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Introduction

Fairness in machine learning 
refers to the various attempts at 
correcting algorithmic bias in 
automated decision processes 
based on machine learning 
models.
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Examples:

o Racial and gender bias in image 
recognition algorithms.

o ‘COMPAS’ software, widely used in 
US courts to predict recidivism

o Automatic tagging feature in 
both Flicker and Google Photos

4



Contributions

o DiscriminaGon PaHern refers to an individual receiving different classificaGons
depending on whether some sensiGve aHributes were observed.

o A model is considered fair if it has no such paHern. 
o We propose an algorithm to discover and mine for discriminaGon paHerns in a

naive Bayes classifier, and show how to learn maximum-likelihood parameters
subject to these fairness constraints.
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Formalizing Problem

o Let P be a distribution over D ∪ Z.
Let x and y be joint assignments to X ⊆ S and Y ⊆ Z \ X.
The degree of discrimination of xy is: 
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Formalizing Problem

o Let P be a distribution over D ∪ Z, and δ ∈ [0, 1] a threshold.
Joint assignments x and y form a discrimination pattern w.r.t. P and δ if:
(1) X ⊆ S and Y ⊆ Z\X;
and
(2) |ΔP,d(x, y)| > δ. 
o A distribution P is δ-fair if there exists no discrimination pattern 

w.r.t P and δ. 
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The network is individually fair for δ = 0.2 because maxxy1y2 |Δ(x, y1y2)| = 0.167 ≤ δ. 

However…

👉 Δ(x ,̄y1)|= 0.225 > δ
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Big Challenge
Computing the degree of discrimination involves 
probabilistic inference, which is hard in general, 
and a given distribution may have exponentially 
many patterns…
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Searching for Discrimination Patterns
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Top-k Patterns

o Nevertheless, ranking patterns by their discrimination score may return 
patterns of very low probability. 

o patterns with higher divergence score will tend to have not only higher 
discrimination score but also higher probabilities. 
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Kullback-Leibler divergence

o Let P be a distribution over D ∪ Z. Let x and y be joint instantiations to 
subsets X ⊆ S and Y ⊆ Z \ X.
The divergence score of xy is: 
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Empirical Evaluation of Discrimination Pattern Miner 

o All experiments were run on an AMD Opteron 275 processor (2.2GHz) and 
4GB of RAM running Linux Centos 7.

o ExecuGon Gme is limited to 1800 seconds. 
o We use three datasets: 

The Adult dataset and German dataset are used for predicGng income level                          
and credit risk 

the COMPAS dataset is used for predicGng recidivism. 
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Q1: Does our pattern miner find discrimination patterns
more efficiently than by enumerating all possible patterns? 
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Q2: Does the divergence score find discrimination patterns 
with both a high discrimination score and high probability? 

15



Learning Fair Naive Bayes Classifiers 

o We formulate the learning subject to fairness constraints as a signomial
program, which has the following form:

o fi is signomial while gj is monomial. A signomial is a funcGon of the form
where ck, aij ∈ R;

a monomial is of the form                            where c>0 , aij ∈ R;
o Signomial programs are not globally convex, but a locally opGmal soluGon 

can be computed efficiently.
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Q1. Can we learn a δ-fair model in a small number of 
iterations while only asserting a small number of fairness 
constraints? 
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Q2. How does the performance of δ-fair naive Bayes classifier 
compare to existing work? 

18



Conclusion 

o we introduced a novel definiGon of fair probability distribuGon in terms of 
discriminaGon paHerns 

o presented algorithms to search for discriminaGon paHerns in naive Bayes 
networks and to learn a high quality fair naive Bayes classifier from data. 

o Our algorithm is only a tool to assist such experts in learning fair 
distribuGons 
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Thanks!
Any questions?

You can find me at:
(Your mail id)@yahoo.com
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