Learning Fair Naive Bayes Classifiers by Discovering and Eliminating Discrimination Patterns

by (Your Name)

Roadmap

Introduction

Fairness in machine learning refers to the various attempts at correcting algorithmic bias in automated decision processes based on machine learning models.

Examples:

- Racial and gender bias in image recognition algorithms.
- 'COMPAS' software, widely used in US courts to predict recidivism
- Automatic tagging feature in both Flicker and Google Photos



Contributions

- Discrimination Pattern refers to an individual receiving different classifications depending on whether some sensitive attributes were observed.
- A model is considered fair if it has no such pattern.
- We propose an algorithm to discover and mine for discrimination patterns in a naive Bayes classifier, and show how to learn maximum-likelihood parameters subject to these fairness constraints.

Formalizing Problem

○ Let P be a distribution over D ∪ Z. Let x and y be joint assignments to X ⊆ S and Y ⊆ Z \ X. The degree of discrimination of xy is:

$$\Delta_{P,d}(\mathbf{x},\mathbf{y}) \triangleq P(d \,|\, \mathbf{xy}) - P(d \,|\, \mathbf{y}).$$

Formalizing Problem

○ Let P be a distribution over D ∪ Z, and $\delta \in [0, 1]$ a threshold. Joint assignments x and y form a discrimination pattern w.r.t. P and δ if: (1) X ⊆ S and Y ⊆ Z\X;

and

(2) $|\Delta_{P,d}(x, y)| > \delta$.

 \bigcirc A distribution P is δ-fair if there exists no discrimination pattern w.r.t P and δ.

\frown	-	P(d)	D	P(x D)
	_	0.2	+	$\begin{array}{c} 0.8\\ 0.5\end{array}$
$(X)(Y_1)(Y_2)$	D	$P(y_1 D)$	D	$P(y_2 D)$
	+	$\begin{array}{c} 0.7 \\ 0.1 \end{array}$	+	$\begin{array}{c} 0.8\\ 0.3 \end{array}$

However...

Big Challenge

Computing the degree of discrimination involves probabilistic inference, which is hard in general, and a given distribution may have exponentially many patterns...

Searching for Discrimination Patterns

Algorithm 1 DISC-PATTERNS(x, y, E)

Input: P: Distribution over $D \cup \mathbf{Z}$, δ : discrimination threshold **Output:** Discrimination patterns L

Data: $\mathbf{x} \leftarrow \emptyset$, $\mathbf{y} \leftarrow \emptyset$, $\mathbf{E} \leftarrow \emptyset$, $L \leftarrow []$

- 1: for all assignments z to some selected variable $Z \in \mathbf{Z} \setminus \mathbf{XYE}$ do
- 2: **if** $Z \in \mathbf{S}$ then
- 3: if $|\Delta(\mathbf{x}z, \mathbf{y})| > \delta$ then add $(\mathbf{x}z, \mathbf{y})$ to L
- 4: **if** UB($\mathbf{x}z, \mathbf{y}, \mathbf{E}$) > δ **then** DISC-PATTERNS($\mathbf{x}z, \mathbf{y}, \mathbf{E}$)

5: if $|\Delta(\mathbf{x}, \mathbf{y}z)| > \delta$ then add $(\mathbf{x}, \mathbf{y}z)$ to L

- 6: **if** UB($\mathbf{x}, \mathbf{y}z, \mathbf{E}$) > δ **then** DISC-PATTERNS($\mathbf{x}, \mathbf{y}z, \mathbf{E}$)
- 7: if UB($\mathbf{x}, \mathbf{y}, \mathbf{E} \cup \{Z\}$) > δ then DISC-PATTERNS($\mathbf{x}, \mathbf{y}, \mathbf{E} \cup \{Z\}$)

Top-k Patterns

- Nevertheless, ranking patterns by their discrimination score may return patterns of very low probability.
- patterns with higher divergence score will tend to have not only higher discrimination score but also higher probabilities.

Kullback-Leibler divergence

○ Let P be a distribution over D ∪ Z. Let x and y be joint instantiations to subsets $X \subseteq S$ and $Y \subseteq Z \setminus X$.

The divergence score of xy is:

$$\begin{aligned} \operatorname{Div}_{P,d,\delta}(\mathbf{x},\mathbf{y}) &\triangleq & \min_{Q} \operatorname{KL}(P \parallel Q) \\ & s.t. \ |\Delta_{Q,d}(\mathbf{x},\mathbf{y})| \leq \delta \\ & P(d\mathbf{z}) = Q(d\mathbf{z}), \ \forall \ d\mathbf{z} \not\models \mathbf{x}\mathbf{y} \end{aligned}$$
where $\operatorname{KL}(P \parallel Q) = \sum_{d,\mathbf{z}} P(d\mathbf{z}) \log(P(d\mathbf{z})/Q(d\mathbf{z})).$

Empirical Evaluation of Discrimination Pattern Miner

- All experiments were run on an AMD Opteron 275 processor (2.2GHz) and 4GB of RAM running Linux Centos 7.
- Execution time is limited to 1800 seconds.
- We use three datasets:

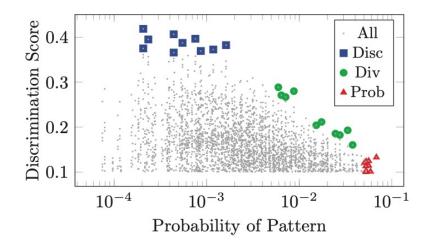
The *Adult* dataset and *German* dataset are used for predicting income level and credit risk

the COMPAS dataset is used for predicting recidivism.

Q1: Does our pattern miner find discrimination patterns more efficiently than by enumerating all possible patterns?

Dataset Statistics						Proportion of search space explored					
							Divergence		Î	Discriminatio	n
Dataset	Size	S	N	# Pat.	k	$\delta = 0.01$	$\delta = 0.05$	$\delta = 0.10$	$\delta = 0.01$	$\delta = 0.05$	$\delta = 0.10$
COMPAS	48,834	4	3	15K	1	6.387e-01	5.634e-01	3.874e-01	8.188e-03	8.188e-03	8.188e-03
					10	7.139e-01	5.996e-01	4.200e-01	3.464e-02	3.464e-02	3.464e-02
					100	8.222e-01	6.605e-01	4.335e-01	9.914e-02	9.914e-02	9.914e-02
Adult	32,561	4	9	11M	1	3.052e-06	7.260e-06	1.248e-05	2.451e-04	2.451e-04	2.451e-04
					10	7.030e-06	1.154e-05	1.809e-05	2.467e-04	2.467e-04	2.467e-04
					100	1.458e-05	1.969e-05	2.509e-05	2.600e-04	2.600e-04	2.597e-04
German	1,000	4	16	23B	1	5.075e-07	2.731e-06	2.374e-06	7.450e-08	7.450e-08	7.450e-08
					10	9.312e-07	3.398e-06	2.753e-06	1.592e-06	1.592e-06	1.592e-06
					100	1.454e-06	4.495e-06	3.407e-06	5.897e-06	5.897e-06	5.897e-06

Q2: Does the divergence score find discrimination patterns is with both a high discrimination score and high probability?



Learning Fair Naive Bayes Classifiers

We formulate the learning subject to fairness constraints as a signomial program, which has the following form:

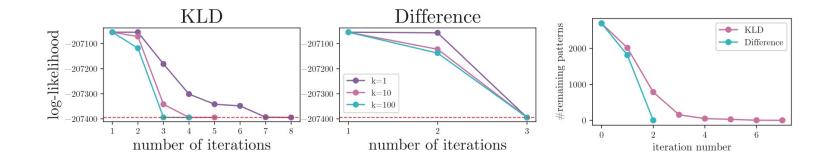
minimize $f_0(x)$, s.t. $f_i(x) \le 1$, $g_j(x) = 1 \quad \forall i, j$

• f_i is signomial while g_j is monomial. A *signomial* is a function of the form $\sum_k c_k x_1^{a_{1k}} \cdots x_n^{a_{1n}}$ where c_k , $a_{ij} \in R$;

a *monomial* is of the form $cx_1^{a_1}\cdots x_n^{a_n}$ where c>0 , $a_{ij}\in R$;

 Signomial programs are not globally convex, but a locally optimal solution can be computed efficiently.

Q1. Can we learn a δ -fair model in a small number of iterations while only asserting a small number of fairness constraints?



Q2. How does the performance of δ -fair naive Bayes classifier compare to existing work?

dataset	Unconstrained	2NB	Repaired	δ -fair
COMPAS	0.880	0.875	0.878	0.879
Adult	0.811	0.759	0.325	0.827
German	0.690	0.679	0.688	0.696

Conclusion

- we introduced a novel definition of fair probability distribution in terms of discrimination patterns
- presented algorithms to search for discrimination patterns in naive Bayes networks and to learn a high quality fair naive Bayes classifier from data.
- Our algorithm is only a tool to assist such experts in learning fair distributions

Thanks!

Any questions?

You can find me at: (Your mail id)@yahoo.com

