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Advances on Localization Techniques for
Wireless Sensor Networks: A Survey

Tashnim J. S. Chowdhury, Colin Elkin, Vijay Devabhaktuni, Member, IEEE,
Danda B. Rawat, Senior Member, IEEE and Jared Oluoch, Member, IEEE

Abstract—Localization in Wireless Sensor Networks (WSNs)
is regarded as an emerging technology for numerous cyber-
physical system applications, which equips wireless sensors with
the capability to report data that is geographically meaningful
for location based services and applications. However, due to
the increasingly pervasive existence of smart sensors in WSN, a
single localization technique that affects the overall performance
is not sufficient for all applications. Thus, there have been many
significant advances on localization techniques in WSNs in the
past few years. The main goal in this paper is to present the
state-of-the-art research results and approaches proposed for
localization in WSNs. Specifically, we present the recent advances
on localization techniques in WSNs by considering a wide variety
of factors and categorizing them in terms of data processing
(centralized vs. distributed), transmission range (range free vs.
range based), mobility (static vs. mobile), operating environments
(indoor vs. outdoor), node density (sparse vs dense), routing,
algorithms, etc. The recent localization techniques in WSNs
are also summarized in the form of tables. With this paper,
readers can have a more thorough understanding of localization
in sensor networks, as well as research trends and future research
directions in this area.

Index Terms—Localization, WSN, algorithms, application, in-
door localization, static nodes, mobile nodes.

I. INTRODUCTION

Localization in wireless sensor networks (WSNs) is one of
the central components of a variety of emerging applications
including cyber-physical systems, military [1], [2], eHealth
[3], [4], [5], [6], environment monitoring [7], home and office
automation [8], [9], weather forecasting [10] and so on. Many
of these applications need location based services. Although
GPS is a direct solution to the localization problem, the high
cost, high power consumption, and poor performance of GPS
inside an indoor environment have necessitated the research
on localization algorithms [11]. Over the past few years, the
scientific world has observed a lot of research efforts on this
topic. Note that the localization is defined as the determination
of the position of an unknown node, sometimes with the help
of nodes with known position, and at other times using the
connectivity information between the unknown nodes. Recent
studies have investigated the effect of mobility in localization
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[12], [13], [14], real world applications [15], [16], [17],
“Anchor Based" and “Anchor Free" localization methods [18],
“Range Based" localization algorithm (distance measurement
technique to calculate the location of unknown nodes) and
“Range Free" localization algorithm (connectivity rather than
distance) [19], “Cooperative" (communication exists among all
nodes) and “Non-Cooperative" (unknown nodes communicate
only with the anchor nodes) algorithms [20], “Centralized"
algorithm based localization (aka network-centric positioning
[21]) and “Distributed" algorithm (no central control on the
determination of the node’s position and each node estimates
its location based on the locally gathered information − aka
“self-positioning" algorithm [21]) [22].

In this paper, localization techniques/algorithms in WSN
are divided into “Sparse vs. Dense", “Anchor based vs.
Anchor free", “Indoor vs. Outdoor", “Cooperative vs. Non-
Cooperative” and “Static vs. Mobile" categories as shown in
Fig. 1. Furthermore “Anchor Based" and “Anchor Free" local-
ization algorithms are further classified into “Range Based"
and “Range Free" algorithms. The above classification is
made considering the network size (sparse vs dense) and
specific application of certain type of algorithms (indoor).
Furthermore, they are classified based on their mobility (static
vs mobile) and usage of anchor nodes (anchor based vs
anchor free). Also, at the end of anchor based and anchor free
localization algorithm sections, comparison tables are included
to characterize each algorithm based on different factors such
as whether they are centralized or distributed and whether they
are cooperative or non-cooperative. Thus any reader who wants
to find a specific algorithm that needs to fulfill some special
requirements can use this vast classification will help him to
find recently proposed algorithms that suit the demands.

Although there are survey papers that provide information
about the localization in WSNs, more up to date activities

Fig. 1. A typical classification of localization techniques in WSNs.
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TABLE I
COMPARISON AMONG SURVEYS INVOLVING LOCALIZATION IN WSNS.

Survey Works Focus Static Coverage Mobility Coverage Remarks

[Mao 2006] [23] Localization Extensive No Extensive details about static localization schemes

[Mao 2007] [24] Localization Extensive No Extensive details about static localization schemes

[Amundson 2009] [25] Localization No Not Extensive Details on MWSNs with limited algoritumic details

[Faheem 2009] [26] Data Dissemination Yes Specific/Extensive Details on data dissemination strategies of mobile sink

[Mao 2009] [27] Localization Extensive No Extensive details about static localization schemes

[Pal 2010] [28] Localization Extensive No Static localization is classified into many classes

[Dong 2013] [29] MAC Protocol Extensive Extensive Comprehensive and comparative study of MAC

[Han 2013] [30] Localization Extensive Extensive Localization is classified based on mobility of the nodes

[Mesmoudi 2013] [31] Localization Extensive Limited Nice details of the algorithms with distinctive classification

[Tunca 2014] [32] Sink Routing Extensive Extensive Detailed study of recent proposals on mobile sink routing

[Gu 2014] [33] Sink Mobility Extensive Extensive Development flow of sink mobility management

Our work Localization with all factors Extensive Extensive Discusses algorithms from a new point of view

of rapidly advancing research area is to be brought to the
research community. Furthermore, state-of-the-art literature
does not provide recent advances on localization in WSNs
by categorizing them in terms of their types and a wide
variety of factors, nor does it categorize them in terms of data
processing (centralized vs. distributed), transmission range
(range free vs. range based), mobility (static vs. mobile),
operating environments (indoor vs. outdoor), cooperative vs
non-cooperative, node density (sparse vs dense), routing, al-
gorithms, etc. Furthermore, we have compared survey papers
that are already published in the literature with our work as
given in Table I.

Mao et al. have presented a comprehensive survey on static
localization in WSNs in [24], [27] considering different factors
such as centralized and distributed, single hop, and multiple
hop. This survey is relatively older and did not consider
mobility issues of the sensor networks. Furthermore, these
lack recent works in this field as well as discussion on
open issues and research challenges. Amundson et al. have
surveyed localization algorithms for mobile wireless sensor
networks (MWSN) in [25]. This paper includes MWSN ar-
chitecture, advantages of mobility, differences between WSNs
and MWSNs, localization steps in MWSNs, and effect of
mobility on localization. While this paper covers a lot of issues
regrading MWSNs, it lacks the detailed description of specific
algorithms and their comparative study. Faheem et al. have
presented a survey on data dissemination of mobile sink in
[26] by classifying the data dissemination techniques based
on application type, mobility pattern, number of sinks, and
route creating entities. However, this work is also relatively
older and lacks recent research ideas, and our work differs
from their work since their survey does not provide any
discussion on localization in wireless sensor networks. Pal
has summarized some proposed localization algorithms in [28]
under two classifications: centralized and distributed. Dong et
al. in [29] have surveyed mobility related issues and mobility-
aware medium access control (MAC) protocol in WSNs. This
survey discusses different mobility patterns and models, state-
of-art mobility estimation methods, and comprehensive and
comparative investigation of proposed mobility-aware MAC

protocols. This survey has discussed only the mobility issues
and MAC protocols of WSN rather than localization in WSNs.
A survey on localization in WSNs is presented by Han et
al. in [30] by considering algorithms based on static and
mobile nodes as well as on range based and range free.
Although this is an excellent summary of recently proposed
localization algorithms, it was published in 2013 and does not
include the research published thereafter nor does it provide
future research directions. Mesmoudi et al. have surveyed
localization algorithms in [31], where the algorithms are
primarily classified into range free and range based algorithms,
each of which are further classified into full schemes and
hybrid schemes. Although this work presents a comprehensive
analysis of the algorithms, mobility issues are not covered
extensively. A survey on mobile sink routing in WSNs is
presented by Tunca et al. in [32], however, it does not provide
the localization of the mobile nodes. Gu et al. in [33] have
presented an up-to-date survey on sink mobility management
with recent research progresses. However, it does not provide
source localization, and therefore classification and detailed
discussion of localization algorithms are absent.

Our work provides an update of all the latest progress on
localization techniques in WSNs. From the perspective of
parameter definition, classification of algorithms, comparative
analysis, application scenarios, and future research directions,
our work outlines the whole picture of localization in WSNs
which is different from existing state-of-the-art survey papers.
In this paper, we present the state-of-art progress of local-
ization algorithms, classification based on lucid definitions,
real world applications of localization, and finally, the future
research directions. Compared to other surveys that discuss
basic centralized and distributed algorithms, we have distin-
guished the algorithms based on network (e.g. sparse and
dense), indoor application, dependence on anchor nodes, and
mobility. This extensive classification has made this survey
paper unique. Furthermore, the in-depth application section
and future research ideas fulfill the demands of a thorough
survey paper. Compared to previous work, this survey paper
offers the following contributions:

• We provides lucid definitions of different types of local-
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ization algorithms in WSNs.
• We presents a comprehensive survey of recent advances

on localization algorithms and classify them based on
network size and anchor nodes.

• We analyze the positive and negative aspects of all
localization algorithms in WSNs.

• We discuss recent algorithms, explaining their mobility
properties and issues.

• We include a comparison among the algorithms with
respect to different parameters of WSNs.

• We present Details regarding applications of localization,
along with future research ideas.

The remainder of this paper is organized as follows: In
Sections III, IV, V and VI, we summarize the localization
algorithms. In Section VII, we present some practical appli-
cations of localization. Section VIII presents the concluding
remarks.

II. LOCALIZATION IN SPARSE AND DENSE NETWORKS

Based on the sparseness of the network, the localization
algorithms can be classified as global and sequential. Semi-
definite programming (SDP) [34], [35] is regarded as the
most prominent approach for global localization. Furthermore,
multi-dimensional scaling (MDS) is also proposed for optimal
global localization [36], [37], [38]. Note that these algorithms
can compute all the node positions simultaneously in dense
networks and are prone to faulty measurements in the sparse
networks.

The sequential approaches localize all sensor nodes sequen-
tially [39], [40]. To deal with the sparse network, two types of
algorithms have been proposed: node based localization and
component based localization.

Node based localization algorithms include ‘TERRAIN’
[41], which is based on trilateration and local maps [38], [42].
Furthermore, a collaborative multilateration based algorithm
has been proposed in [35] where neighboring nodes collabo-
rate. Since collaboration was allowed only with the neighbors,
its performance is limited, as it prunes inevitable measurement
errors. Localization schemes introduced in [42], [43] alleviate
the effects of measurement errors, such as robust quadrilaterals
[42]. Although this approach succeeds in ensuring the absence
of systematic localization error, it fails to localize properly
beyond the local sparsity. In this perspective another algorithm
named ‘Sweeps’ has been proposed in [44], which performs
better than the other node based localization methods. Al-
though ‘Sweeps’ had achieved utmost performance in node
based localization, there has been a performance gap between
‘Sweeps’ and the actual theoretical bound [45].

In component based localization, a component, a rigid
structure of a collection of nodes, is used as a basic unit
for localization. ‘Component bAsed Localization aLgorithm’
(CALL) [43] was introduced as a new mechanism for com-
ponent based localization. Since CALL is based on idealized
model, it suffers from measurement errors. To deal with the
measurement errors, another scheme called ‘Error-TOlerant
Component-based algorithm’ (ETOC) has been presented in
[11].

(a) Basic Shell Sweep algorithm. (b) A wheel network with 6 vertices.

Fig. 2. Localization using Sweeps.

In the following two paragraphs, we describe the node based
localization and component based localization.

A. Node Based Localization

The node based localization based algorithm called
‘Sweeps’ [44] is related to the iterative method ‘trilateration’.
In the trilateration method, a primary set of three nodes
with fixed location information is used to define a coordinate
system. At each stage of the algorithm, there is a set of finitely
localized nodes, where nodes can be determined up to a finite
set of possibilities, and a set of unlocalized nodes. At each
iteration, if an unlocalized node has a distance measurement to
at least two finitely localized nodes, its position is calculated
for all possible positions for itself based on the consistent
combinations of these nodes’ positions. Two nodes are said
to be consistent if they depend on the same possibility. For
example, consider a wheel network as shown in Fig. 2b where
the location of v0, v1 and v2 are fixed as v0 = (0, 0),
v1 = (a, 0) and v2 = (b, c) with a, c > 0. The lengths of
v2v3 and v0v3 compute the position v3 with binary ambiguity.
Then for each of these possible positions of v3, the information
about the length of v3v4 and v0v4 is found, which eventually
calculates the position of v4 with another binary ambiguity.
Therefore, four combinations are possible. In Fig. 2a a basic
sweeps algorithm is shown. The sweeps starts from nodes 0
and 1. Node w is finitely localized to the possible positions w
and w′. Node u uses the unique position of 1 along with two
possible positions of w. w produces the possibilities u and u1
while w′ produces the possibilities u′ and u′1. Since v depends
on w, its position is not consistent with u′ and u′1.

For a wheel network of size k + 1, the position of
v5, v6, ..., vk can be calculated with 23, 24, ..., 2k−2 ambi-
guities. However, since vk is connected to v0 and v1, the
knowledge of the associated lengths resolves the ambiguity
in the position of vk. Thus, the ambiguity of every other
position can be resolved, and the localization of the network
is established.

B. Component Based Localization

In the component based algorithm, a component is defined
as a set of nodes that constitutes a globally rigid structure
in the distance graph. Because of their rigidity, the relative
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Fig. 3. Robust realization with one internal anchor.

position of each node in a component is fixed. Unlike the
node based localization scheme, the component based local-
ization method directly locates two dimensional components.
Component based localization can be classified based on the
presence of the internal anchor in each component. In this
section, robust realization with one internal anchor and no
internal anchor are described briefly.

In the case of one internal anchor, the coordinate system reg-
istration cannot be adopted directly. For example, in Fig. 3, the
curved area denotes a component, which contains an anchor a1
and two nodes n1 and n2 sharing two edges with two external
anchors a2 and a3. Let α, θ and φ denote the angle values
of 6 a2a1a3, 6 n1a1a2 and 6 n2a1a3 respectively. Since all the
distances are known, the angle values can be calculated from
the ∆a2a1a3, ∆n1a1a2, and ∆n2a1a3, respectively. Defining
S = (α + θ + φ, α + θ − φ, α − θ + φ, α − θ − φ) and
δ as min| cosβ1 − cosβ2| for all β1, β2 ∈ S and l1, l2 as
the in-component distances of node pair (a1, n1) and (a1, n2)
respectively. Therefore, the upper bound of ranging errors for
component based localization can be expressed as:

Tc =
1

2

l1l2
l1 + l2

δ (1)

When there is no internal anchor, five interconnected edges
are used to form a system of over-determined simultaneous
equations for converting a coordinate system. In Fig. 4, the
component consists of n1, n2, n3 while n1 and n2 share
two edges with two external anchors. Anchors are denoted
as a1, a2, a3, a4 and a5. a′ is the intersecting point of a1,
a2 and a3, a4. The angle α can be calculated from ∆a′a1a4.
Since ∆n1a1a2 and length a′a2 are known, the angle θ and
the distance between l1 and ∆a′n1a1 can be computed. In
a similar fashion, φ and distance l2 from ∆a′n2a4 can be
calculated. After computing all the unknown angle values and
distances, the robustness of the structure can be evaluated by
error tolerance. If it is robust, then by using the concept of
presence of internal anchor, the component is localized.

C. Future Research Directions

One of the least explored areas of WSN localization is
sparseness of the sensor nodes in the network, which is

Fig. 4. Robust evaluation by error tolerance.

discussed in this subsection.
1) Consideration of Highest-Stress Configuration: The

node-based ‘Sweeps’ [44] algorithm disregards highest-stress
configuration in localization, where stress is defined as the
difference between the computed possible positions of two
sensor nodes and the noisy measured distance among them
along the set of edges. Future research can be directed to
consider a highest stress configuration in the localization and
provide solution to this issue.

2) Robust Algorithm Without In-component Anchors:
Among the very few research works on localization in sparse
sensor networks, Wang et al. in [11] were the first work in
robust component based localization in which the issue of
noisy range measurement has been discussed, as it can cause
structural deformation. More works are required to address
component based localization scheme. Moreover, since [11]
uses an in-component anchor, future research can investigate
robust patterns without any in-component anchors for local-
ization in wireless sensor networks.

III. ANCHOR BASED VS ANCHOR FREE LOCALIZATION

Based on whether or not a localization algorithm is utilizing
the position information of known nodes, algorithms can be
classified as “Anchor Based" and “Anchor Free" algorithms,
which are discussed in the following subsections.

A. Anchor Based Localization

In the anchor based localization technique, few nodes called
anchors or beacons are implanted with GPS, which provides
these nodes their global position. The nodes with unknown
positions collect information from the anchors to estimate
their positions by self-localization. Sometimes, these unknown
nodes also collaborate with each other and share their mutual
position information. This kind of localization is known as
remote or cooperative localization. This flow of information is
sometimes handled by the individual nodes and are sometimes
processed by a central processor. This two types of localization
based on information processing are termed as distributed
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and centralized localization, respectively. This information can
be about distance measurement or about connectivity, which
separate two different subsections of anchor based localization:
“Range based” and “Range free” localization methods. Among
the discussed anchor based algorithms [19], [21], [46], [47],
[48], [49], and [50] use least square, [12], [51], [52], [53], [54],
[55], and [56] use maximum likelihood estimation, [57], [58],
and [59] use lateration technique, [36] uses multi-dimensional
scaling, [22] uses semi-definite programming, [60] uses spec-
tral regression, [61] uses fingerprinting, and [62] uses Monte-
Carlo localization for localization of unknown nodes.

1) Range Based Approaches: Range-based estimate loca-
tion by point-to-point distance measurements. Some common
distance measurement methods are angle of arrival (AoA),
time of arrival (ToA), time difference of arrival (TDoA),
acoustic energy, and received signal strength indicator (RSSI).
The first three methods require complex hardware set up
while RSSI is simpler than the others but less accurate. After
gathering the information of anchors and sometimes of other
unknown nodes, distances are combined using techniques like
lateration or particle filter etc.

A range based distributed localization algorithm using MDS
is proposed in [36]. In this approach, using classical MDS
and iterative MDS, local maps of the adjacent sensors are
constructed. MDS utilizes the pairwise distances between the
nodes to calculate the location of the sensors, and the iterative
approach is adopted when distances between the node pairs
are unavailable. After implementation of MDS to build local
maps, the alignment method is applied to stitch the maps.
Using the RSSI and its relation with the distance measurement,
the relative position between nodes can be approximated. The
alignment starts with the distance measurement from a starting
anchor node and gradually floods the whole network while
other anchor nodes are placed at the boundary. Thus, the
position estimation is propagated from a starting anchor node
to the ending anchor nodes. While the position of an unknown
node is estimated, it is considered as an anchor node for
position estimation for other nodes. In the small areas, to
conserve time and energy, a modified version of distributed
localization, On Demand Distributed Position Estimation, was
also proposed, based on MDS for one or several adjacent
sensors locations. The simulation results show that although
this iterative MDS method showed similar robust behavior to
distance measurement error like classical MDS [63], they also
show that increasing the number of pairwise distances does
not increase the error rate, whereas in classical MDS it did.
In Fig. 5a classical MDS is explained where A, B, C, and
D are four adjacent sensors and r is the radio range. Among
the sensors A, B, and C are nodes with known location. D
collects the location information of A, B, and C and calculates
the pairwise distances as well as the distances of D to A, B, and
C respectively. Thus D performs a classical MDS. On the other
hand in Fig. 5b, A, B, C, D, E, and F are six adjacent sensors
and r is the radio range. E and F are the only nodes with
unknown positions. E collects the position information of A,
B and their distances to them. Similarly F collects the position
information of C, D and their distances to them. Moreover E
broadcasts the collected distance information to F. In this way

(a) Classical MDS. (b) Iterative MDS.

Fig. 5. MDS based techniques.

F can gauge the pairwise distances of the six sensors excluding
the distances of AF, BF, CE, and DE. Thus F can perform an
iterative MDS to build a local map.

The researchers in [46] discuss the range based source
localization problem in which distance measurement of the
path loss model has been formulated as a ratio of two powers.
In the conventional path loss model, RSS value can be modeled
as:

Ri = R0 − 10n log10(di/d0) +Xi (2)

where R0 is the source transmitting power, Ri is the measured
RSS at the receiver, and n is the path loss exponent. In
unknown environment both R0 and n are unknown, which
make the proper location computation a very difficult task. In
this research work, the model has been simplified into such
a position where only path loss exponent, n, is the unknown
parameter. Using a search method within a specific boundary,
the path loss exponent is found and the source location is
estimated implementing linear least squares. This localiza-
tion scheme has been compared to centroid and linearization
methods. It has been found from the simulation outputs that
the proposed method performs better than other two since
its localization accuracy does not deteriorate due to various
geometric conditions.

A received signal strength indicator (RSSI) based localiza-
tion technique using cognitive sense has been proposed in [51]
and is known as cognitive maximum likelihood (C-ML). At
first the nature of the environment is judged on whether it
is homogeneous or non-homogeneous. A hypothesis testing is
then derived called generalized likelihood ratio test (GLRT).
Based on the output of the GLRT test, an appropriate ML-
based localization algorithm, either homogeneous maximum
likelihood (H-ML) or non-homogeneous maximum likelihood
(NH-ML) is selected. Separate propagation parameters are
derived for both scenarios. The performance of the pro-
posed algorithms has been compared by extensive simula-
tions. Simulation results confirm that both C-ML and NH-
ML localizers perform well in both homogeneous and non-
homogeneous environments. Furthermore, the NH-ML and H-
ML localizers show similar performance when the number
of observations and number of anchor nodes are higher in a
homogeneous environment. Oğuz-Ekim et al. propose a range
based maximum-likelihood (ML) algorithm in [22]. The core
idea is to devise a source localization method by constructing a
ML estimation problem followed by convex relaxation of ML
through SDP. Source localization in complex plane (SLCP), a
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2D localization previously proposed in [64], is the reference
for the novel idea while the new SDR method is designated
as source localization with nuclear norm (SLNN) considering
the Gaussian noise. Similarly, another improved version of
[65] for Laplacian noise is also presented, termed SL-l1.
Along with basic 2D and 3D, higher dimension scenarios are
also considered for the proposed frameworks. The simulation
results confirm that the constant behavior of proposed l1 based
algorithms and Laplacian noise based algorithms performed
better than others.

An energy-efficient range based localization has been pro-
posed by Yaghoubi et al. in [47]. In this locallization tech-
nique, the average energy of the received anchor is introduced
as a new decision metric for the localization. The localization
algorithm has been proposed to show a relationship with
the power allocation of the anchor nodes. Two cases were
considered: localization assuming error free anchor nodes lo-
cation and localization considering the erroneous anchor nodes
position. Through mathematical computation, it is proven that
localization accuracy can be regulated by different power
allocation of the anchor nodes. The simulation results support
the mathematical derivation presented in this study by showing
that optimal power allocation performed better than the equal
power allocation algorithm both in error free and erroneous
anchor position cases.

A range based localization model that considers a Bayesian
approach has been proposed in [19]. Instead of a conventional
path loss model, this work presents a ranging measurement
using a Bayesian model. To devise a model that needs less
prior information, this research work adopts the ‘Empirical
Bayes’ [66], [67] approach. The advantage of this ‘Empirical
Bayes’ is that it requires less conditional prior knowledge.
To find the Bayesian estimation more easily, some conditions
are applied. In this method, a minimum mean square error
(MMSE) estimator is derived for final estimation as condi-
tional mean. The estimator includes a shrinkage factor that
corrects the range measurement. For the positioning, this al-
gorithm uses iterative least square (ILS) rather than lateration.
ILS updates the estimated position of unknown nodes through
iterations. Through the simulations this mechanism is com-
pared to other contemporary methods. The MMSE performs
better than the path loss model (PLM), and ILS performs better
than lateration. This mechanism is also compared to range-
free ML estimation, which requires numerical optimization.
Simulation results also reveal that the proposed method is close
to the ML estimation based method in terms of performance.
Furthermore, this scheme is innately robust due to its shrinking
factor.

2) Other Range Based Approaches: A semi-3D range based
localization scheme has been proposed in [48]. This algorithm
utilizes Heron’s formula of tetrahedron to compute the height
of the unknown node. This method calculates the distances
between nodes and the anchors as well as the mutual distances
of the anchors. Such distances form a tetrahedron whose
volume can be calculated using the Heron’s formula. Due to
the implementation of the tetrahedron, only three anchor nodes
are required for the localization. A necessary transformation of
the coordinate systems is done using the transformation matrix

to specify an arbitrary point in 3D. Finally, a 2D linear least
square estimation (LLSE) [68] is performed to localize the
unknown node. To evaluate the performance of the proposed
scheme, it was compared to the conventional 3D LLSE and 3D
Levenberg-Marquardt (LM) [69] method. From the simulation
results, it is evident that while localization accuracy of 3D
LLSE is better than that of 3D LM, the localization accuracy of
the proposed method is better than that of 3D LM. Moreover,
since the proposed method considers anchor nodes of similar
height it does not suffer from the singular matrix problem like
3D LLSE, and its unreliant behaviors on iteration and initial
location measurement have made this method simpler than 3D
LM.

A comprehensive discussion on the different scenarios of
ML based localization and a novel non-convex estimator is
presented in [21]. In the ML based localization approach, the
multiple local minima of the non-convex objective function
in an ML estimator is a crucial problem for formulating a
localization algorithm. In this research work a new non-convex
maximum likelihood estimator is proposed along with the em-
ployment of convex relaxation to relax the proposed estimator.
Different techniques has been applied for different localization
algorithms. Second-order cone programming (SOCP) is ap-
plied for non-cooperative localization and SDP for cooperative
localization. It also considers the case of unknown source
transmission power and path loss exponent for both non-
cooperative and cooperative localization. Performance of the
proposed algorithm has been tested with other existing ap-
proaches. Simulations are conducted for both noncooperative
and cooperative scenarios with different parametric variations:
a localization scenario in which source transmission power
PT is known, in which source transmission power PT is
unknown, and in which both source transmission power and
path loss exponent γ are unknown. The noncooperative lo-
calization method outperforms existing localization schemes
with regards to estimation accuracy while error is reduced
up to 15% in the case of known PT . Furthermore, in the
case of unknown PT and γ, this scheme also performs better
than other methods. It is observed that with the increment
of the number of anchor nodes, the proposed method shows
more improved results. Although the cooperative localization
scheme is more complex than the noncooperative case, it still
outperforms other techniques. The increased number of source
nodes still provides good estimation accuracy, thereby proving
this proposed method to be a better localization method than
other state-of-art methods.

An acoustic energy based localization method has been
proposed in [52] with an objective to improve the accuracy
of the maximum likelihood energy based acoustic source
localization. During the process, acoustic noises corrupt the
source signal, and the correlation degree of the corrupted
signal is represented by Hurst exponent [70]. Theoretically,
Hurst exponent is illustrated by the decaying rate of the
auto-correlation coefficient function. Acoustic energy of a
sample signal has been formulated and further modified to
derive a compact form of acoustic source localization model.
Hurst exponent estimation examines the correlation degree of
the noisy signals, and the wavelet-based method [71], [72],
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[73] is typically used to estimate the Hurst exponent. In the
proposed scheme signal samples are represented by fractional
Gaussian noise (fGn), which models any degree of correlation
using Hurst exponent and energy measurement error. fGn
is produced by applying the midpoint displacement scheme
[74]. From the simulation results, it is proven that fGn is a
better way of representing the correlation among the received
signals. The estimation process is named as ‘H-ML-Energy’
localization estimation, which calculates maximum likelihood
estimation function using a gain matrix, an attenuation matrix,
an acoustic energy source vector, and an error vector. Joint
probability density function is the next step derived from
the maximum likelihood estimation matrix. Finally, the log-
likelihood function is formulated from the density function.
The minimum value of this log-likelihood function could be
found using multiresolution search [75] or exhaustive search.
In the simulation three sources (Car, Helicopter, and Speech)
and three noises (Babble, Car, F16) are used in the Monte
Carlo experiment for the evaluation of the proposed method.
To measure the accuracy of the scheme, three different param-
eters are used: error probability distribution, Bhattacharyya
distance, and root mean square error (RMSE). The results
show that the proposed approach performs a lot better than
baseline ML-Energy in the presence of a noisy atmosphere.

Shen et al. present a new research work in [49] to discuss
the concept of multiple source localization. This algorithm
adopts ToA measurements among the nodes and the opti-
mization technique to address the problem of multiple source
localization. ToA measurement vectors can be represented by
an optimization consisting of a mixed integer problem and
three norms (l2-norm, l1-norm, l∞-norm), based on different
design criteria. A three step approach has been proposed in
the idea to solve this complex optimization problem. In the
first step, the conventional integer problem is relaxed into a
continuous problem, and then a convex optimization algorithm
is applied to solve it. The output from the first step is a
course measurement, which is then improved in the second
step by utilizing the attained association information. In the
second step, the permutation matrix, found in the first step,
is modified. Finally, in the third step, the problem is divided
again into multiple subproblems, and the results from the first
step are used as initial values in the third step, eventually
improving the localization accuracy. Simulations have been
conducted to determine the feasibility of the discussed research
work. It is observed that the performance gap between this
proposed algorithm and genie-aided algorithm is very small
even for high SNR. Among the three norms, l2-norm performs
best while l1-norm performs better than l∞-norm. The mea-
surement technique adopted in this algorithm is ToA. This is
compared with two other techniques, the first case of which
one sensor node is used as the reference node to calculate
TDoA and the second case of which all sensor nodes are
used. Simulation results prove that the ToA based algorithm
outperforms the first setup and shows similar performance to
the second setup.

An anchor based localization using dual embedding spectral
regression (DESR) has been proposed by Gepshtein et al. in
[60]. In this new concept, DESR has been proposed in order to

compute an adaptive base by computing the dual embedding
of the network distances. According to the dual embedding,
the input noisy distance measurements are first embedded by
diffusion embedding [76], [77], which is followed by Isomap
embedding [78]. To improve localization another approach,
augmented dual embedding spectral regression (ADESR), is
also proposed, which augments the number of distance mea-
surements by implementing patch-based localization schemes
[79], [80], [81]. To verify the added distances, ‘Triangular
Inequality’ is applied as a preprocessing step for the input
distance measurements, which finds error probability of a node
position. Extensive simulations are conducted to prove the
superiority of the proposed method over the other state-of-art
methods. This algorithm is compared with ASAP [79], ARAP
[81], SR [76] and SDP-SNL [82]. When ADESR is compared
with ASAP and ARAP, the nodes are connected to each other,
and the number of anchor points are 30. At low noise level,
the performance of the proposed method is similar to the
other two schemes, but with the increment of noise level, the
accuracy of ADESR increases significantly compared to ASAP
and ARAP. Similarly, different variations of ADESR show
better performance than SDP-SNL with the increment of noise
level. When comparing the ADESR with SR in the nonconvex
domain, the results prove again the superiority of the proposed
scheme. Fig. 6 illustrates the computational augmentation of
network distances. Here two network strips are localized in
order to estimate the distance d5,14.

A cooperative (non-Bayesian) localization, proposed by Yin
et al. in [53], adopts expectation-conditional maximization
(ECM) criterion to approximate the ML estimator of unknown
sensor locations. This work is an extension of the previous
work done by the same research group in [83]. The proposed
model represents the measurement error distribution by Gaus-
sian mixture parameters. In this research work one centralized
ECM and two distributed ECM algorithms are presented.
In the centralized ECM algorithm, a two-dimensional (2-
D) Broyden-Fletcher-Goldfarb-Shanno (BFGS) Quasi-Newton
(QN) method [84] is applied for position estimation of sensor
nodes. In the first distributed algorithm, to make the algorithm
scalable, synchronous average consensus algorithm [85] is
applied assuming that sensors are time-synchronized. On the
other hand, the second distributed ECM algorithm 2-D BFGS-
QN or 1-D GS method is implemented to compute the position
as the positions are updated simultaneously. Simulations have
been done to compare the proposed algorithm with some
state-of-art methods such as distributed LS algorithm [20],
classical SPAWN algorithm [20] , and its variations [86], [87].
Simulations are intended to compare the performance among
these algorithms with respect to variable network size and
measurement error statistics. When the network size is large,
ECM algorithm outperforms distributed LS algorithm and is
similar to the classical SPAWN algorithm. Again, ECM shows
significant performance compared to the parametric SPAWN
algorithm [87] when sensors are greater than 100. On the flip
side, ECM is proven to be less suitable for smaller network
size. This ECM algorithm has been further experimented upon
with varying different network topologies and measurement
error statistics. Results imply that overlap of the Gaussian mix-
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(a) (b) (c)

Fig. 6. Augmentation of network distances. Two network patches (a) and (b) are localized to measure the distance d5,13.

ture model might degrade the performance. Hence, compared
to a Bayesian approach like SPAWN [20], this non-Bayesian
algorithm performs closely without demanding any precise
measurement error statistics or complex NLOS identification.

Another cooperative localization approach has been pro-
posed in [50]. Firstly, this research work derives a Fisher
information matrix (FIM) considering the NLOS ranging bias
model. Among two extreme cases, Gaussian proves to be the
worst due to NLOS effect while constant bias shows the best
result to be almost equivalent to full LOS condition. Position
error bounds (PEB) of three separate localization algorithms
(least square (LS), squared-range LS (SR-LS), squared-range
weighted LS (SR-WLS)) are computed and then found that LS
and SR-WLS are asymptotically efficient. Finally a distributed
algorithm is designed with a combination of squared range
relaxation and variational Bayesian inference based variational
message passing (VMP) [88]. To examine the performance
of the network in the stochastic manner, Gilbert’s disk local-
ization [89] is implemented in which Gaussian measurement
noises and LOS are homogeneous in nature. Generalized
trust region sub-problem (GTRS) technique [90], generally
used in non-cooperative localization, is also adopted in the
proposed distributed cooperative localization. The simulation
results indicate that the distributed version of the cooperative
algorithm is more cost effective in terms of message exchange
and time consumption when compared to the centralized one.

The researchers in [12] propose an algorithm that proves the
mobility information of nodes can improve the accuracy of a
localization scheme. This algorithm uses two types of range
measurement technique, ToA and RSS. At first, a ML esti-
mator is derived considering error free velocity measurements
for the ToA based range measurement model. Two different
approaches of SDP relaxation are used to relax the obtained
non-convex objective function. Then the SDP relaxation tech-
nique is applied for a noisy velocity measurement. The same
procedure is continued for the RSS based range measurement
model. Simulations have been conducted for both ToA and
RSS range measurements considering two different measure-
ment scenarios: error free velocity measurement and noisy
velocity measurement. It has been found that the increment
of anchor nodes and radio range improves the localization
accuracy. Furthermore, it has been shown that the maximum
velocity of a movement has more effect on the accuracy of
the localization than the number of anchor nodes and radio
range. Similarly from the simulation results of RSS based
measurement model, velocity of nodes is proven to be the most
significant factor in the accuracy of the proposed scheme.

Another iterative distributed localization algorithm has been
proposed in [58]. In this work, the node’s position is rep-
resented in the barycentric coordinate system [91], which is
introduced as a geometric notion characterizing the relative
location of a point with respect to other points. This research
idea is motivated by the ‘Distributed Iterative LOClization’
(DILOC) method [92], [93], in which sensor location can be
represented as a pseudo linear system. This proposed method
in [58] is different from the typical DILOC method since
each sensor does not have to lie inside the convex hull of
its neighbors, as it is not suitable from a practical point
of view, especially in the case of large sensor networks. A
typical DILOC algorithm may not converge due to the insta-
bility of generalized barycentric coordinates. To overcome this
problem, an iterative distributed algorithm termed ‘Extended
Computation scHeme of cOordinate’ (ECHO) is devised to
solve the problem of unstable matrix formation in the DILOC
algorithm, thus ensuring the global convergence exponentially.
Finally, simulation results confirm its superiority over MDS
based localization algorithm.

Researchers in [94] have proposed a novel localization al-
gorithm based on the data fusion technique ‘Dempster-Shafer’
(DS) theory, a dynamic generalization of Bayesian probability
theory. In this proposal, in addition to RSS and AoA a unique
technique named Standby has been adopted along with a
significant feature of DS theory named the basic probability
assignment (BPA). The concept of BPA includes belief and
plausibility, representing accordingly the best and worst case
scenarios. A BPA has three important properties, lower bound,
upper bound, and confidence. The proposed algorithm starts
with the regular collection of the distance measurements RSS,
AoA, and standby distance. Then the following procedure is
continued for each observation per feature. After filtering the
data the minimum and maximum values are considered as the
lower and upper bounds of the BPA. In the next step, after
sampling all the BPAs, they are aggregated. Since the BPAs are
aggregated, the third property of BPA, confidence, is assumed
as 1. After the aggregation, the most plausible distance has
been predicted along with lower and upper bound of it. Finally,
the measured value and the most plausible value are compared
for a more accurate localization.

3) Range Free (non-range based) Approaches: Range free
localization algorithms use connectivity information among
the nodes to determine the positions of unknown nodes. Since
the range based methods require a hardware setup that is both
complex and costly, a range free method can be a possible
solution to hardware limitation problems. Recently proposed
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anchor based range free localization algorithms are discussed
in this subsection.

Wang et al. in [11] have proposed a range free localization
algorithm as an improvement to regular DV-Hop algorithm.
The idea of regulated neighborhood distance (RND) has been
proposed in [95], using the disk communication model for
localization. In [11] the RND concept had been revisited
and revamped with an attempt to apply RND in the general
propagation model. The main objective of the RND algorithm
is to fix the problem of hop-distance ambiguity by measuring
the proximity of two neighboring nodes. In this algorithm,
packet reception rate (PRR) is used as a parameter to define
‘hop’ and ‘neighboring node’. A node i is the neighbor of
node j if the PRR at node i from the node j is not smaller
than the PRR threshold (γ). The first step of localization using
this algorithm is to compute the shortest RND of all pairs of
anchor nodes, which is determined with the Floyd-Warshall
[96] algorithm. Then the correction factor is computed, which
measures the network-wide distance-per-hop. After that, dis-
tances between anchor nodes and unknown nodes can be
determined. Trilateration algorithm is used to estimate the
position of an unknown node after the distances from three
anchors to the unknown node are determined. Measurements
in all these steps depend on the proper consideration of
number of localization packet T and PRR threshold γ. Due
to the adaptive property of the proposed algorithm, it is
termed as DV-ARND localization. The proposed algorithm has
been compared with the DV-Hop and DV-Distance algorithm
[97] through simulations. Simulation results confirm that DV-
ARND outperforms DV-Hop algorithm under both log-normal
shadowing and polynomial fitting model. It is observed that
when the number of nodes is increased, the performance of
DV-RND improves further.

An improvement on the ML based localization method
has been proposed in [55], discussing the issue of non-
synchronized sensors. It adopts ToA of the arbitrary signals,
and it suggests a convex method to overcome the problem of
convergence to the local minima by using an iterative method
to find the optimum global minimum through iterations. To
estimate the clock offsets and source position, an iterative
ML estimator is presented that insures a non-increasing cost
function after each iteration. For synchronization using convex
optimization, maximum volume inscribed ellipsoid (MVIE)
[98] is implemented. The implementation of MVIE along with
ML reduces the number of iterations required for the iterative
ML to converge. Simulation results also confirm that MVIE
initial guess reduces the number of iterations required for the
convergence of the iterative ML estimator.

Lasla et al. propose an area-based localization algorithm
in [99], where a novel technique half symmetric lens (HSL)
is introduced. Rather than using conventional circular or ring
based shapes, authors use a shape called symmetric lens or
Vesica piscis [100]. To exchange information among the nodes,
RSSI is used. A symmetric lens shape is created for each
pair of anchor nodes and divided into two halves. Then it is
calculated whether a node is inside a half or not by comparing
the RSSI values among the nodes. To estimate the coordinates
of the nodes, this method adopts a grid scan algorithm to

measure an approximated area. To overcome the problem of
a non-localizable node, HSL divides the whole area into a
set of disjoint regions utilizing Voronoi tessellation [101].
The non-localizable node can find its position among one
of these regions by comparing the heard information from
different anchors. To analyze its performance this algorithm
has been compared to APIT, ROCRSSIA, and a circular
based algorithm DRLS [102], considering a ratio of localizable
nodes and estimation error as the comparing parameters. Ratio
of localizable nodes is defined as the percentage of nodes
accurately located in the residence area, and estimation error is
defined as the difference between actual and estimated distance
of a node. Comparing with respect to ratio of localizable
nodes, HSL outperforms other algorithm even if they all use
the Voronoi technique. This is mainly due to the basic half
symmetric lens shape used by the HSL. Similarly, in terms of
estimation error HSL prevails over other mentioned algorithms
because of the usage of the geometric shape by HSL, which
produces a smaller residence area. Moreover, HSL performs
even better than DRLS at the presence of noise. Fig. 7 has
illustrated the area construction according to HSL algorithm.
In this figure, A1, A2, and A3 are three anchor nodes, and S
is the node to be located. The network can be divided into
three sub-areas VNA(A1), VNA(A2), and VNA(A3) according
to Voronoi diagram. Initially node S locates itself in cell
VNA(A1), but later it considers the distance and RSSI values
from two other anchors and refines its residence area.

A maximum likelihood based distributed localization al-
gorithm has been proposed by Simonetto et al. in [54]. In
this research paper, a ML based convex relaxation has been
proposed with a detailed description of its characteristics. The
ML based relaxation has been examined for different noise
distributions like Gaussian noise relaxation, quantized ob-
servation relaxation, Laplacian noise relaxation, and uniform
noise relaxation. The ML based relaxation method is further
massaged into an edge-based ML relaxation method. Based
on the edge-based ML relaxation, a distributed algorithm has
been proposed that employs the alternating direction method
of multipliers (ADMM) [103], [104]. ADMM is chosen due
to its noise and error resilient nature and because very few
assumptions are required to ensure the convergence. The
algorithm is compared with two other distributed algorithms:
sequential greedy optimization (SGO) [105] and distributed
maximum variance unfolding (MVU) [106]. The comparative
analysis among these three algorithms reveal that the proposed
algorithm is best in terms of good convergence rate with
a reasonable communication cost and especially suitable for
large scale networks.

A fingerprinting based decentralized localization algorithm
DWKNN is presented in [61], which adopts accelerometer
information for better accuracy. This method completes the
localization of an unknown node in two steps. In the first
configuration step the area is divided into several zones where
an RSSI fingerprint is used to form local maps for each
zone. Then using the nearest neighbor (NN) [107], [108]
algorithm, the location of the nodes is estimated. The local
maps are gradually converted into a global map after each time
step. To improve the global estimate, mobility information of
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Fig. 7. Area construction in HSL. (a) shows the first consideration of node s residing in V N(A1). (b) shows modified residence of s as HSL(A1, A2) after
the consideration of RSSI values. (c) shows the final refined residence area considering other anchors.

some selected nodes are used in this localization algorithm.
For the implementation of mobility information two methods
are adopted: interval analysis [109], which estimates the
position by considering all possible solutions and Kalman
filtering [110], which uses accelerator information to predict
the position and corrects them later using radio fingerprinting.
The methods are termed DWKNN-I and DWKNN-K, respec-
tively. This proposed algorithm has been compared with other
recent localization algorithms, which includes range based,
connectivity based, and fingerprinting based algorithms. In
the simulation environment, both versions of the proposed
algorithm outperform the concurrent algorithms.

A novel historical-beacon aided localization method has
been proposed in [62], which exploits a historical beacon
together with a current beacon to estimate a node’s position.
This method can be divided into three phases. In the first
sample, generating a phase possible region of a node’s location
is estimated by finding the intersection of the one-hop-anchor
constrained regions with the historical-anchor-constrained re-
gion. A constrained region is defined as an area that covers
the location of a regular target node. In the second phase,
the sample filtering phase, invalid samples are filtered by
means of three proposed RSS based constrained regions. These
regions are constructed using the beacon pairs from both types:
current beacon and historical beacon. Depending on their
combinations, the three formed regions are: current-current-
RSS-constrained region (CC-region), current-historical-RSS-
constrained region (CH-region), and historical-historical-RSS-
constrained region (HH-region). At the last location estimation
phase, the location of a unknown node is estimated as the
centroid of all valid samples.

In [59], the researchers propose a multi-hop localization
technique with an objective to solve the complex localization
problem of the Amazon River. The thick forest structure and
the mobility of sensor nodes make the problem difficult and
complex in devising an accurate localization method. To form
the network, network formation packets are flooded among the

anchor nodes. In this network topology formation, a sensor
node can act both as an anchor and a sensor node while
continuously exchanging the packets with the anchor nodes.
Since the sensor nodes drift with the current of the river water,
their mobility pattern cannot be depicted by the conventional
mobility model. In this research work, the movement of the
sensor nodes is modeled by a standard stream function [111].
Each sensor node collects the data about its direct neighbors
and their corresponding weights. To estimate the position, each
sensor node updates its weight value locally, which confirms
the distribution of each anchor information in its nearby areas.
The basic reason to update the information locally is to adapt
to the continuously changing network topology along with the
node mobility. Each sensor node’s weight values are collected
for three anchors, and its relative distance is computed ac-
cording to the one-hop distances and their weights. Finally,
when a sensor node is affiliated with multiple anchor nodes,
its location is estimated using the lateration technique.

The abbreviations of the metrics used in the following
comparison tables are listed in Table II and the comparison
among the anchor based algorithms is given in Table III.

B. Anchor Free Localization

Anchor-free localization algorithms do not depend on the
location information of some certain nodes to evaluate the
actual position of unknown nodes. These algorithms have
freedom on translation and orientation. Based on the usage
of the range measurement technique, these localization al-
gorithms are divided in two ways: range based anchor free
and range free anchor free. Anchor free localization algo-
rithms do not require the anchor selection process, which
is very complicated. In the following two sections, anchor
free localization algorithms of range based and range free
types are discussed in detail. [42] adopts trilateration, [41]
uses triangulation, and [112], [113] adopts multi-dimensional
scaling for localization. Furthermore, [114], [115] utilize both
multilateration and MDS for localization.
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TABLE II
SUMMARY OF ABBREVIATIONS.

Acoustic Acoustic signal M Medium

BRL Bayesian Ranging Based Method MCL Monte Carlo Localization

Centra Centralized MDS Multi-Dimensional Scaling

CF Curve Fitting MSL Multiple Source Localization

Co Cooperation among nodes Multila Multilateration

Coop Cooperative N No

Connect Connectivity ND Node’s Density

CS Compressive Sensing NM Node’s Mobility

Distri Distributed NonCoop Non-Cooperative

EEL Energy Efficient Localization NS Not-Specified

EKF Extended Kalman Filter PL Passive Localization

FP Fingerprinting RA Residence Area

Geo Geometric RC Range Combinations

H High RM Range Measurement

IEL Interpolation-Extrapolation based Localization RSSI Received Signal Strength Indicator

ILS Iterative Least Square Sc Scalability

IML Iterative Maximum Likelihood SDP Semi-Definite Programming

KDE Kernel Density Estimation SOCP Second Order Cone Programming

KNN K-Nearest Neighbor SR Spectral Regression

L Low TDoA Time Difference of Arrival

LAc Localization Accuracy ToA Time of Arrival

LLSE Linear Least Square Estimation ToF Time of Flight

LM Localization Method Triang Triangulation

LS Least Square Trilat Trilateration

LWUPLM Localization With Unknown Path-Loss Model Y Yes

TABLE III
COMPARISON AMONG “ANCHOR BASED" LOCALIZATION ALGORITHMS.

Localization Algorithm RM RC ND LM Sc NM Co LAc

Distributed MDS [36] RSSI MDS M Distri Y N Coop M

LWUPLM [46] RSSI LS M Distri Y N NonCoop M

EEL [47] RSSI LS M Distri Y N NonCoop M

SLNN [22] ToA SDP M Centra N N NonCoop H

LLSE [48] RSSI/ToA LS M Distri Y N NonCoop M

C-ML [51] RSSI MLE M Distri N N NonCoop H

SOCP+SDP/SOCP [21] RSSI LS M Centra Y N Coop+NonCoop H

fGn [52] Acoustic MLE M Centra Y N NonCoop H

MSL [49] ToA LS M Centra Y N NonCoop M

BRL [19] RSSI ILS H Centra Y N NonCoop M

DESR [60] Connect SR M Centra Y N Coop H

Distributed ECM [53] ToA MLE H Distri Y N Coop M

Distributed LS [50] NS RM LS H Distri Y N Coop M

Moblity-Aided SDP [12] ToA+RSSI MLE M Distri Y Y NonCoop M

DV-ARND [57] Connect Trilat H Distri/Centra Y N Coop H

PL [55] ToA IML M Distri/Centra Y N NonCoop M

HSL [99] RSSI+Connect RA M Distri Y N NonCoop H

ADMM [54] Connect MLE M Distri Y N Coop M

ECHO [58] NS Trilat M Distri Y N Coop H

DWKNN [61] RSSI FP L Distri Y Y NonCoop H

HitBall [62] RSSI MCL M Distri Y Y NonCoop M

M-Mobility [59] Connect Multila M Centra Y Y Coop M

DS Theory [94] RSS+AoA Trilat M Centra N N NonCoop H
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1) Range Based Approaches: This type of algorithm uses
measurement information between nodes. The distance can
be measured based on criteria such as ToA, TDoA, acoustic
energy, or RSSI. The anchor free algorithms based on range
based measurements are also known as cooperative localiza-
tion.

In [41] the researchers present an anchor free localization
method using the range measurements. An algorithm known
as assumption based coordinates (ABC) is presented to de-
termine the local position of each node. According to this
methodology, a node receives information about the range
measurements from a large number of neighboring nodes,
which is later used to correct errors that happen during the
local positioning. For global localization each node shares its
local position with the neighboring nodes, eventually forming
a single global map. An anchor based algorithm, triangulation
via extended range and redundant association of intermediate
nodes (TERRAIN), is also discussed in this research work.
TERRAIN uses ABC in each anchor node and transmits them
to the other nodes to construct global mapping of the nodes.
An iterative local triangulation is also suggested for better
location accuracy.

Priyantha et al. propose an anchor free distributed local-
ization, anchor-free localization (AFL) in [18], emphasizing
the fold-freedom of the nodes. Fold-free graph construction
of nodes is defined as the proper orientation of the nodes
after every global translation. Constructing a fold-free contour
of the nodes is the first step of AFL initiated to solve the
problem of false minima. Five nodes are selected as reference
nodes in such a way that four of them are on the boundary
while the fifth one is in the middle. In the second step, the
mass-spring optimization technique is applied to exchange the
position information amid the nodes for better localization
accuracy, which results in a low probability of converging to
a local minimum. While comparing the performance of the
AFL algorithm with the incremental scheme, it is found that
the proposed AFL algorithm performs better even with small
connectivity and shows good accuracy.

Moore et al. propose a range measurement based anchor
free localization algorithm, ‘RObust Distributed network Lo-
calization with noisy range measurements’ (RODL), in [42]. In
this research idea, both the flip ambiguity and the noisy mea-
surement are considered. It adopts a cluster based localization,
which uses quadrilaterals to avoid flip ambiguities. The overall
functionality of this algorithm can be divided into three phases.
The first phase completes the cluster localization by keeping
each node in the center. Through the overlapping of the
quads, the largest subgraph is found. Position of the nodes is
determined by the sequential calculation of the quadrilaterals.
In the second cluster, formation is improved by usage of
numerical optimization. In the last phase, all the local clusters
are combined using the common nodes among the clusters.
This research work also considers the mobility issues. Since
the mobile localization has more noise than static localization,
it uses least square optimization for position estimation.

2) Range Free Approaches: Several range free localization
techniques have adopted anchor free node distribution for more
realistic consideration of a localization problem. In the last few

years, researchers have been developing a substantial amount
of algorithms for range free anchor free localization. These
algorithms are based on MDS and ‘map stitching’, including
some hybrid approaches. The core idea of these algorithms is
explained below:

The research work in [112] presents MDS-MAP as a
possible solution to the anchor free localization problem.
The overall algorithm can be outlined in three steps. In
the first step, the shortest path between all pairs of nodes
are calculated to make a distance matrix. Distances between
nodes are computed using proximity information. Proximity
information might be obtained from a radio or sound source,
wherein proximity information can be enhanced using distance
measurement. Utilizing this distance matrix, MDS constructs
a 2-D or 3-D map, which depicts the relative position of all
nodes in the second step. Finally, with the help of known
positions of some nodes, information about absolute location
can be computed from relative positioning of the nodes. For
the absolute location of the nodes, it requires only three anchor
nodes when nodes were placed in a grid and four nodes when
nodes are placed randomly with a position error less than 50%
of the radio range. This algorithm performs better than other
similar algorithms like DV-Hop or Hop-TERRAIN in the case
of low anchor nodes. However, as the number of anchor nodes
gets larger, this algorithm does not perform as well as the other
algorithms.

An improved version of [112] has been proposed in [113], in
which centralized MDS-MAP has been transformed into dis-
tributed MDS-MAP(D) using the concept of positioning using
local maps (PLM). At the primary stage of this algorithm,
each node computes its local map using MDS-MAP [112].
All the local maps are then connected based on the pair of
adjacent nodes common among those local maps. Then, the
position of each node is determined with respect to the center
node. During the alignment of the local maps, an optimal
linear transformation is calculated for the transformation of
the common nodes from one map to another. From there,
least square minimization is used to minimize the distances
between the neighboring nodes. For the calculation of absolute
position, a mass-spring model is utilized to refine its position
with respect to its neighbor’s calculated position. Simulations
have been conducted to compare this algorithm with APS and
MDS-MAP(P), which is an improved version of MDS-MAP
performed on irregular topologies. Simulation results show
that MDS-MAP(D) performs well both in regular and irregular
shaped networks if connectivity is ranged from medium to
high.

A map-stitching based localization has been proposed in
[114]. According to this algorithm, a local map is formed
for each component of the network. For the construction of
local maps both multilateration and MDS based methods are
considered. The second step is the stitching of local maps.
The first contribution of this work is to devise a method for
map-map stitching. For the stitching purpose, a core node is
selected based either on some criterion or randomly. The local
maps are coined as primitive maps, which then participate
to form a core map. After the selection of core maps, all
primitive maps are stitched to the core map in succession. This
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algorithm proposes several methods based on distinct stitching
conditions to coordinate the stitching procedure. This is the
second contribution of this research work. Basic stitching,
onion stitching, MCF stitching, and MaxMin stitching are the
proposed methods. Simulations results have been presented
comparing each stitching method. Regardless of the method,
the proposed stitching algorithm outperforms other existing
absolute orientation methods. Moreover, among the proposed
stitching methods, Basic and Onion stitching perform better
than the two other methods, since they use a smaller number
of common nodes.

Another map-stitching based algorithm has been proposed
by Kwon et al. in [115]. The prime contribution of this
research is to prevent flip error in the localization. During the
stitching each transformation can be described by three oper-
ations: a translation, a rotation, and/or a reflection. Flip ambi-
guity is defined as the minimum stitching errors achievable by
reflectional and reflectionless transformations. If a flip graph
has both kind of operations, then it is called ‘Flip conflict’. In
this research, methods for computing the flip ambiguities and
for solving the flip conflicts are proposed. For the localization,
two patch construction methods have been adopted. MDS and
iterative multilateration are the chosen techniques for path
construction. Finally, utilizing the information of a reference
coordinate system, global coordinates can be computed. Some
other anchor free localization algorithms are MDS based
Greedy Stitching, Robust Quadrilaterals [42], and Extended
Absolute Orientation Transformation [116]. The MDS based
and multilateration version of the proposed algorithm perform
better than other algorithms in the case of success rate and
localization accuracy. A comparative study among the anchor
free algorithms discussed above is given in Table IV.

C. Future Research Directions: Anchor Based Methods

We have included several research ideas in this section
based on those discussed in the ‘Anchor based and anchor free
localization’ section. Ideas will be discussed mentioning the
current research advancement to the best of our knowledge.

1) Energy Efficient Localization: Energy efficiency is a
primary concern for wireless sensor networks. Very few papers
discuss the transmission powers of anchor nodes, which play a
vital role in the network localization. More research works are
required to relate powers of anchor nodes to the performance
of localization, considering some aspects such as mobile
anchor nodes, effect of power of anchor nodes in terms of
relative position of each anchor node etc.

2) Estimation of Unknown Parameters in Unknown Envi-
ronments: Literature in localization lacks the discussion on
deriving path loss parameters in anonymous environments.
[46] represents a recent work on this topic, but this work
lacks compact mathematical constraint assumption, and further
research is needed to resolve this issue.

3) State-of-Art Convex Optimization: A lot of recent works
have been published on localization that implement convex
optimization and SDP [22], [49]. It is a good signature of
implementation of advanced mathematics that result in com-
petitive, improved, and more accurate localization of source

nodes. This flow of implementation can be further continued
for implementation of new advancement of SDP and convex
optimization. For example, [22] implements nuclear norm ap-
proximation in the process of relaxing the objective function,
and this research can be extended further by minimization of
nuclear norm that may improve the localization accuracy as
well as reduce mathematical complexity.

4) Multiple Source Localization: Among very few attempts
on multiple source localization, some crucial things still need
to be considered in the future that are absent in present
literature. During localization, uncertainty may arise since
source and sensor nodes are not synchronized. Future research
on multiple source localization may consider the issue of clock
synchronization among the source and sensor node. It may
also extend to designing a scheme in which a source can put
a signature at the signal that it sends to the sensor nodes.

5) Anchor Free Optimization Method: Most of the anchor
free localization methods implement iterative schemes, but
initial assumption in iterative methods may lead to conver-
gence into local minima. Some research works like [18] use
optimization method that do not include extensive research
on anchor free localization. Prospective researchers can in-
vestigate anchor free localization in more detail in order to
implement optimization and statistical algorithms.

6) Security and Privacy: Due to the diverse application
of sensor networks, security has become a major concern
for modern wireless sensor networks. WSNs can be used
in warfare, where the enemy can tamper with a sensor by
injecting malicious programs. This could cause the sensor to
malfunction and provide false position estimation, especially if
the victim sensor is a beacon. Then it can compromise the trust
and overall integrity of localization of the sensor networks.

7) Localization of Non-adjacent Nodes: [115] presents an
anchor free localization method in which localization has been
performed using local information collected by sensor nodes.
This algorithm assumes shortest path lengths as distances
between non-adjacent nodes. More compact algorithms are
required for a better use of non-adjacent nodes that may
improve localization accuracy.

8) Expanding the Scope of Each Node in Radio Map: Pro-
posed anchor free localization algorithms frequently construct
a radio map of the concerned area. Each node communicates
with other nodes since local information is the essence of
constructing a radio map. Future research can be directed to
expanding the scope of each node so that it can communicate
with more neighboring nodes.

IV. INDOOR LOCALIZATION

Recently, the indoor positioning system has been very pop-
ular due to its crucial application to the construction industry,
logistics industry, healthcare, and other official environments.
Compared to outdoor localization, indoor localization is more
challenging due to the poor performance of GPS under a roof.
In addition, indoor environments are generally crowded and
cluttered, which make the distance measurement a difficult
task. Furthermore, the mobility of an object has made it
more complex. So far, the two most common strategies to



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

14

(a) (b) (c)

Fig. 8. Rigid map stitching of two local maps (a) and (b) in (c) by overlapping three common nodes V1, V2, and V3.

TABLE IV
COMPARISON AMONG “ANCHOR FREE" LOCALIZATION ALGORITHMS.

Localization Algorithm RM RC ND LM Sc NM Co LAc

ABC [41] RSSI Triang H Distri Y N Coop H

AFL [18] Acous+Connect Multilat M Distri Y N Coop M

RODL [42] TDOA Trilat M Distri Y Y Coop M

MDS-MAP [112] Connect MDS M Centra N N Coop M

MDS-MAP(D) [113] Connect MDS M Distri N N Coop M

Map-Stitching [114] Connect Multila/MDS H Centra N N Coop H

Patch-and-stitch [115] Connect Multila/MDS H Centra Y N Coop M

localize an object in the indoor environment is based on
Received Signal Strength (RSS). These are known as range
based and range free, or profiling or fingerprinting. Some
other hybrid and new concepts have also been proposed.
Most of these algorithms deal with the mobility issue along
with consideration of different environmental discontinuity.
In the following sections, the RSS based indoor localization
schemes and other contemporary improvements and attempts
are discussed. Different algorithms have implemented dif-
ferent localization. Among them [117], [118] use maximum
likelihood estimation, [119], [120] use triangulation, [121]
uses spectrum analysis, [122] uses curve fitting, [123] uses
multilateration, and [14], [124], [125] use a fingerprinting
localization method. Moreover [13] uses a combination of
fingerprinting and kernel density estimation for the localization
of unknown nodes.

A. RSS Based Indoor Localization

RSS based theoretical or empirical models translate signal
strength into distance estimation. Since RSS suffers from
some problems like multi-path fading, background interfer-
ence, and irregular signal propagation, it prunes estimation
errors. However, from the economic point of view, it has less
communication cost and easy implementation.

RSS measurement using range based methods typically
consists of two steps. One is ranging, in which RSS mea-
surement is used to calculate the anchor position, and the
other is positioning, in which an unknown node position is
estimated based on the distance measurement. In the ranging

phase, the distance is usually represented by a PLM, and in
the positioning phase a lateration algorithm is used to solve
the distance equation to find out the location. Several range
based indoor localization techniques have been proposed in the
past few years. Among them, [126] and [127] are particularly
notable.

A recent range based indoor localization is proposed by
Tian et al. in [117]. A third-order polynomial based log-
distance path-loss model is presented in the research work.
The proposed path loss model builds the relationship between
path loss of channel propagation and the node distance. It has
been shown that proposed model performs better than the two-
slope model [128], [129]. All the nodes are classified into three
categories: fixed nodes, the one master node, and the unknown
node. Fixed nodes send and receive the data packets and then
filter the RSSI values using Kalman filter to remove noise
from the RSSI values. Filtered values are sent to a computer
through a master node. Computation makes a model parameter
table based on the received data. To localize an unknown
node, such a node sends data packets to fixed nodes. Fixed
nodes measure the RSSI values and send them to the computer.
A computer searches for the best suitable matches from the
table and computes the minimum sum of square of the chosen
data. At the final stage, maximum likelihood estimation (MLE)
is applied to locate the position of the unknown node. The
proposed algorithm is compared to [130], and it has been
found that the proposed algorithm shows better accuracy than
[130].

In [123], the researchers propose an indoor localization
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algorithm in which they consider the ToA measurement of
ultra wideband (UWB) for the location search. Two separate
cases are considered in which the first approach is solely based
on detected direct path (DDP) and the second also considers
undetected direct path (UDP) to propose distinct methods for
localization. Among the different available models of range
error [131], [132], the first proposed approach adopts [132].
In the proposed method, no error model information (NEMI),
a revised version of [132], first calculates some intermediate
location estimations for different possible combinations of
anchor nodes, and then a final estimate is returned as the
combination of intermediate estimates. NEMI discards some
anchor combinations, considering the large negative value
of estimated error ε̂n,k in UDP measurements. Conjointly
with NEMI, another NEMI method with reduced complexity
NEMIRC is presented in order to reduce the complexity of the
computation, as some intermediate combinations are discarded
even before the final estimation if combination does not satisfy
the condition of inclusion. In the second part of this research
work, a range error model is adopted from the classical LS
technique and from [132] to devise a method with DDP range
error. Some basic approaches provided in this work are Naive
ML method, a method based on [133], and a ML method with
knowledge of DDP/UDP configuration.

A hybrid range based indoor localization approach has been
proposed in [121]. This is a Wi-Fi based indoor localization
approach that utilizes channel state information (CSI) for
fingerprinting. It is inspired by two early proposals [134] and
[135], respectively known as fine-grained indoor localization
(FILA) and fine-grained indoor fingerprinting system (FIFS).
The basic distinction between these two early proposals and
[121] is that in such early versions, two access points are used
whereas one access point is used for localization. From this
perspective, this algorithm is named as single access point
with multiple antennas (FILSAM). As a range measurement
technique both ToA and AoA are considered, which are
achieved from multiple sub-carriers of an OFDM signal and
spatial information of the multiple antennas correspondingly.
Before estimating the position of the unknown nodes, several
assumptions have been made. For instance, a line of sight
(LOS) path exists between the mobile device (MD) and AP,
clocks of MD and AP are synchronized, and multiple antennas
are calibrated. The whole procedure can be divided into
four sections: AoA estimation, ToA estimation, LOS path
identification, and finally localization. To estimate AoA, phase
difference of multiple antennas are required and the MODE
[136] method has been used. The same MODE algorithm is
used for the estimation of ToA. When ToA and AoA are
estimated separately, the LOS path of ToA (τlos) is calculated
based on the assumption that the LOS path is the shortest.
Moreover, AoA for LOS path, θlos is estimated by solving an
optimization problem. After the calculation of LOS path of
both AoA and ToA, localization is straightforward. A mobile
device is localized using the following equation:

[x, y] = [rlos cos(θlos), rlos sin(θlos)] (3)

where rlos = c ∗ τlos and c = 3 ∗ 108 m/s is the propagation

speed.

B. RSS Free and Profiling/Fingerprinting Based Indoor Lo-
calization

In the range free based method, or profiling method, the lo-
calization is completed in two stages: profiling and estimation.
These two steps are also known as the offline training phase
and online estimation phase, respectively. In RSS profiling
a radio map is generated to monitor the indoor area by
collecting the RSS readings from known locations. Later, at the
estimation stage, the location of an unknown node is estimated
by exploring the radio map. A lot of research work has been
published on this topic. The research works adjoining the
recent state-of-art efforts are discussed below.

In [119], a radio-frequency based scheme, RADAR, has
been proposed to locate and track objects inside an indoor
environment. For experimental purposes, several base stations
are set up to use the signal strength information gathered
at multiple receiver locations. To calculate the position of a
user, both empirical based and theoretically computed signal
strength are used. The whole process starts with data collection
followed by data processing. In the data processing step,
utilizing the processed signal strength information, the number
of walls obstructing the direct line between the base stations
and the data collection positions are calculated. The data
collection phase is coined as the offline phase. Data processing
is the real-time phase. In this phase, the signal strength data are
summarized for all base stations and compared with the user
location and orientation in two ways: empirically and by signal
propagation modeling. Finally, using nearest neighbor(s) in
signal space (NNSS), the deviation between the user locations
and the collected data are calculated for multiple locations, and
the location best matched to the signal strength is then picked
as the user actual coordinate. Simulation results confirm more
accurate performance of the empirical method and also show
that the signal propagation model provides cost effective and
easy deployment of sensors.

Lionel et al. propose a localization technique termed LAND-
MARC based on RFID technology in [120]. In this tech-
nique, using extra reference points, measurement accuracy is
increased. All the RF readings for both reference points and
tracking objects are measured. Then the Euclidean distance
between unknown points and reference tags are calculated.
This is the difference between the signal strength of reference
and tracking objects. Every tracking object calculates its
distance from nearest neighboring reference points, where
distance is defined as that between the power levels of the
reference tags and that of tracking object. Three performance
impacting major issues are considered in this proposal. The
first one is the well placement of the reference points while
the second one is consideration of the optimum number of
reference points surrounding a tracking object. If k-nearest
neighbors are considered, then the unknown tracking objects’
coordinate (x, y) is calculated as:

(x, y) =
k∑

i=1

wi(xi, yi) (4)
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where wi is the weighting factor of the ith neighboring points.
Finally, a third major issue is choice of these weighting factors.
If E is the distance, then according to this algorithm the
weighing factor is given as:

wj =
1/E2

i∑k
i=1 1/E2

i

(5)

Although this algorithm is simple to implement, it has several
other disadvantages. Although this method requires cheap
RFID rather than a large number of expensive RFID readers,
it suffers from major measurement errors due to variation in
behavior of reference tags. Moreover, unavailability of RFID
that can provide signal strength information directly is also
a major concern. In addition, long latency and measurement
errors due to dynamic environments are obstacles to a better
accurate position estimation.

In [118], the authors develop a localization algorithms based
on compressive sensing for indoor wireless local area network
(WLAN) using mobile devices. Formerly, several research
attempts have been made on this issue to estimate the position
using RSS measurement. Among them [137], [138] use the
k nearest neighbor (KNN) based positioning scheme along
with an indoor radio map. In [139], [140], [141] algorithms
implement Compressive Sensing (CS) for the localization. Ad-
ditionally, in [142] the positioning is done on the access point
(AP). The research work presented in [118] propose a different
method to measure the distances between the measured RSS
values and the radio map. Due to the mobility of numerous
mobile devises, it is more challenging and complex to localize
an object accurately. Although the position of a mobile can be
determined precisely using the Bayesian compressive sensing
(BCS), the large number of mobile devices causes localization
errors. However, a new term ‘error bar’ has been introduced
as a metric to measure the accuracy of location vectors. The
term Adaptive Multi-task BCS (AMBCS) has been used to
denote that idea. Furthermore, it is investigated that increasing
or decreasing the number of measurements dynamically can
improve the localization accuracy and that approach is named
greedily adaptive MBCS (GAMBCS). Performance of the
MBCS algorithm can degrade with the increment of MD.
AMBCS performs with high accuracy even if the number of
MDs varies.

A novel curve fitting (CF) based profiling algorithm has
been proposed for the indoor localization scheme in [122].
This algorithm can be summarized in two steps. First is
separating the whole area into different subareas, forming
fingerprints for each subarea and localizing a mobile device to
a subarea. In the second step, two location search algorithms
are used to find a mobile device’s exact location. The whole
area is divided into subareas, and fingerprints are created for
each subarea for each unknown node. Then CF is conducted
for each reference node in which the main objective of CF
is to construct an RSS-distance fitting function illustrating
the relation between the RSS at some space point and its
distance to the transmitter. The next step is to locate a
mobile device into a subarea. In order to do this, a mobile’s
fingerprint is compared with those subareas fingerprints, and

the subarea with the minimum fingerprint distance is selected.
Then, the search algorithm is conducted to find the location
of the mobile device where the sum of distance estimation
error J for each reference node is a minimum. Two search
algorithms, Exhaustive Location Search (ELS) and Gradient
Descent Based Location Search (GLS), are selected as the
search algorithms. In ELS, the subarea is divided into grid
points, and search is conducted for the grid point where
distance estimation error is lowest. On the other hand, in the
GLS method, a location with lowest J is found through itera-
tions. To observe the performance of the proposed algorithm
relative to others similar algorithms, such as fingerprint-based
nearest neighbor algorithm and traditional PM-based (Path
Model) algorithm, simulations have been conducted. CF based
algorithm is proven to be more accurate than traditional PM
based algorithm in terms of the distance estimation. Among
the proposed CF based methods, CF-GLS performs best.

Haque et al. present a profiling based algorithm called
‘location estimation by minimum oversampled neighborhoods’
(LEMON) in [125]. It is a KNN based profiling method that
is more flexible than other existing KNN based methods like
RADAR [119] and LANDMARC [120] since it uses low
cost low power wireless sensors. Two methods are proposed
in this research work: LEMON and a combinatorial version
of LEMON localization technique. As additional features of
[125], a model for Bayesian network and MLE based localiza-
tion is also discussed. According to the LEMON localization
method RSS profiled samples are stored in the database. To
find the K nearest neighbor, K closest samples are selected for
a query sample keeping the discrepancy between the profiled
sample and the query sample lower. Then the estimated
location is the weighted average of these K samples. In the
combinatorial variant of LEMON, the algorithm produces a
combination of K samples out of total stored profiled samples.
Then an intermediate estimate is calculated to use in the final
weighted estimation. [125] also briefly discusses the possible
algorithms for Bayesian networks and MLE estimation.

Another fingerprinting based localization algorithm has
been proposed by Wu et al. in [14]. The proposed method
Locating in Fingerprinting Space (LiFS) utilizes a user’s mo-
bile phones for the localization, which replaces the traditional
site survey. This algorithm works in two phases: training phase
and operating phase. The training phase starts with forming
a stress-free floor plan. An area is represented by a mesh
of grids, and a distance matrix is formed where distances
between all pairs of locations are included. These distances
are the walking distances between each pair location. MDS
[63] uses the distance matrix to map all location points into d-
dimensional Euclidean space. The Euclidean distance between
the two points indicates walking distance between this pair. At
the second step of the training phase, fingerprinting space is
created. To create fingerprinting space, RSS fingerprints for
each anchor node at position are stored along with distances
between such pairs of positions. The Floyd-Warshall algorithm
[96] is used to compute all-pair shortest paths of fingerprints.
In the fingerprint space, creation of a stage distance is defined
as the number of footsteps between each pair of positions.
Distance measurements form another distance matrix, which
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is taken as an input in MDS to map all positions into d-
dimensional space. The last stage of the training phase is
mapping. In the mapping step, corridors and rooms are mapped
separately while k-means algorithm [143] is used to map
the rooms. In the operating phase for a location query, an
RSS fingerprint is sent by a user, while LiFS searches it
in a fingerprint database using a nearest neighbor algorithm.
Finally, the best suited matches are considered as the location
estimation and sent as the feedback to the user.

Another WLAN based profiling algorithm for indoor local-
ization has been proposed in [13] by Wu et al. An online
radio map is generated using kernel density estimation (KDE)
[144], [145] and a neural-fuzzy-based interpolation method
ANFIS [146]. KDE forms a density distribution to depict the
RSS-position relationship, which is flexible with NLOS prop-
agation. On the other hand, the deterministic approach ANFIS
uses interpolation to generate a radio map from training data
pairs. Stochastic radio maps are more realistic as they consider
possible dynamic variations in the environment. The novelty of
this algorithm is to combine adaptive local search (ALS) with
particle filter (PF) to improve the robustness of estimation. It
re-samples and corrects the motion uncertainties of a robot by
implementing an empirical covariance matrix. ALSPF deals
with the problems of particle degeneracy (PD) and infeasible
estimate (IE), caused primarily due to environmental noise.
PD implies that updating particles whose contribution to the
approximation of p(xk|z1:k), where xk is the position of
a robot and zk is the position measurement of the robot
delivered by the sensors at time instant k, which is zero,
requires a lot of computational effort. On the other hand, IE
refers to prediction of an infeasible region since unpredictable
noise disturbs WLAN-RSS, robot velocity, and orientation. A
suitable metric to measure the degeneracy of a algorithm is the
effective sample size [147]. A base station selection strategy
is also applied, which selects the strongest base station with
the smallest variance to optimize estimation stability.

In Fig. 9, the ALSPF algorithm is explained showing the
important steps, where x̂ denotes location estimation and
P (xk|zk) denotes the weight of a particle. Fig. 9a shows
the detection of the IE due to noise, while in 9b exhaustive
search has been done according to the ALS algorithm. In Fig.
9c, surviving particles are shown after the evaluation of new
estimate and covariance.

A WLAN (Wireless Local Area Network) based fingerprint-
ing localization method has been proposed by Talvitie et al.
in [124]. To construct a proper and more reliable fingerprint
database, interpolation and extrapolation methods are used.
Interpolation fills the gaps between the collected data points,
and extrapolation tries to estimate the data outside the known
data points. Localization accuracy can be increased by remov-
ing fingerprint data from the database. At first, a fingerprint
database is formed for both 2.4-GHz and 5-GHz bands. Then,
to apply the interpolation and extrapolation, some fingerprint
data are removed from the database. Data are removed in large
blocks rather than by using a simple probability distribution.
Interpolation and extrapolation are applied in both joint and
disjoint manners. In the disjoint extrapolation minimum, mean
and gradient based methods are used whereas a linear method

is used for disjoint interpolation. The gradient based methods
are inspired by [148], [149]. For the joint interpolation and
extrapolation, Nearest Neighbor (NN) and Inverse Distance
Weighting (IDW) are used. A Voronio diagram [150] is used
for the NN method, and Shepard’s algorithm [151], [152]
is used for IDW. For the final positioning, a probabilistic
approach is adopted. Results have been compared with other
positioning algorithms like NN and KNN. Table V shows the
comparison among indoor localization algorithms.

C. Future Research Directions

Research works on indoor localization presented in this
section discuss in depth problems of indoor localization and
propose some new solutions to those problems. Still, some
aspects of indoor localization require proper investigation and
demand new techniques to improve the accuracy and practical
issues of indoor environment.

1) Uncalibrated Antenna: A multiple antenna based local-
ization based algorithm has been proposed in [121]. This is
the most recent research effort on antenna based methods.
However, some issues are uncovered. This method shows that
0.5m accuracy is obtained using 4 antennas. Future research
work can concentrate on reducing the number of antennae
per access point. An antenna can also be uncalibrated, which
should be discussed in future works on indoor localization.

2) Non-LOS Path: In indoor environments, due to a large
number of walls, obstacles and moving people, the first arrival
path between a transmitter and a receiver is rarely LOS.
Several research papers can be found on indoor localization
that emphasize resolving NLOS path, such as [13], [153], and
[154]. Due to the page limitations some of these works are
not discussed in this survey paper. For example, [13] and
[154] include NLOS conditions in mathematical derivation
of the proposed schemes rather than negating and discussing
its impact on the accuracy of the scheme. Future works can
investigate this issue in more detail by considering anchor
free NLOS condition in indoor environment. A brief survey
dedicated to NLOS condition can be found in [155].

3) Reducing Dependency on Anchor Nodes: Most of the
recent papers on indoor localization depend heavily on anchor
nodes. For instance [117] proposes a third order channel
propagation model for indoor localization that utilizes at least
four anchor nodes. A more advanced scheme is required that
will require fewer anchor nodes without reducing localization
accuracy.

V. LOCALIZATION IN STATIC AND MOBILE SENSOR

NETWORKS

Localization schemes can also be classified into “Static”
and “Mobile” localization algorithms. In the tables of preced-
ing sections (e.g., Table III and Table IV), the localization
algorithms specify whether they are static or mobile. Very
few recent localization algorithms discuss the mobility issue
of the sensor nodes. Among them, most of the localization
algorithms use the node’s mobility information to enhance
the performance of proposed algorithms, which eventually
yields more accurate position estimation. Since algorithms are
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(a) (b) (c)

Fig. 9. Illustration of ALS algorithm. (a) Infeasible Estimate (IE) occurs due to unpredictable noise. (b) IE is detected and ALS algorithm is implemented
by expanding a reasonable area to search for a better solution. (c) Assessment of a new estimate and covariance by the surviving particles.

TABLE V
COMPARISON AMONG INDOOR LOCALIZATION ALGORITHMS.

Localization Algorithm RM RC ND LM Sc NM Co LAc

Third-order propagation model [117] RSSI MLE H Centra Y N NonCoop M

RADAR [119] RSSI Triang M Distri Y Y Coop L

LANDMARC [120] Power level KNN H Distri Y N Coop L

NEMI [123] ToA Multila H Distri Y N NonCoop M

Adaptive MBCS [118] RSSI CS M Centra Y N Coop H

FILSAM [121] ToA+AoA Spectrum Analysis M Centra Y Y NonCoop H

CF [122] RSSI CF M Distri Y N NonCoop M

LEMON [125] RSSI FP M Centra Y N NonCoop H

LiFS [14] RSSI FP M Distri Y Y Coop M

ALSPF [13] RSSI FP+KDE L Distri Y Y NonCoop H

IEL [124] RSSI FP M Distri Y N NonCoop M

already discussed in the previous sections, this section presents
a brief discussion on the mobility issue of the localization
algorithm, and the contribution of the proposed algorithms to
the issue of node’s mobility is addressed.

A. Static vs. Mobile Localization

Localization schemes with high accuracy positioning infor-
mation cannot be implemented by mobile sensors since they
usually require centralized processing that takes too much
time to run. Centralized schemes also make assumptions about
network topology, which is not applicable for mobile wireless
sensor networks [25]. Mobility can affect the localization
process in many ways. One of the prime concerns regarding
mobile sensor network is latency. Longer time taken by
localization may cause latency, as the sensor will have changed
its position since the measurement took place. Doppler shift
is another issue in MWSNs. Doppler shift can occur when
the transmitter of a signal is moving relative to the receiver.
Moreover, since most of the proposed localization techniques
require LOS, the movement of mobile sensor nodes may cause
the localization to take place in a degraded LOS position.

[12] uses mobility information of the sensor nodes to
improve the accuracy of the localization algorithm. In [61],
the algorithm uses both fingerprint and accelerometer infor-
mation for the localization, which is proven to be better than

the algorithms, which use only fingerprint or accelerometer
information. The algorithm proposed in [59] uses basic di-
rectional and meandering mobility models for the localization
of moving sensor nodes. On the other hand, the algorithm
proposed in [62] uses a random-way-point model for mobile
nodes. RODL algorithm in [42] proposes the quick repetition
of the algorithm phases along the movement of the mobile
nodes for the localization. This algorithm proves that least-
squares optimization is better than trilateration for the lo-
calization of mobile nodes. In [156], the authors discuss a
kinetic sensor based fast robot identification and mapping
algorithm. A pedestrian group detection and tracking algorithm
has been presented in [157], which develops a novel temporal-
spatial method for grouping and an event detection technique
for contextual behavior recognition. The proposed algorithm
in [119] considers the random walking of the users whose
positions are needed to be estimated, and it uses a sliding
window of 10 samples to calculate the mean signal strength
on a continuous basis. This information is applied in the basic
proposed method to localize the mobile nodes. In [14], the
algorithm proposes the continuous collection of RSS readings
for the localization of mobile nodes. Thus, this algorithm
creates a moving trajectory of mobile nodes, and finally, the
best fitted trajectory is selected for localization. The particle-
filter-based algorithm proposed in [13] uses a mobile robot
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to evaluate the performance of the algorithm. It measures and
stores the RSS data continuously and applies the algorithm
to track the position of mobile robots. Almost all of the
proposed algorithms adopt similar mobility models, which
consider velocity information to design the models.

B. Future Research Directions

A lot of recent works on localization have addressed mo-
bility of sensor nodes, but among them only few consider
mobility of both source and sink nodes. Open issues and
research challenges in this context are discussed below.

1) Variable Velocity of Sensor Node: Although a lot of
development has been done on static localization of wireless
sensor networks, mobility is still one of the less explored
aspects of this field. Few papers have dealt with the issue,
and some have even used mobility information to improve
the accuracy of the estimation of a sensor node’s location.
Recent papers have used almost similar models to consider the
velocity information to estimate the position of a node. Several
other mobility models are available in theory, but recent re-
search works neither adopt these mobility models nor compare
their performance in terms of localization accuracy. Mobility
models adopted by research works like [12] and [61] consider
constant velocity between two successive time intervals, which
is not always true in real world scenarios. A possible research
idea could be the mutual exchange of mobility information
among nodes. If a sensor can send relative velocity information
to the neighboring sensors, then this type of incorporation may
improve the localization accuracy.

2) Mobile Nodes to Ensure Security: Future research on
security issues has already been discussed in the anchor based
vs anchor free section. Mobility can be used to ensure security
of localization in sensor networks. Mobile nodes can actually
be integrated as part of a secure localization. Research can be
done in which the position of malicious nodes can be detected
by localization of a mobile node placed near malicious nodes.

3) Anchor Free Mobile Node Localization: [12] presents an
excellent work on mobility issues and considers the mobility
of both the anchor nodes and the sensor nodes. However, it
would be a challenging task to localize a mobile node without
any anchors while ensuring good accuracy.

VI. TYPICAL APPLICATIONS OF LOCALIZATION

Although wireless sensor networks were first introduced
as a technological tool for military use only, it is now be-
ing used for many different purposes, including healthcare,
weather forecasting, environmental observation, transportation
systems, and home and office applications. Since applications
of the localization process within a wireless sensor network are
a sub-group of the applications of WSNs, only certain cases of
applications of sensors in which localization concepts are used
are discussed in this paper. The implementation of localization
technology of wireless sensor networks in different fields are
discussed in the following subsections.

A. Military Applications

The usage of sensors in military can be divided into four
basic categories: battlefield application, infrastructural applica-
tion, application beyond the battlefield, and force protection.
Some good reads are available on military application in [1],
[2].

In the battlefield, sensors with different measurement tech-
niques are used for different arms technology. Distributed self-
contained acoustic position systems and accelerometer sensors
provide antitank landmines [158] with sensing information re-
garding threats from their neighbors states and help to respond.
Future technological scenarios of landmines are discussed in
[159].

Airborne acoustic sensors are used in aerostat arrays to
detect and calculate the positions of transient signals from
mortar, artillery, and small arms fire while ground acoustic
sensors are used to localize the source [160]. Also, to detect
and localize battery operated modern submarines, low cost
passive and active acoustic sensors are used [161].

To detect hazardous chemicals, low-cost chemical sensors
are deployed in an unmanned aerial vehicle. To avoid false
alarm, the sensors are fused with three color filtered photo-
diode detectors, which can distinguish terrain variation due to
different chemical emissions [162].

To secure the military infrastructure from enemy attack,
sonar and seismic sensors are deployed to detect enemy
soldiers approaching. In this security system, only the images
matched with the sonar sensors are transmitted.

Acoustic localization is performed to protect soldiers from
sniper attack. Two acoustic arrays and a day/night video
camera mounted on the soldier’s helmet are used to localize
the source of the shooter [163], [164], [165].

B. Emergency Service Applications

One of the most vital civil applications for a wireless sensor
network is its role in emergency services, such as police,
fire, and medical via 911 calling. One such implementation
involves the localization of a mobile station placed within a
city for citizens to place immediate 911 calls [15]. Location
estimation is done using at least two anchor nodes serving as
base stations [15]. In addition to general purpose emergency
response management, WSN localization can also be used in
management of specific emergencies. Most notable examples
include detection of a specific phenomenon such as a landslide
[166] as well as detection of survivors of a given natural
disaster [167]. These particular scenarios can be perceived as
the acquisition of intelligence with which emergency personnel
can respond to aforementioned events with optimal speed and
preparedness.

In order to further enhance smart decision making from
the end of such personnel, WSNs can be utilized in the
simulation of hazards, such as a fire [168]. In this example,
WSN localization is used to sense the spread of a fire or other
danger within a building while an external simulator provides
input to the sensor nodes [168]. Fire prevention by means of
wireless sensor networks is also addressed more directly with
solutions available for localization and communication within
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TABLE VI
SUMMARY OF COMPARISONS AMONG IOT COMMUNICATION SYSTEMS

[171].

System Sensing Communication Range (m) Power
RFID No Asymmetric 10 Harvested
WSN Yes Peer-to-Peer 100 Battery
RSN Yes Asymmetric 3 Harvested

an affected urban or industrial environment [169]. A similar
scenario is also addressed for early, preemptive fire detection
in both outdoor and indoor public environments [15].

C. Internet of things (IoT) and Cyber Physical Systems

The Internet of Things (IoT) and Cyber Physical Systems
are newly emerging applications in which localization of sen-
sors has an important role when a wide plethora of electronic
devices communicate with each other and control the systems.
For example, we are already familiar with receiving internet
access on a personal computer and, more recently, from a
tablet and smartphone. Other common household devices,
however, are also becoming subject to internet accessibility,
including televisions, game consoles, watches, and even re-
frigerators. As more devices follow the trend of representing
smart objects [170], the importance and potential of interfac-
ing devices with one another become of increasingly great
importance. This novel method of inter-device interaction is
fueled by a combination of multiple potential communications
protocols, including radio frequency identification (RFID) and
near field communications (NFC).

Wireless sensor networks, on the other hand, are an equal
if not greater method of data communication, due to the
continuous need for localization and tracking [172]. A brief
comparison of WSNs, RFID systems, and RFID sensor net-
works are provided in Table VI. In short, the table infers
that RFID-based options are of low cost and small size with
a long, battery-independent lifetime while WSNs are purely
peer-to-peer and do not require a reader [171]. As a result of
such a less centralized approach and greater feasible range,
localization of an IoT-based smart object is most effective
when implemented as a WSN.

D. Health Care Applications

Recently lots of sensor based applications are developed
to serve complex medical purposes. To monitor the physical
condition, a body area network (BAN), has been developed,
which detects different physiological aberration of a human
body and transports the collected data to a central node.
Lately, sensors are used to calculate the possibility of a future
medical emergency along with updated physical conditions.
Almost all of the recent medical technical devices like Ubimon
[173], E-watch [4], CodeBlue [5], [6], Vital Sign Monitor-
ing System [174], MobiHealth [3], Multi-Electrophysiological
system [175], and Life-shirt [176] have adopted sensor based
networking, which audits the current physical condition of
a human body, detects abnormal behavior, and transfers the
data for emergency medical care. Wireless sensor networks are
also employed in glucose level monitoring, cancer detection,

monitoring of cardiovascular diseases, asthma, heart rate,
and more. Localization works as a part of many of these
applications. Implementation of localization schemes in some
applications are discussed as follows:

Localization is also used to monitor the movement of elderly
people and detect abnormal movement that may be caused
by Alzheimer’s, a disease frequently suffered by the elderly.
In [177], to detect abnormal movements that may result to
seizures, an accelerometer based scheme has been proposed.
According to this algorithm, daily activities of an elderly
person are observed using ZigBee protocol devices. On the
other hand, researchers in [178] devise a method based on
mobile phones and a wireless sensor network using Bluetooth
or ZigBee for monitoring.

After hip surgery, a patient’s leg position is constantly
monitored by a system [179]. If this position calculation is
found to be incorrect, it will send a alarm to the control unit.

E. Traffic Monitoring Applications

One of the most popular applications of sensor networks
is the transport control and monitoring system, where lo-
calization has became a integral part of modern vehicular
technology. Intelligent transport system (ITS) adopts sensor
technology for traffic management and safety as well as to
build an ideal city with astute traffic control mechanisms [180].
The typical applications of wireless sensor networks in ITS
include traffic light control, parking space management, and
traffic optimization through reduction of a driver’s travel time
by providing information about re-routing and changing lanes.

The vehicular technology localization concept is currently
being used to improve driver’s safety. In a proposed scheme,
traffic information incorporates with a data center to help
avoid traffic accidents by implementing both on-road nodes
and an ad-hoc infrastructure system [16]. Some schemes use
magnetic sensors as well as wireless signal strength and
quality to detect approaching vehicles. These information,
together with on-road nodes, help to ensure a secure transport
system [181]. Another traffic control mechanism [182], [183]
improves vehicle security, gathering information about harsh
environments like forests and icy areas along with regular road
nodes. To detect a traffic jam, a vehicle’s position, with respect
to other nearby vehicles to ensure unwanted accidents while
route changing, can help a driver to reduce the travel time and
eventually can pave the way for a smart traffic system.

F. Environmental Observation and Weather Forecasting Ap-
plications

One of the most important application of a wireless sensor
network is environment monitoring and weather forecasting.
The applications of a sensor network in the field of weather
monitoring and weather forecasting include habitat monitor-
ing, agricultural issues, forest and water quality monitoring etc.
Being an imperative part of some of these applications, differ-
ent localization algorithms ensure proper position estimation.
Localization is applied in cattle monitoring, since research
has shown that anthropogenic effects have been observed
among plant and animal behavior due to someone’s physical
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presence being in front of them [184], [185]. This kind of
animal tracking can ensure reliable data collection without
disturbing the ecosystem. Localization is also used to observe
the effect of earthquakes on different building components [7].
It investigates how a building responses to different vibrations
caused by earthquakes at different distances.

To determine the ecosystem of different places, the local-
ization concept is used at sensors. It helps to construct a map
that represents the ecosystem distribution of a certain area
[17]. Another way of forecasting a disaster is to place various
geographical sensors, like wireless probes (WP), at different
locations to monitor and alarm about natural disasters. WPs
consist of a deep earth probe (DEP) and of sensors placed
outside and inside a DEP to monitor and detect landslides
[10].

G. Home and Office Applications

Wireless sensor networks have improved the home and
office environment by exploiting the sensor technology to
reduce the energy consumption in indoor environments. In
indoor applications, localization is essential. In this paper, a
separate section has been dedicated for the study of indoor
localization algorithms. ‘Smart Kindergarten’ [186] is a project
that implements sensor technology to build a smart infrastruc-
ture for a kindergarten. This mechanism will observe a child’s
activities in the kindergarten school by location estimation
and deploying embedded modules, integrated toys, and mutual
wireless communication among toys to provide feedback about
the development of children.

Several other projects [8], [9] have been proposed that en-
sure proper energy consumption in indoor environments. In the
vision-based user-centric light control mechanism, localization
is used to calculate a person’s presence and activity in a room
to determine the light control mechanism, which consequently
improves the energy use of lights.

VII. CONCLUSION

In this survey, we have explored state-of-the-art research
results and algorithms proposed for localization in wireless
sensor networks. We have presented the recent advances on
localization techniques in WSNs by considering a wide variety
of factors and categorizing them in terms of data processing
(centralized vs. distributed), transmission range (range free vs.
range based), mobility (static vs. mobile), operating environ-
ments (indoor vs. outdoor), node density (sparse vs dense),
routing, algorithms, etc. A side-by-side comparison summary
in a tabular form for different localization algorithms in WSNs
is also presented. Although there has been significant research
in other aspects of WSN, more research in localization issues
is necessary to offer accurate location-based services in future
wireless systems. There will be no single method that can
help to find exact location of nodes in the entire wireless
networks. To handle a variety of scenarios, implementation
of a combination of techniques as well as of context-based
techniques would be needed to estimate accurate location in
future wireless sensor networks.

From the comparative analysis of the localization algo-
rithms, we can form conclusive remarks regarding the lo-
calization algorithms. In different scenarios, different noise
distributions have been considered while observing their per-
formances. While the range based algorithms show promising
performance, their related hardware cost sometimes makes
such schemes less preferable than range free algorithms.
Application of optimization theory and the addition of mobility
information show promising improvement in the localization
accuracy. Although most of the centralized algorithms are
proven to be better in performance, distributed algorithms
give better results when sparsity of the network structures
is considered. Thus, the choice of localization algorithms
depends primarily on specific application scenarios.
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[64] P. Oğuz-Ekim, J. Gomes, J. Xavier, and P. Oliveira, “A convex relax-
ation for approximate maximum-likelihood 2d source localization from
range measurements,” in IEEE International Conference on Acoustics
Speech and Signal Processing (ICASSP), 2010, pp. 2698–2701.
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