namely, the

initial phase and updating phase. In the first phase, a

population of initial values is formed, representing a

solution to the task scheduling problem regarded as a dis-

crete optimization problem. MRFO was originally devel-

oped to address continuous optimization problems, while

task scheduling is a discrete optimization problem. This

limitation is tackled by initially producing a population.

The second phase aims to update solutions in the following

manner. First, the fitness values for solutions are computed.

Then, a solution with the best fit (smallest makespan value)

is determined. In the next step, operators of MRFO are

used to update the solution during the exploration stage.

The experimental results show that the proposed method
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outperforms its competitors on various performance met-

rics, including makespan time and cloud throughput.

Bu [77] has proposed a multi-task equilibrium

scheduling method combining genetic and PSO algorithms.

Server node load is measured using CPU, memory, net-

work bandwidth, and disk input and output occupancy

rates. These measures establish a resource balance model

that measures the server node load. Weight adjustment is

based on the fitness function used to quantify the influence.

The PSO algorithm then applies the contraction operator

and disturbance factor. The optimal algorithm aids in cal-

culating the optimal fitness function and determining the

optimal weight. The simulation results confirm that the

proposed hybrid algorithm outperforms the traditional

method in terms of resource utilization, request error rate,

throughput, and response delay by more than 5%. The

proposed mechanism considers various request types but

does not mix them together.

A novel quasi-oppositional Aquila optimizer-based task

scheduling (QOAO-TS) method has been proposed by

Kandan, Krishnamurthy [78], in which an Aquila optimizer

(AO) and quasi-oppositional-based learning have been

integrated. Aquila’s behavior while catching prey stimu-

lates the traditional AO, and the QOAO was developed to

enhance that behavior. The QOAO-TS approach satisfies

the makespan requirements by achieving the best task

scheduling process. It considers the relationship between

tasks and minimizes the makespan to meet the client’s

needs. The results of multiple simulations have been

investigated in terms of utilization ratio, latency, flow time,

throughput, and makespan.

3.4 RL-based mechanisms

The RL algorithm is a machine intelligence algorithm

designed for learning under highly dynamic and uncertain

conditions. RL algorithms allow machines to learn from

their experiences and make decisions based on the infor-

mation they have gathered. This helps machines better

adapt to changing environments and makes them more

efficient and accurate at their tasks [79]. By interacting

with a stochastic environment, RL proposes a computa-

tional approach for an agent to learn the appropriate

behavior to accomplish its objective. Through experimen-

tation and learning, the agent develops a policy that max-

imizes the expected long-term reward, which is known as

the optimal policy. As the agent interacts with the envi-

ronment and the environment changes, the agent is able to

adapt its policy to achieve the best possible outcome. As a

consequence, the purpose of RL is to enable the agent to

learn appropriate policies by mapping states to actions in

order to maximize long-term benefits [80]. It aims to

facilitate the self-decision of IoT nodes for several

networking functions, including routing, scheduling,

resource allocation, dynamic spectrum access, energy

management, mobility, and caching. By using RL, the

agent can learn from the environment, form a model of the

environment, and then optimize its decisions accordingly.

This allows it to make decisions that optimize for the

networking goal, such as minimizing energy usage or

improving security levels.

Xie, Wang [81] have proposed a Q-learning technique to

overcome the joint computation mode selection and pro-

cessing order problem in a wireless-powered mobile edge

computing IoT network. They have formulated the problem

as an optimization problem aiming to reduce computational

delays in devices and energy consumption. The proposed

method can be implemented in multi-user systems and

dynamically modify scheduling processes by considering

diverse network setups. The results confirm that it performs

better than the conventional benchmark methods and

achieves up to 15.9% and 55.1% gain compared to local-

computing and offloading methods, respectively.

Furthermore, to improve the lifetime of IoT networks,

reduce delay, and extend task scheduling success rate, Ge,

Liu [82] have proposed a novel task scheduling mechanism

based on Q-learning with a global view named (QFTS-

GV). At first, they define the Q-learning framework,

including the rewards function, action set, and state set in a

global view that forms the basis of the proposed approach.

Then, they establish a task scheduling policy with deter-

mining rewards for nodes in different areas of the network.

The transmission power of energy-relaxed nodes can be

increased to promote the benefits of the whole network.

The energy-strained nodes can be protected to improve the

network lifetime. The proposed approach saves energy

consumption, reduces delay, and improves the task

scheduling success rate compared to previous Q-learning-

based task scheduling schemes.

Pandit, Mir [21] have developed a task scheduling pol-

icy based on RL. They aim to decrease communication

costs during distributed execution and obtain an efficient

method with the minimum time to execute tasks as well as

optimal resource utilization. In this regard, a two-level

Neural Network (NN)-based task scheduling system has

been introduced, in which the first-level NN specifies

whether the data stream could be directly forwarded to the

cloud or analyzed in the resource-constrained environment.

The second-level NN is responsible for scheduling all the

tasks sent by level 1 NN to the fog layer. The suggested

mechanism handles task scheduling in real-time fog-based

IoT with the least communication cost, minimum make-

span, and best resource utilization.

In Vehicle Edge Computing (VEC), computing-inten-

sive tasks can be moved to network edges and enhanced to

overcome the challenges associated with the Internet of
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Vehicles (IoV). Wang, Ning [83] conducted research on

energy-efficient policies for vehicles and network operators

in VEC networks because of the huge energy demands. The

authors propose a task scheduling algorithm for online

VEC that incorporates imitation learning. In imitation

learning, the agent mimics the expert’s demonstration (or

reference policies) in order to solve the original problem

effectively. The VEC model is established, and the task

scheduling issue is formulated as an optimization problem.

By acting as routers or gateways, RSUs facilitate the

scheduling of tasks among different servers. The proposed

solution is an infrastructure-free approach, as it does not

require computational tasks to be cached or handled by

RSUs. The service abilities of Service Demanding Vehicles

(SPVs) are analyzed in the coverage of RSUs and are

clustered by integrating their idle resources. Each RSU

maintains cluster-level information, while the SPV-level

information is located within its own cluster. This reduces

the overhead in communications between the SPVs and the

RSUs. The designed method conquers the disadvantages of

traditional algorithms, including the slow convergence

speed and the low searching efficiency. To solve the for-

mulated task scheduling problem, it is decomposed into

two sub-problems, resource aggregation and task schedul-

ing, to assign tasks to suitable SPV clusters. The first sub-

problem is solved by analyzing the service abilities of local

SPVs in the coverage of RSUs. The second subproblem is

handled by imitating the expert’s policy for cluster-based

task scheduling, in which the convergence time can be

largely reduced. A theoretical analysis of the performance

of the algorithm has shown it to be able to achieve an

acceptable performance gap from that provided by the

expert.

3.5 DRL-based mechanisms

Due to the high dimensionality of IoT states and actions,

traditional RL techniques are limited in terms of compu-

tation complexity and convergence to poor policies [84].

So DRL techniques, a combination of RL and Deep

Learning (DL) approaches based on Artificial Neural

Networks (ANN), are developed to overcome these limi-

tations and improve learning and decision operations [85].

In recent years, DL techniques have been successfully

applied to data analysis, natural language processing,

sequence prediction, and image processing [86, 87].

Besides, to improve the computational ability of IoT

devices, Gao, Wu [88] have considered mobile edge

computing and mobile blockchain, which have been

deployed at the Small-cell Base Station (SBS) as a sup-

plement. They have considered the long-term revenue of

the SBS to encourage SBS involvement in mobile block-

chain networks. They have formulated the problem of task

scheduling as a Markov Decision Process (MDP) to mini-

mize the resource cost of the SBS and maximize the long-

term mining reward. Moreover, they have proposed a deep

reinforcement learning-based solution named Policy Gra-

dient-based Computing Tasks Scheduling (PG-CTS) algo-

rithm to obtain an efficient intelligent strategy. Utilizing a

deep neural network, the policy mapping from the system

state to the task scheduling decision is specified. To train

the policy network, episodic simulations have been built,

and the REINFORCE algorithm with the baseline has been

utilized. The simulation results prove the generalization

ability and effectiveness of the proposed approach.

Moreover, Zhou, Wu [89] have investigated the task

scheduling problem in the space-air-ground integrated

network for delay-oriented IoT services. Utilizing an

Unmanned Aerial Vehicle (UAV), the computing tasks are

collected from IoT devices and then online offloading

decisions are made. They aim to introduce a task

scheduling policy to reduce the computing and offloading

delay of all tasks given the UAV energy capacity con-

straint. In this regard, the online scheduling problem has

been formulated as an energy-constrained MDP. Then, a

novel deep risk-sensitive reinforcement learning algorithm

has been developed according to the dynamic nature of

tasks. Compared to probabilistic configuration techniques,

the proposed mechanism reduces the task processing delay

by up to 30% and overcomes the UAV energy capacity

constraint.

The proposed task scheduling method by Shadroo,

Rahmani [90] includes two main phases. A clustering

approach is used to specify the location of task execution.

The second phase contains task scheduling based on the

execution location. The clustering part involves three main

concepts based on the Self-Organizing Map (SOM) clus-

tering approach. The first and second concepts utilize the

SOM and hierarchical SOM to separate the tasks’ features

from the IoT layer into various clusters. In the third con-

cept, the features of tasks are extracted and their dimen-

sions are decreased using the Autoencoder. The simulation

results confirm that the proposed approach has reduced the

missed rate of tasks in the fog and cloud and their costs.

Tang, Xie [91] have discussed the distributed task

scheduling for the IoT in serverless edge computing net-

works in which the nodes are heterogeneous and rational

individuals who desire to optimize their own scheduling

utility. In contrast, the nodes only have local observations

available. As a partially observable stochastic game

(POSG), the task scheduling competition process enables

serverless edge computing nodes to schedule tasks and

allocate computing resources based on their locally

observed system state. This system state considers the

associated task generation state, data queue state, com-

munication channel state, and the previous resource
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allocation state. An algorithm for multi-agent task

scheduling, based on the dueling double deep recurrent

Q-network (D3RQN) method, has been developed to

approximate the optimal task scheduling and resource

allocation solution for the proposed POSG.

Sellami, Hakiri [92] have investigated a low-latency and

energy-aware oriented computing task scheduling problem

in a Software-Defined Fog-IoT Network. First, the task

scheduling and assignment problems are formulated as an

energy-constrained Deep Q-Learning process. Under the

constraints of application dependence, the latter seeks to

minimize network latency while ensuring energy effi-

ciency. A DRL approach is then proposed for dynamic task

scheduling and assignment in SDN-enabled edge networks.

Experimentally, the introduced algorithm has been com-

pared to three pioneering deep learning algorithms, namely

A3C agents, random, and deterministic. The proposed

design is characterized by its emphasis on energy effi-

ciency, as it reduces energy consumption by as much as

87% compared to other approaches.

In the Industrial IoT (IIoT) network, MEC and Non-

Orthogonal Multiple Access (NOMA) are promising

technologies. Multiple MEC servers must cooperate to

increase their processing capacity. The rapidly changing

IIoT environment with undefined scenarios, such as

dynamic wireless channels, complex task demands,

changing wireless loads, and multiple MEC servers, can

critically affect the task offloading decision and NOMA

user pairing. This greatly affects resource management in

NOMA-MEC-based IIoT networks. In order to deal with

this issue, Lin, Zhou [93] developed a distributed DRL-

based solution for optimizing task offloading decisions and

sub-channel assignments to provide binary computing

offloading. Recurrent Neural Networks (RNN) are

employed for each IIoT device agent to address the partial

state observability problem by predicting the load states of

sub-channels and MEC servers, which are further used to

make RL decisions. According to simulation results, the

proposed prediction-based-DRL method (P-DRL) achieves

higher task satisfaction rates than existing methods.

4 Discussion and analytical comparison

This section aims to provide an analytical examination of

the reviewed task scheduling methods. The obtained results

are reported based on mentioned research questions in

Sect. 2. In the previous section, the existing task schedul-

ing approaches in the IoT were ordered into three groups,

heuristic-based methods, non-heuristic-based methods, and

machine learning-based methods, and assessed considering

important qualitative metrics, such as resource utilization,

communication cost, reliability, makespan, load balancing,

waiting time, response time, throughput, and energy con-

sumption. When solving the task scheduling problem, non-

heuristic algorithms generally rely on gradient-based

search methods to find optimal local solutions within a

reasonable timeframe. Gradient information, however, is

necessary for finding the search directions. Since these

approaches cannot differentiate between objective func-

tions and constraints, they may be inefficient when solving

the task scheduling problem.

Consequently, heuristic or meta-heuristic algorithms

have become increasingly popular for solving task

scheduling problems. These algorithms derive their math-

ematical basis from natural phenomena. Despite the

effectiveness of these algorithms in exploring the search

space, they take a relatively long time to identify the local

optimum. Machine learning algorithms represent a new

method for resolving the task scheduling problem in the

IoT environment, which are employed to predict the

resources based on the task size and features. In large-scale

networks, the search efficiency of these algorithms is low,

and they have slow convergence speeds. The methods

mentioned above were concisely described, considering

their main advantages and drawbacks. For instance, the

suggested task scheduling technique by Hasan and Al-

Rizzo [72] provides an effective manner in terms of min-

imum makespan and improves resource utilization, but it

does not address the prioritization of tasks. Besides, the

method proposed by Pandit, Mir [21] aims to reduce

communication costs and improve resource utilization, but

it does not evaluate energy consumption.

4.1 Comparison based on scheduling constraints

Memory, power, computational capability, and communi-

cation resource constraints are significant factors in the IoT

field and are key performance indicators in task scheduling.

These factors might negatively influence the scheduling

performance if a large number of applications are unable to

meet these constraints. Researchers have examined one or

more indicators regarding the IoT task scheduling problem

in the reviewed papers. As shown in Fig. 6, computational

capability is the constraint most emphasized by task

scheduling techniques, especially heuristic techniques.

4.2 Comparison based on task-resource
mapping approaches

Generally, the IoT resources are mapped to the incoming

tasks in four basic methods, namely, prediction-based, AI-

based, dynamic, and static, in order to efficiently use the

available resources depending on the submitted workload

and the condition of the IoT environment. Allocating

resources based on prediction is associated with the
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behavior of methods and various measures. To effectively

schedule tasks and optimize resource allocation in the IoT

environment, it is significant to utilize techniques for

automatic resource allocation or reservation that predict

user requirements for the future. AI-based scheduling

involves the creation of a highly technical and specialized

process that can schedule and assign resources to various

aspects, including expert systems, ML, neural networks,

agent-based systems, nature-inspired intelligent systems,

and autonomous systems. Task scheduling can be con-

ducted dynamically without requiring knowledge of all

task properties. This can be beneficial for IoT users to

accommodate variable demands, particularly when opti-

mizing resource utilization is more important than lowering

execution time. Static scheduling relies on prior informa-

tion about the tasks to make a scheduling decision. As

depicted in Fig. 7, AI-based scheduling and dynamic

scheduling are more commonly used strategies due to their

effectiveness and efficiency.

4.3 Comparison based on the significance
of scheduling metrics

Table 8 provides a side-by-side comparison of methods

based on considered metrics. This table specifies effective

methods, considering the mentioned metrics. As specified

in Fig. 8, most of the researchers have attempted to provide

a method with minimum delay and energy consumption as

well as maximum resource utilization.

4.4 Comparison based on the nature
of the scheduling problem

Generally, optimization algorithms can be ordered into two

groups, including single-objective and multi-objective

optimization algorithms. Multi-objective algorithms

require multiple objectives to optimize for an optimal

solution, whereas single-objective algorithms can optimize

only one objective function. The multi-objective task

scheduling methods simultaneously optimize multiple

objectives, while single-objective task scheduling methods

determine only one fitness value. We checked the discussed

task scheduling methods based on their adopted fitness

function type (multi-objective and single-objective). As

shown in Fig. 9, 87% of papers belong to multi-objective

methods, and the remaining 13% belong to single-objective

methods.

4.5 Comparison based on adopted simulation
tools and case studies

Researchers have implemented their innovation in well-

known environments such as Matlab, C, VB, iFogSim,

Java, and Python. Besides, as indicated in Fig. 10, various

case studies have been adopted in the discussed task

scheduling methods. It is obvious that the fog-enabled

Fig. 6 Usage ratio of the

constrained approaches

Fig. 7 Usage ratio of the task-resource mapping schemes
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application with eight usages is the most applied case study

among existing case studies.

5 Open issues

The current study organized a detailed and systematic

paper in this field by discussing the state-of-the-art meth-

ods in the field of task scheduling in the IoT and high-

lighting their main features. The obtained results confirm

that the recent approaches have not covered all available

challenges and scheduling metrics. In order to answer

question 1 mentioned in Sect. 2, this section aims to

specify open issues and some considerable challenges to

help future researchers develop effective works. As a

matter of fact, this section provides a roadmap toward

efficient task scheduling methods.

It is estimated that the number of IoT devices will

exceed one trillion by 2030 [94]. These IoT devices pro-

duce a significant amount of data that can be utilized for a

variety of purposes. Cloud data centers by themselves

cannot handle the vast amount of data efficiently. Also,

cloud data centers are multi-hop away from the end-user.

Consequently, data transmission to a remote cloud is

accompanied by substantial delays and congestion on net-

works, which are incompatible with time-sensitive appli-

cations such as telemedicine, vehicle-to-vehicle

communications, e-health, and so on. Thus, conventional

centralized IoT infrastructure may be unable to cope with

the challenges associated with security, network conges-

tion, long delays, and bandwidth consumption. To address

these problems, various technologies have been proposed,

such as mist computing, osmotic computing, mobile cloud

computing, multi-access edge computing, volunteer com-

puting, and fog computing. Among these technologies, fog

computing, developed by Cisco, is of particular interest as

it offers enhanced capabilities for geographical distribu-

tion, heterogeneity, low-energy consumption, mobility, and

application processing, thereby achieving significant

improvements in QoS requirements.

• Fog computing: Fog computing technology is a form of

decentralized computing that facilitates the extension of

cloud computing infrastructure to the edge of a

network. It has recently received considerable interest

in handling IoT applications. Fog computing provides

computing resources within close proximity to IoT

devices, which simplifies the process involved in

accessing computing resources and enables IoT

requests to be processed more quickly. Although fog

computing offers significant advantages for processing

IoT applications, it also presents several challenges

Fig. 8 Percentage of considered

performance metrics in the task

scheduling methods

Fig. 9 Type of fitness function in discussed methods
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regarding the provisioning and management of fog

resources. Fog computing resources comprise dis-

tributed, heterogeneous, dynamic, and capacity-limited

components. Furthermore, energy consumption is one

of the most important factors to consider when utilizing

fog computing. Thus, fog resource provisioning and

management play a crucial role in leveraging fog

computing for the efficient execution of IoT applica-

tions. Besides, how to allocate heterogeneous and

dynamic fog resources to IoT tasks while minimizing

the energy consumption of fog nodes remains a

fundamental issue.

• Edge computing and mobile edge computing: These

technologies have a similar principle to fog computing,

which is aimed at bringing computation closer to the

user. Fog and edge computing often refer to the same

thing. However, several researchers have defined edge

computing as a paradigm restricted to the edge network,

which is composed of devices like mobile phones and

access points that are directly connected to IoT devices.

In contrast, fog expands this idea by incorporating core

networks as well as cloud data centres in order to

provide services close to data sources. Mobile edge

computing emphasizes mobile end-users and brings

storage and computational functions to the edge of the

mobile network through enhancing the capabilities of

the base stations of the 5G and 6G networks. Never-

theless, all these paradigms are characterized by similar

features, including distributed, constrained, and hetero-

geneous resources, in addition to a number of key

objectives, including mobility support, improved net-

work efficiency, and lowered latency.

• Mist computing: As a layer between the fog and IoT

layers, mist computing attempts to minimize latency by

bringing fog computing even closer to IoT sensors and

devices. This paradigm incorporates several aspects of

cloud computing albeit on a smaller scale, namely

resource pooling and virtualization. Mist resources have

limited capacity compared to fog resources, which are

sparse when compared to cloud resources. Mist com-

puting has sometimes been mistaken for edge comput-

ing. However, they differ in several important respects.

Fig. 10 Percentage of the

applied case studies in the task

scheduling methods
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In particular, edge computing typically occurs at the

IoT layer, by utilizing local computing capabilities

embedded in the IoT sensors and devices themselves

(therefore, edge computing is device-specific). Hence,

IoT sensors and devices are known as edge computing

devices. On the other hand, fog/mist computing offers

end-device independence and enables hierarchical and

scalable architectures between IoT and cloud environ-

ments. Moreover, edge computing rarely supports

virtualization and resource pooling capabilities, com-

pared to fog/mist computing.

• Osmotic computing: Osmotic computing is a recently

emerging paradigm that focuses on the scheduling of

microservice-based applications across cloud and fog

environments. Osmotic computing provides a balanced

deployment of microservices by integrating fog/edge

and cloud resources in order to meet the varying

expectations of microservices-based IoT applications.

Osmotic computing defines a microservice architecture

as an appropriate model to develop IoT applications and

deployment them in an integrated fog/edge and cloud

environment due to their fine granularity, fast deploy-

ment and elasticity. Therefore, this paradigm attempts

to address the specific challenges associated with

microservices, including dynamic edge-cloud place-

ment, elasticity control, monitoring, networking, and

microservice orchestration.

• Mobile cloud computing: Mobile cloud computing

enhances the ability of mobile devices to process and

schedule tasks. Mobile cloud computing enables indi-

viduals to execute resource-intensive tasks in the cloud

near mobile devices. Although task scheduling is an

integral part of mobile devices, due to the size and

power consumption of modern applications, it poses a

significant challenge for mobile applications. As a

result of technological advances, mobile devices are

now capable of collecting, handling, and transmitting

data without interruption to the concerned intelligent

devices and their effective environment. However,

intelligent mobile devices still face limitations con-

cerning bandwidth utilization, battery capacity, CPU

speed, and power consumption and intensive operation.

• Volunteer computing: Volunteer computing is a form of

network-based distributed computing in which individ-

uals can donate idle computing resources on their

personal computers for the purpose of scientific

research computing. Grid and volunteer share the idea

of providers across organizations contributing to a pool

of resources that appears to consumers as a transparent

whole. The motivation of providers to participate is a

key difference between the two paradigms. In grid

computing, providers anticipate profiting from the grid

itself in the future, i.e., harvesting computing power as

consumers. In volunteer computing, service providers

contribute their time and resources to a worthy cause. In

this way, the group of consumers (typically the

members of a scientific project) is clearly defined from

the outset. Furthermore, volunteer computing resources

are provided by private end-users, whereas grid

resources are often owned by an organization, for

example, a university. As private individuals participate

in volunteer computing as providers, research on

volunteer computing has a strong focus on security,

fault tolerance, usability, and incentive mechanisms.

• Real IoT datasets: The use of a suitable real-world

dataset is a significant issue in the reviewed task

scheduling methods. As discussed in previous sections,

most of the methods have not been verified based on a

real IoT dataset. The researchers can obtain more

effective methods and gain real-time properties by

implementing their innovations based on the recent

datasets.

• Mobility-aware: As another open issue, the mobility of

IoT devices has not been considered in most of the

reviewed papers. The obtained results confirm that the

increasing number of real-time and mobile tasks has a

significant impact on the performance of the task

scheduling method and significantly increases the total

cost. The mobility of IoT devices faces various

problems, such as tackling the dynamic IoT environ-

ment and the limited energy of devices.

• Multiprocessing capabilities: Since embedded systems

are utilized to gather and investigate different types of

IoT data, the multiprocessing capabilities of embedded

systems have become more important. Embedded

systems for IoT objects with various sensors aim to

accomplish varied types of lightweight data processing.

• Task migration: Task migration refers to selecting

suitable processing servers to process the tasks, sepa-

rating tasks into several sub-tasks that can be scheduled

on various processors while complying with the feasible

order of executing the parts of the main task. In mobile

edge computing, different edge servers need to adjust

the allocation of task loads and edge server resources at

all levels to fulfill the reliability of different tasks

demand, execution energy consumption, and the

heterogeneity of processing delay.

• Replication of multiple fog broker nodes: The proposed

task scheduling approaches can be extended by repli-

cating multiple fog broker nodes to cover fault toler-

ance and scalability issues and support high mobility. In

this regard, more scalable methods with minimum

response and execution time can be obtained by

developing the approaches in a distributed manner.

• Prioritization of tasks: Most discussed task scheduling

methods have not considered prioritizing tasks based on
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context information. Developing models of prioritized

applications from a recognition context can be consid-

ered another great matter for future studies. By

specifying the information relevant to the contexts

and device of the application, such as application QoS,

network signal strength, battery level, etc., the schedul-

ing methods can gain better performance.

• Subdivision and offloading: Nodes with limited

resources may not be able to execute tasks. The

solution is to divide a task into multiple loosely coupled

subtasks and then schedule them on multiple devices.

Task offloading refers to the case that the task is

offloaded to be executed by a nearby helper node. This

allows devices with limited resources to take advantage

of the resources of nearby nodes that have more

computing power and can execute tasks more effi-

ciently. Furthermore, by dividing tasks into smaller

subtasks, it reduces the amount of data that needs to be

transferred, which reduces communication overhead.

Offloading subtasks to multiple nodes requires effective

synchronization policies. The offloading of tasks to

different nodes may be caused by mobility, excessive

workload, and node failures. To address these issues,

Wang, Tan [95] proposed the use of DRL and

Kubernetes approaches for node orchestration. The

subdivision mechanism can be further improved by

increasing the independence and loose coupling of each

task.

• Network state observations: The change in critical

levels for distinct information in mobile edge networks

impacts users’ decision-making, especially when partial

observations are available. This issue has not yet been

addressed in existing research. An effective way to

overcome these challenges is to quantify the freshness

of information according to its critical levels.

• Self-adaptive scheduling: The majority of scheduling

models ignore the learning aspect, which is a challenge

in IoT task scheduling. While some research studies

have considered self-adaptive scheduling, all these

efforts have been limited to the experimental realm.

In this regard, task scheduling algorithms are necessary

to optimally schedule tasks arising from unexpected

events in dynamic environments.

• Energy consumption: As IoT devices suffer from

energy constraints resulting from low-power batteries,

energy-aware approaches remain an open issue.

Researchers have focused on energy optimization,

while efficient bandwidth usage in transmission of data,

energy loss, and battery drainage issues remain chal-

lenges to be addressed.

• Context-aware service provisioning: The context con-

stitutes a set of factors that can affect the performance

of applications. The existing methods of provisioning

context-aware services have limited flexibility, scala-

bility, and cannot accommodate a wide range of IoT

applications. Therefore, it is necessary to develop more

techniques for context-aware service provisioning to

address the mentioned shortcomings.

• Security: Security of IoT nodes presents a significant

concern since they are resource-constrained and

installed in unsafe environments, making them vulner-

able to a variety of attacks. Thus, developing a reliable,

high-speed, and lightweight safety mechanism remains

a challenge.

• Privacy: IoT nodes obtain a significant amount of

personal data through a variety of IoT applications. As a

consequence, protecting the privacy of such informa-

tion is of paramount importance to users. While some

privacy-preserving strategies have been applied to IoT

nodes, no satisfactory authentication mechanism has

been developed. IoT nodes are more likely to suffer

from vulnerabilities that complicate the authentication

process.

• Parallel scheduling: Parallel processing involves divid-

ing a task into several subtasks and executing them

simultaneously, which reduces delays via distributed

computing is another interesting direction for upcoming

studies.

• Optimal resource allocation: Due to the mobile nature

of IoT nodes, available resources may not be accessible

at other times, making it challenging to allocate

resources. Latency issues for real-time services, the

absence of generalization, and the rapid adaptation of

current techniques require further investigation.

• Resource utilization: IoT devices face resource con-

straints regarding energy, computation, and storage.

They experience dynamic workloads associated with

both delay-tolerant and latency-sensitive applications.

Consequently, it is challenging to arrange the unpre-

dictable arrival of tasks on these nodes for maximum

efficiency.

6 Conclusions

The current paper has systematically reviewed the recent

task scheduling approaches in the IoT. The available

methods have been ordered into five key groups, tradi-

tional, heuristic-based, meta-heuristic-based, RL-based,

and DRL-based methods, and checked out based on

important evaluation metrics. In this regard, the main

features, strengths, and weaknesses of each method have

been described. To specify the efficient approaches, all

discussed methods have been compared side-by-side. As a

matter of fact, an effort has been made to provide a strong
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basis for comprehending diverse aspects of the task

scheduling problem in the IoT by examining and analyzing

recent works and offering an up-to-date comparison of

them. The evaluation comparison shows that most

researchers have attempted to provide a method with

minimum communication cost and maximum resource

utilization, but response time and energy consumption have

been ignored by most of them. Moreover, the obtained

results prove that none of the discussed methods simulta-

neously considers all task scheduling evaluation metrics.

The outcome of this research can be precious and helpful

for future researchers and it can act as a roadmap to assist

them in improving and enhancing their approaches.
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