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A B S T R A C T   

Parts produced by laser or electron-beam powder bed fusion (PBF) additive manufacturing are prone to residual 
stresses, deformations, and other defects linked to non-uniform temperature distribution during the 
manufacturing process. Several researchers have highlighted the important role scan sequence plays in achieving 
uniform temperature distribution in PBF. However, scan sequence continues to be determined offline based on 
trial-and-error or heuristics, which are neither optimal nor generalizable. To address these weaknesses, we have 
articulated a vision for an intelligent scan sequence optimization approach to achieve uniform temperature 
distribution, hence reduced residual stresses and deformations, in PBF using physics-based and data-driven 
thermal models. This paper proposes SmartScan, our first attempt towards achieving our vision using a 
simplified physics-based thermal model. The conduction and convection dynamics of a single layer of the PBF 
process are modeled using the finite difference method and radial basis functions. Using the model, the next best 
feature (e.g., stripe or island) that minimizes a thermal uniformity metric is found using control theory. Simu-
lations and experiments involving laser marking of a stainless steel plate are used to demonstrate the effec-
tiveness of SmartScan in comparison to existing heuristic scan sequences for stripe and island scan patterns. In 
experiments, SmartScan yields up to 41% improvement in average thermal uniformity and 47% reduction in 
deformations (i.e., warpage) compared to existing heuristic approaches. It is also shown to be robust, and 
computationally efficient enough for online implementation in the future.   

1. Introduction 

Powder bed fusion (PBF) is an increasingly popular approach for 
additive manufacturing (AM) of metals (and other materials). It is used 
in various industries, ranging from aerospace, to automotive, to 
biomedical. It builds 3D parts by using a high-power source of thermal 
energy, typically a laser or an electron beam, to selectively fuse or melt 
powder layer by layer. Compared with other AM techniques for metals, 
PBF is popular for fabricating parts with intricate features and dense 
microstructure at relatively high tolerances and build rates [1,2]. 
However, parts produced by PBF are prone to residual stresses, de-
formations, and other defects linked to non-homogeneous temperature 
distribution during the process [1–5]. In order to mitigate these defects, 
post-process heat treatment is often required, which takes several hours 
or even days and increases the overall manufacturing costs [6]. More-
over, post-process heat treatment cannot rectify deformations or 

cracking caused by residual stresses prior to being relieved. For this 
reason, it is preferable to avoid residual stresses and related defects as 
much as possible during the build process, by minimizing temperature 
gradients. 

Several works have revealed the importance of scanning strategy in 
achieving uniform temperature distribution in PBF [3,4,6–9]. The term 
scanning strategy is often used in the literature to refer to disparate 
aspects of scanning in PBF. Here, we use the term in its broadest sense 
which includes all process parameters associated with scanning in PBF, 
e.g., laser or electron beam power, scan speed, hatch spacing, scan 
pattern and scan sequence. Scanning strategy is often selected by 
round-robin testing, trial and error, or heuristics [1,3]. However, given 
its importance in determining temperature distribution, a growing body 
of research is focused on controlling various elements of scanning 
strategy. Review articles [1,3,10] have presented comprehensive sur-
veys on process monitoring and control in PBF. They have identified that 
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beam power and scan speed are the elements of scanning strategy often 
controlled online or offline, e.g., [11–17]. However, Mani et al. [1] 
noted that there are opportunities for different control loops beyond 
beam power and speed. 

One such opportunity that is of particular interest to the proposed 
work is scan sequence. Scan sequence refers to the order in which a pre- 
specified geometric scan pattern is traced. For example, two of the most 
commonly used scan patterns in practice are the stripe and island (see  
Fig. 1). Scan sequence in these examples could mean the order in which 
each line in the stripe pattern is scanned, or the order in which each 
island in the island pattern is scanned. Researchers have shown that scan 
sequence significantly affects temperature distribution, residual stresses 
and distortions in PBF [5,18–21]. 

Given the importance of scan sequence, researchers have proposed 
new approaches to determine scan sequence offline using heuristics. For 
example, in the context of the island scan pattern, Kruth et al. [21] 
presented the least heat influence (LHI) sequence which places the next 
island to be scanned as far as possible from the previously scanned 
islands. The LHI sequence has been shown in studies to reduce residual 
stresses compared to other heuristic scanning approaches, e.g., [19]. 
Malekipour et al. proposed a Genetic Algorithm Maximum Path (GAMP) 
sequence [22] which claimed to maximize the path connecting the 
centers of all islands using a genetic algorithm, even though no details of 
the algorithm were presented. Ramos et al. [20] proposed the inter-
mittent strategy which avoids scanning adjacent islands consecutively 
by using a geometry-based formula having weights and radial thresh-
olds. Using their strategy, they demonstrated significant reductions in 
thermally induced deformation compared to another heuristic scan 
sequence. However, no systematic procedure was provided for selecting 
the weights and thresholds in the formula, hence making it difficult to 
generalize. Taken together, a major weakness of existing heuristic scan 
sequences is that they only rely on geometric relationships that do not 
accurately represent the physics of temperature distribution, and they 
are non-generalizable. For example, it is not necessarily true that scan-
ning islands that are furthest away from the prior scanned islands 
minimizes thermal gradients. It highly depends on the heat diffusion 

process, which involves much more than geometry. Reiff et al. [23] 
presented a concept, without details, where the hotter islands from a 
measured or simulated temperature map of a prior layer were scanned 
later than the cooler islands to prevent layer-to-layer heat accumulation, 
which plays a major role in generating residual stresses and distortions 
in 3D printed parts [4]. However, this approach of selecting scan se-
quences is not necessarily optimal as it does not consider the transient 
nature of thermal distribution during scanning of the current layer. 

Our research envisions an intelligent approach, dubbed SmartScan, 
that uses physics-based models, combined with data-driven models ob-
tained from online thermal measurements, to efficiently determine 
optimal scan sequence online that minimize thermal gradients layer-by- 
layer [24] (see Fig. 2). Three key characteristics of SmartScan are that it 
is model-based, optimization-driven, and computationally efficient 
enough to be run online within the interlayer time of PBF processes, 
which is typically less than one minute. The vision of SmartScan will be 
achieved in phases, with increasing complexity of the models and 
optimization techniques adopted. 

As its original contribution, this paper (and its preliminary version 
[25]) proposes our first attempt at achieving SmartScan using a 
simplified physics-based model of PBF, realized via the finite difference 
method (FDM) combined with radial basis functions. Using the simpli-
fied model, the next best feature (e.g., stripe or island) that minimizes a 
thermal uniformity metric is determined using control theory. Simula-
tions and experiments involving laser marking of a AISI 316 L stainless 
steel plate are used to demonstrate the effectiveness of SmartScan in 
comparison to existing heuristic approaches for stripe and island scan 
patterns. In experiments, SmartScan yields up to 41% and 47% 
improvement in average thermal uniformity and deformations, respec-
tively, compared to existing heuristic approaches. It is also shown to be 
robust and computationally efficient enough for future online 
implementation. 

The rest of this paper is organized as follows: Section 2 presents the 
simplified thermal model used for SmartScan and the approach for 
determining optimal scan sequences using control theory. Section 3 
presents simulation case studies, while Section 4 presents experiments 
performed on an open-architecture laser powder bed fusion (LPBF) 
machine to demonstrate the effectiveness of the proposed SmartScan 
approach. Section 5 concludes the paper and discusses our future work. 

2. Proposed smartscan approach 

This section discusses the simplified thermal modeling of the PBF 
process using the FDM [13], reduction of the higher-order FDM model 
using radial basis functions [26], and an optimization approach based 
on control theory to find the best scan sequence for a layer. 

Fig. 1. Two common scan patterns for a layer in PBF: (a) island, (b) stripe. Scan sequence refers to the order in which the features (i.e., islands or stripes) of each 
pattern are scanned. 

Fig. 2. Flowchart of SmartScan - an intelligent online scan sequence optimi-
zation framework [24]. 
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2.1. Simplified Finite Difference Thermal Model and State Space 
Representation 

In the simplified model presented in this section, a single layer of PBF 
is assumed. Only conductive and convective heat transfer are assumed to 
occur within the layer, and/or between the layer and its surroundings. 
Radiative heat transfer, latent heat effects, Marangoni convection, and 
other melt pool phenomena, are ignored. The simplified model is 
representative of the re-scanning process in PBF [27], or the plate 
marking process often used to evaluate the effects of heat accumulation 
and scanning strategies in PBF, e.g., [5,28]. Without loss of generality, 
LPBF is assumed in the rest of this paper. 

Heat conduction in a medium with conductivity kt and diffusivity α is 
governed by the equation 

∂2T
∂x2 +

∂2T
∂y2 +

∂2T
∂z2 +

u
kt
=

1
α

∂T
∂t

(1)  

where T is the temperature, x, y and z are the spatial coordinates, t is 
time and u is the power per unit volume. The FDM can be used to dis-
cretize Eq. (1) to obtain 

T(i + 1, j, k, l) + T(i − 1, j, k, l) − 2T(i, j, k, l)
Δx2

+
T(i, j + 1, k, l) + T(i, j − 1, k, l) − 2T(i, j, k, l)

Δy2

+
T(i, j, k + 1, l) + T(i, j, k − 1, l) − 2T(i, j, k, l)

Δz2

+
u(i, j, k, l)

kt
=

1
α

T(i, j, k, l + 1) − T(i, j, k, l)
Δt

(2)  

where Δx, Δy and Δz are the dimensions of each element (see Fig. 3), i, j 
and k are the spatial indices of the elements, l is the temporal index (i.e., 
t = lΔt), Δt is the time step and T(i,j,k,l) is the temperature of the 
element located at (i,j,k) at time l. Rearranging Eq. (2) gives the state 
equation 

T(l+ 1) = AT(l)+Bu(l) (3)  

where T(l) is the state vector comprising the temperatures of all ne ele-
ments of the model at time l, A is the state matrix, B is the input matrix 
and u(l) denotes the power input to the elements at time l. The vector u 
(l) is sparse. Only elements experiencing the effect of the laser heat at 
any given time l have non-zero values of u(l). In this paper, we assume 
that the laser heats one element at a time. Hence only one member of the 
vector u(l) has a non-zero value at any given time. The heat flux of the 
laser beam is described by a Gaussian profile [20] given by 

Q(rb, θ) =
2λP
πR2

b
e
−

2r2
b

R2
b (4)  

where Q, λ, P, Rb and rb are the heat flux, absorptance, laser power, laser 
beam spot radius and distance to the beam center, respectively. Eq. (4) is 
integrated over the beam area and the equivalent heat is applied uni-
formly over the area of the heated element. 

The FDM is an excellent method for developing our simplified model 
for SmartScan because it is versatile. It can accommodate arbitrary layer 
geometries and allow for a variety of boundary conditions, e.g., con-

vection, isothermal or adiabatic. For example, convection at the top 
surface can be incorporated into the model using the heat sink solution 
[29] as shown in Fig. 3. The power per unit volume term in Eq. (2) for 
the top-surface elements can be expressed as 

u(i, j, 1, l) = us(i, j, 1, l) − uconv(i, j, 1, l) (5)  

where us and uconv respectively denote the contributions of the laser 
source and convection to the total power for the element. The convec-
tion term can be expressed as 

uconv(i, j, 1, l) =
h
Δz

(T(i, j, 1, l) − Ta) (6)  

where h and Ta denote the convection coefficient and ambient temper-
ature, respectively. The power due to convection can be easily 
embedded into the AT(l) term of the state equation (Eq. (3)) by incor-
porating an additional state Ta that does not vary with time. A similar 
process can be applied to any surface of the model. 

Typical scan patterns, such as stripe or island, consist of simple 
constant velocity (vs) and constant power (P) lines, and each line can be 
visualized as heating of a one-dimensional array of FDM elements. Our 
simplified FDM model assumes that the laser heat on an element acts at 
the center of the element (as shown in Fig. 4). The number of time steps 
spent on an element can be approximated as 

nc ≈
Δx

vsΔt
(7) 

The corresponding state equation for heating of an element can then 
be written as 

T(lc + 1) = AcT(lc) + bc;

Ac≜Anc ;bc≜
∑nc − 1

m=0
AmBu(m); lc = ncl

(8) 

Note that, different from Eq. (3), the state-space model of Eq. (8) has 
a sampling interval of ncΔt (see Fig. 4). Similarly, this idea can be 
extended to any feature (e.g., stripe or island) of a scan pattern to obtain 
a feature-level state-space representation given by 

T
(
lp + 1

)
= ApT

(
lp
)
+ bp;

Ap≜ Anp ; bp≜
∑np − 1

m=0
AmBu(m); lp = npl

(9) 

Fig. 3. Simplified finite difference model of PBF used in this paper.  

Fig. 4. Diagram depicting the assumption that the laser heat acts at the center 
of each element (for a sample case where nc = 2): (a) actual situation, (b) 
simplified assumption. 
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where np is the number of time steps required to trace a feature (e.g., 
stripe or island) of the pattern. Note that the state equation given by Eq. 
(9) has a sampling time npΔt. 

Remark 1: Notice that the point-to-point positioning time of the 
laser is not included in the formulation above because it is negligible 
compared to the time spent scanning, as observed by Mugwagwa et al. 
[5]. This is because the point-to-point positioning speed (also known as 
jump speed) is typically 5–10 times higher than the scanning speed. 
Also, it is assumed in Eq. (9) that the number of time steps needed to 
scan each feature is constant. This is often the case with stripe and island 
patterns of fixed dimension. 

2.2. Model Reduction using Radial Basis Functions 

Computation and optimization using the FDM model can become 
cumbersome as the number of elements/states grow (for example, due to 
an increase in the size of the layer or the addition of a substrate to the 
model). This section describes the use of radial basis functions to reduce 
the higher-order FDM model. Radial basis functions have been used for 
thermal modeling of PBF in the literature, e.g., [30]. 

For any given time step, l, the temperature T at location (i,j,k) can be 
expressed using radial basis functions [26] as follows 

T(i, j, k) =
∑s

p=1
wpφ

(
rp
)
;φ

(
rp
)
= e− (εrp)

2

; rp≜

⃦
⃦
⃦
⃦
⃦
⃦

⎡

⎣
i
j
k

⎤

⎦ −

⎡

⎣
ip
jp
kp

⎤

⎦

⃦
⃦
⃦
⃦
⃦
⃦

2

(10)  

where ε is the shape parameter; φ is the radial basis function, [ip jp kp]T is 
the location of the representation elements; s is the number of repre-
sentation elements; and rp (p = 1, 2, …, s) is the Euclidean distance 
between the element at (i, j, k) and the representation element (ip, jp, kp). 
In the matrix form, Eq. (10) can be expressed as 

T(i, j, k) = [φ(r1) φ(r2) … φ(rs) ]
⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅ ⏟

m

⎡

⎢
⎢
⎣

w1
w2
⋮
ws

⎤

⎥
⎥
⎦ (11) 

If we consider the temperature of all elements in a layer, the state 
vector T (from Eq. (9)) can be expressed as 

T
(
lp + 1

)
= MtW (12)  

where W = [w1 w2 … ws]T and Mt is obtained by aggregating m for all 
elements in the model. The coefficients wp are obtained by enforcing the 
interpolation conditions at the representation elements and solving the 
system of linear equations 
⎡

⎢
⎢
⎣

φ(r11) φ(r12) … φ(r1s)

φ(r21) φ(r22) … φ(r2s)

⋮ ⋮ ⋱ ⋮
φ(rs1) φ(rs2) … φ(rss)

⎤

⎥
⎥
⎦

⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏟
Mr

⎡

⎢
⎢
⎣

w1
w2
⋮
ws

⎤

⎥
⎥
⎦

⏟̅̅̅⏞⏞̅̅̅⏟
W

=

⎡

⎢
⎢
⎣

T(i1, j1, k1)

T(i2, j2, k2)

⋮
T(is, js, ks)

⎤

⎥
⎥
⎦

⏟̅̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅̅⏟
Tr

(13)  

where rpq is the Euclidean distance between elements (ip, jp, kp) and (iq, 
jq, kq). The solution to the linear equation is given by 

W = M− 1
r Tr (14) 

Substituting Eq. (14) into Eq. (12) gives 

T

⎛

⎜
⎝lp + 1

⎞

⎟
⎠ = MtM− 1

r⏟̅̅̅⏞⏞̅̅̅⏟
Σ

Tr

⎛

⎜
⎝lp + 1

⎞

⎟
⎠ = ΣTr

⎛

⎜
⎝lp + 1

⎞

⎟
⎠ (15) 

Substituting Eq. (15) into Eq. (9) gives 

ΣTr
(
lp + 1

)
= ApΣTr

(
lp
)
+ bp (16) 

Pre-multiplying Eq. (16) by Ω (where Ω is the pseudoinverse of Σ) 

gives 

ΩΣ⏟⏞⏞⏟
=I

Tr

⎛

⎜
⎝lp + 1

⎞

⎟
⎠ = ΩApΣ

⏟̅̅ ⏞⏞̅̅ ⏟

Ãp

Tr
(
lp
)
+ Ωbp

⏟⏞⏞⏟

b̃p

(17)  

where I is the identity matrix. Hence, the transformed (reduced) state- 
space equation using radial basis functions is given by 

Tr
(
lp + 1

)
= ÃpTr

(
lp
)
+ b̃p (18) 

Remark 2: Eq. (18) has reduced the FDM model from the total 
number of ne elements in the original formulation in Eq. (9) to the s 
number of representation elements, where s < < ne. This will enable 
more efficient computation and optimization for larger models. 

2.3. Scan Sequence Optimization using Control Theory 

Based on the assumption that each layer in LPBF can be divided into 
similar features, such as stripes or islands, for the purpose of scanning 
(see Fig. 1), the objective is to find an optimal scan sequence such that at 
the end of scanning each feature the following temperature uniformity 
metric R(lp) is minimized 

R
(
lp
)
=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑

i,j,k

(
Tr
(
i, j, k, lp

)
− Tr,avg

(
lp
))2

sT2
m

√
√
√
√
√ (19)  

where Tr,avg(lp) is the average temperature of representation elements 
Tr(i,j,k,lp) at time lp and Tm is the melting temperature of the material. 
Note that the definition of R(lp) is altered slightly from that used in [19] 
by adopting the melting temperature of the material in the denominator, 
rather than the average temperature. A smaller value of R(lp) implies a 
more uniform temperature distribution. Notice that R(lp) is a function of 
the state vector Tr(lp) and can be expressed as 

R
(
lp
)
=

⃦
⃦CeqTr

(
lp
)⃦
⃦

2;

Ceq =
1̅̅
s

√
Tm

[

I −
11T

s
0
] (20)  

where I is the identity matrix, 1 is a row vector whose elements are all 
equal to 1, and 0 is a null matrix used to account for any elements of 
Tr(lp) that are not needed to calculate R(lp) – e.g., Ta. The optimization 
problem can be formulated as 

min
ueq(lp)

(
R
(
lp + 1

)
=

⃦
⃦CeqTr

(
lp + 1

)⃦
⃦

2

)

s.t.Tr
(
lp + 1

)
= AeqTr

(
lp
)
+ Bequeq

(
lp
) (21)  

where Aeq = Ãp, the columns of Beq represent corresponding vectors b̃p 

(see Eq. (18)) for each feature and ueq(lp) is a vector consisting of only 
one element equal to 1 and all other elements equal to 0. The location of 
1 in ueq(lp) represents the column of Beq and, hence, the feature to be 
scanned. The objective of the optimization problem can be written as 
⃦
⃦CeqTr

(
lp + 1

)⃦
⃦2

2

=
⃦
⃦CeqAeqTr

(
lp
)
+ CeqBequeq

(
lp
)⃦
⃦2

2

= uT
eq

(
lp
)
BT

eqCT
eqCeqBequeq

(
lp
)

+2TT
r

(
lp
)
AT

eqCT
eqCeqBequeq

(
lp
)

+TT
r

(
lp
)
AT

eqCT
eqCeqAeqTr

(
lp
)

(22) 

The last term of the summation in Eq. (22) is independent of ueq(lp), 
thus it does not affect the optimization. The vector ueq(lp) has one 
element equal to 1 and all others equal to 0 which results in only the 
diagonal terms of BT

eqCT
eqCeqBeq affecting the summation. Hence, the 

optimization problem can be reformulated as 
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min
i

λi

s.t.λ = diag
(

BT
eqCT

eqCeqBeq

)

⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏟
Γ

+ 2BT
eqCT

eqCeqAeq
⏟̅̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅̅⏟

Λ

Tr
(
lp
) (23)  

where λi are the elements of λ. Since Γ and Λ are known a priori, they can 
be pre-computed offline. Accordingly, the process for determining 
optimal scan sequence using the proposed SmartScan is summarized in  
Fig. 5. 

Remark 3: The total computation time for SmartScan can be divided 
into online (comprising of computations that need to be performed 
online during the interlayer time as seen in Fig. 5) and offline compu-
tations of the constant matrices in Fig. 5. As demonstrated in Sections 3 
and 4, currently the SmartScan approach considers only one layer and is 

implemented offline. However, in the future multiple layers will be 
considered and SmartScan will be implemented online. 

3. Numerical evaluation of smartscan 

3.1. Comparative Evaluation of Thermal Uniformity 

Here, we demonstrate the effectiveness of the proposed SmartScan 
approach in terms of optimizing thermal distribution using two case 
studies: (1) an island scan pattern (see Fig. 1(a)); and (2) a stripe scan 
pattern (see Fig. 1(b)). In both cases, we assume that an area of 5 cm ×

5 cm is scanned in the middle of a solid AISI 316 L stainless steel plate 
with a length of 6 cm, a width of 6 cm and a thickness of 1 mm (a similar 
set up is used for experiments in Section 4). The FDM model has two 
layers. The first layer has a thickness of Δz = 200 μm (representing the 
scanned layer) and a second layer of thickness 800 μm, representing the 
rest of the plate’s thickness. For both layers, Δx = Δy = 200 μm 
(resulting in 300 × 300 elements per layer; hence the total number of 
elements in the model, ne = 180,000). The time step Δt is selected as 
0.333 ms. The top and bottom surfaces of the plate experience convec-
tion whereas the peripheral surfaces are assumed to have adiabatic 
boundary conditions, due to their negligible surface areas. The RBF 
representation elements are evenly distributed (60× 60) across the top 
layer, with a shape parameter of ε = 0.8; hence s = 3600. The parame-
ters for the thermal model are summarized in Table 1. Note that the 
absorptance, conductivity, diffusivity and melting temperature are ob-
tained from the references cited in the table for AISI 316 L stainless steel 
(under solidus conditions, where relevant). Some of the material prop-
erties mentioned in Table 1 vary with temperature and other factors. 
Our simulations assume constant values for these properties, as tabu-
lated in Table 1, and Section 3.2 explores the robustness of the 
SmartScan approach with regards to variations in key material proper-
ties. The convection coefficient for a surface under still air is obtained 
from Ref. [31]. The other parameters in the table correspond to those 
used in experiments in Section 4. 

3.1.1. Case 1: Island Scan Pattern 
For this case study, the 5 cm × 5 cm area to be scanned is divided 

into 100 (0.5 cm × 0.5 cm) islands numbered from 1 to 100 as shown in  
Fig. 6(a). As is typical [5,21], the direction of the scan vectors within 
each island is rotated by 90◦ for the even numbered islands relative to 
the odd numbered islands (see Fig. 1(a)). Three common heuristic 

Fig. 5. Flowchart of the proposed SmartScan.  

Table 1 
Parameters used in simulations (and experiments).  

Parameter, symbol (Units) Value 

Laser power, P (W) 200 
Laser spot diameter, 2Rb (μm) 77 
Absorptance, λ[32] 0.37 
Mark/scan speed, vs (mm/s) 600 
Hatch spacing (μm) 200 
Conductivity, kt (W/(mK))[33] 22.5 
Diffusivity, α (m2/s)[33] 5.632 × 10− 6 

Melting temperature, Tm (K)[33] 1658 
Convection coefficient, h (W/(m2K))[31] 25 
Initial temperature, T(x,y,z,0) (K) 293 
Ambient temperature, Ta (K) 293  

Fig. 6. (a) Island numbering template; and color maps of island scan sequences for (b) LHI and (c) Proposed SmartScan approaches.  
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sequences, namely: Successive (i.e., 1, 2, 3, …, 100), Successive Chess-
board (i.e., 1, 3, 5, …, 99, 2, 4, 6, …, 100), and LHI, are used as 
benchmarks to evaluate the proposed SmartScan approach. The LHI 
approach used in our numerical study is based on the tessellation al-
gorithm proposed by Malekipour [19] because it provided an unam-
biguous description of its working principle and input variables, thus 
making it straightforward to be reproduced. The tessellation algorithm 

maximizes the pairwise Euclidean distance between the next island to be 
scanned and each of the already scanned islands (as shown in the color 
map of Fig. 6(b)). The first ten entries of the LHI sequence are: 1, 91, 10, 
100, 45, 52, 86, 5, 41 and 23; the full LHI sequence is provided in the 
Appendix. Note that there is a large set of solutions that meet the con-
dition of the tessellation algorithm, but it has no mechanism to select the 
optimal solution from the set of possible solutions. As a result, several 
islands were scanned in close proximity to one another towards the end 
of the scanning process (see Fig. 6(b)). Fig. 6(c) shows a color map of the 
optimal sequence determined by the proposed SmartScan approach. Its 
first ten entries are: 49, 79, 19, 93, 6, 10, 45, 96, 75, and 41; the full 
SmartScan sequence is provided in the Appendix. Notice that it is 
difficult – if not impossible – to decipher the SmartScan sequence via 
intuition or heuristics because it is model-based and 
optimization-driven. 

Fig. 7 shows the temperature uniformity metric, R, defined in Eq. 
(19) as a function of the number of islands scanned. Observe that 
SmartScan performs much better than the Successive, Successive 
Chessboard and LHI scan sequences. The value of R is calculated based 
on the 6 cm × 6 cm scanned area, i.e., the entire plate. The mean value 
of R is reported in Fig. 7. SmartScan yields 2.19, 1.43 and 1.47 times (or 
54.2%, 30.1% and 31.9%) lower mean R than the Successive, Successive 
Chessboard and LHI approaches, respectively. This indicates that the 

Fig. 7. Simulated thermal uniformity metric (R) for different scan sequences as a function of the number of islands scanned. The numbers in parenthesis show the 
mean value of R for each scan sequence. 

Fig. 8. Simulated temperature distribution of 6 cm × 6 cm AISI 316 L stainless steel plate for island scan pattern at four instances during the scanning process. The 
proposed SmartScan shows more uniform temperature distribution than the competing heuristic approaches. 

Fig. 9. Color map of SmartScan sequence for the stripe pattern.  
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proposed SmartScan sequence yields better thermal uniformity 
compared to the competing approaches. This fact is confirmed by Fig. 8 
which shows the thermal distribution of the four approaches at four 
instances – after 25, 50, 75 and 100 islands are scanned (see the sup-
plemental information for.gif animations of the temperature distribution 
of each sequence as a function of time). SmartScan generally shows 
better temperature distribution than the heuristic approaches at all in-
stances except at the beginning and at the end of the scanning process 
where all methods show very similar uniformity. 

3.1.2. Case 2: Stripe Scan Pattern 
For this case study, the 5 cm × 5 cm area to be scanned is divided 

into 250 stripes numbered sequentially from 1 at the bottom edge to 250 
at the top edge of the scanned area. The first ten sequences of SmartScan 
are: 250, 1, 27, 51, 75, 224, 200, 176, 152 and 12; the full SmartScan 
sequence is depicted using a color map in Fig. 9 and is listed in the 
Appendix. Notice that, as with the island case, the stripe SmartScan 
sequence is difficult – if not impossible – to decipher via intuition or 
heuristics because it is model-based and optimization-driven. It is 
compared with common heuristic stripe sequences, namely, the 
Sequential (1, 2, 3, …, 250), Alternating (1, 3, …, 249, 2, 4, …, 250) and 
Out-to-in (1, 250, 2, 249, …125,126) approaches. Fig. 10 shows the 
temperature uniformity metric as a function of number of stripes scan-
ned. The mean value of R is reported in Fig. 10. The proposed optimal 

approach yields 2.59, 1.76 and 1.67 times (or 61.4%, 43.2% and 40.0%) 
lower mean R value than the Sequential, Alternating and Out-to-in ap-
proaches, respectively. This fact is confirmed by Fig. 11 which shows the 
thermal distribution of the four approaches at four instances – after 62, 
124, 186 and 250 stripes are scanned (see the supplemental information 
for.gif animations of the temperature distribution of each sequence as a 
function of time). SmartScan generally shows better temperature dis-
tribution than the heuristic approaches at all instances. 

Fig. 10. Simulated thermal uniformity metric (R) for different scan sequences as a function of number of stripes scanned. The numbers in parentheses show the mean 
value of R for each scan sequence. The proposed SmartScan shows more uniform temperature distribution than the competing heuristic approaches. 

Fig. 11. Simulated temperature distribution of 6 cm × 6 cm AISI 316 L stainless steel plate for stripe scan pattern at four instances during the scanning process. The 
proposed SmartScan shows more uniform temperature distribution than the competing heuristic approaches. 

Table 2 
Online computation time and mean R values as the number of representation 
elements are varied for island and stripe cases.  

Number of 
representation 
elements 

Island Stripe 

Online 
computation 
time [s] 

Mean R 
value 

Online 
computation 
time [s] 

Mean R 
value 

40 × 40  2  0.0692  3  0.0721 
60 × 60  6  0.0493  8  0.0490 
80 × 80  13  0.0485  15  0.0452  
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3.2. Evaluation of Computational Efficiency and Robustness of 
SmartScan 

Firstly, in this section we seek to elucidate the tradeoff between 
temperature uniformity and computational efficiency as the number of 
radial basis functions used in the proposed SmartScan approach are 
varied. Table 2 shows the online computation time (see Remark 3) and 
mean R values as the number of representation elements are varied for 
both the island and stripe cases. The computations are performed on a 
computer with a Xeon E-2136 6 C 3.30 GHz processor, Z Turbo Drive 
512 GB SSD drive and 32 GB RAM. It is observed that increasing the 
number of representation elements from 40 × 40 to 60 × 60 improves 
the temperature uniformity by more than 30% at the expense of about 3 
times increase in the online computation time. Increasing the repre-
sentation elements to 80 × 80 from 60 × 60 results over 2 times increase 
in the computational time but the resultant improvement in temperature 
uniformity is less than 8%. This fact demonstrates that 60 × 60 repre-
sentation elements achieve a good tradeoff between accuracy and 
computation time. Therefore, 60 × 60 representation elements were 
used for the simulations in Section 3.1 and the experiments in Section 
4.2. 

Remark 4: For Cases 1 and 2, described in Section 3.1, it takes only 6 
and 8 s, respectively, for the online computation of the optimal scan 
sequences following the process outlined in Fig. 5, after the constant 
matrices (e.g., Γ and Λ) have been pre-computed offline. This implies 
that the proposed SmartScan approach is computationally efficient 
enough to be computed within the interlayer time of PBF and can be 
implemented online in future (see Remark 3). 

Secondly, in this section, we seek to explore the robustness of 
SmartScan with respect to simulation parameters like conductivity, 
convection coefficient and absorptivity, which were obtained from 
generic references, hence are subject to uncertainty. Also, some of these 
properties are temperature dependent and might change during the 
scanning process. Note that since diffusivity is proportional to conduc-
tivity, its uncertainty is considered along with that of conductivity.  
Table 3 shows the mean R values for different percentage errors in 
conductivity, convection coefficient and absorptivity for both the island 
and stripe cases. The maximum variations in thermal uniformity with 
respect to a maximum of ± 10% error in conductivity, convection co-
efficient and absorptivity are 3.7%, 1.2% and 1.4%, respectively. This 
example shows that SmartScan is reasonably robust with respect to 
parametric errors. The implication is that very precise calibration of 
model parameters may not be needed for the proposed SmartScan. 

4. Experimental evaluation of SmartScan 

4.1. Experimental Setup and Procedure 

To evaluate the effectiveness of SmartScan in experiments, a similar 
setup and case studies as used in the simulations reported in Section 3 
were adopted. The experiments were conducted using the open- 
architecture PANDA 11 LPBF machine (from OpenAdditive, LLC, Bea-
vercreek, OH) shown in Fig. 12 (a). The machine is equipped with a 
500 W IPG Photonics 1070 nm fiber laser combined with a SCANLAB 
hurrySCAN galvo scanner with an F-theta lens on its z-stage. It is 
controlled using the Open Machine Control software that allows custom 
scan patterns and scan sequences to be programmed by a user using 
macros. The PANDA 11 was retrofitted with an Optris PI 640 G7 IR 
camera with 33◦ x 25◦ lens/ f = 18.7 mm, capable of capturing thermal 
images over temperature ranges from − 20 ◦C to 1500 ◦C at frame rates 
of up to 125 Hz. 

The experiments involved marking a 5 cm × 5 cm area on AISI 316 L 
stainless steel (SS) plates of dimensions L × W × H = 6 cm × 6 cm ×
1 mm. As shown in Fig. 12 (b), each SS plate was placed in a 6.2 cm ×
6.2 cm interior of a 3D printed frame attached to the PANDA 11 ma-
chine’s 27.9 cm × 27.9 cm build plate, where the plate rested on four 
thermal-insulating washers (Misumi Part # DJW10–3–3 with thermal 
conductivity of 0.24 W/(mK)). The washers minimized conductive heat 
transfer between the SS plate and the build plate. This allowed the 

Table 3 
Mean R values as functions of errors in conductivity, convection coefficient and 
absorptivity for island and stripe cases.  

% Error Mean R value 

Conductivity Convection Coefficient Absorptivity 

Island Stripe Island Stripe Island Stripe  

-10%  0.0511  0.0503  0.0492  0.0491  0.0493  0.0488  
-5%  0.0503  0.0495  0.0492  0.0490  0.0489  0.0497  
0%  0.0493  0.0490  0.0493  0.0490  0.0493  0.0490  
5%  0.0488  0.0478  0.0493  0.0490  0.0490  0.0492  
10%  0.0487  0.0476  0.0499  0.0492  0.0490  0.0486  

Fig. 12. (a) PANDA 11 open architecture LPBF machine; and (b) fixture used for positioning plates during scanning experiments. The plates sat on the four insulating 
washers within the 6.2 cm × 6.2 cm opening of the frame. 
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experimental setup to better match the simulation setup of Section 3, 
which did not include heat transfer to the build plate. The SS plates were 
not constrained in any way during the experiments, allowing them to 
deform freely under the thermal stresses induced by the laser marking 
process. The process parameters used to mark each plate are listed in 
Table 1, which are the exact same parameters as used in the simulations. 
An additional parameter not included in Table 1 is the laser jump speed 
which was 6000 mm/s. 

Each plate was scanned twice using the sequence being evaluated to 
amplify the thermal deformations induced in the plate. After the first 
scan was performed, the plate was allowed to cool to the ambient 
temperature before it was re-scanned. Using the IR camera, the apparent 
temperature of the plates was recorded at 4 frames per second during 
each experiment and the results exported as CSV files for processing in 
MATLAB. The recorded temperatures are apparent because the emis-
sivity of the SS plate was not experimentally calibrated. It was selected 
as 0.35, based on typical values for stainless steel. However, actual 
emissivity is highly dependent on a variety of factors hence it must be 
calibrated carefully to obtain accurate absolute temperatures. However, 
for the purposes of this paper, apparent temperatures are sufficient. This 
is because it is the relative, not the absolute, values of the temperatures 
that are important for evaluating temperature distribution. 

To measure their deformations, the marked plates were each laser 
scanned using a Romer Absolute Arm (Hexagon AB, Sweden) model # 
7525SI with a scanning accuracy of 63 μm. The plates were placed on a 

flat table upside down and their bottom surfaces scanned to determine 
their deformed shapes. The resulting point clouds were exported to 
MATLAB for processing. 

4.2. Comparative Evaluation of Thermal Uniformity, Deformations and 
Scanning Time 

4.2.1. Case 1: Island Scan Pattern 
The same island scan sequences discussed in Section 3 were evalu-

ated in experiments. Fig. 13 shows the R values of the tested sequences, 
calculated from the measured apparent temperatures, as a function of 
time. The time axis is normalized by the total number of islands scanned 
such that the end time corresponds to the completion of the 100th island 
and the intermediary time steps approximate the number of islands 
scanned at each time step. Similar to the simulations, the Successive 
sequence showed the least uniform temperature distribution while the 
proposed SmartScan sequence exhibited the most uniform temperature 
distribution throughout the scanning process. The quantitative dis-
crepancies between the R plots in simulations and experiments are 
attributable to various approximations made in simulation model (e.g., 
ignoring the jump time and latent heat effects), and the use of apparent 
instead of absolute temperatures. Nonetheless, the qualitative results are 
in general agreement between simulation and experiments. The mean R 
value for SmartScan was 1.7, 1.3 and 1.4 times (or 41%, 25% and 27%) 
lower than those of the Successive, Successive Chessboard and LHI 

Fig. 13. Experimentally measured thermal uniformity metric (R) for different scan sequences as a function of the number of islands scanned (approximately). The 
numbers in parenthesis show the mean value of R for each scan sequence. 

Fig. 14. Experimentally measured temperature distribution of 6 cm × 6 cm AISI 316 L stainless steel plate for the island scan pattern at four instances during the 
scanning process. The proposed SmartScan shows more uniform temperature distribution than the competing heuristic approaches. 
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sequences. This confirms the findings in the simulations that the pro-
posed SmartScan sequence yields better thermal uniformity compared to 
the competing approaches. This fact is confirmed by Fig. 14 which 
shows the thermal distribution of the four approaches at four instances – 
after 25, 50, 75 and 100 islands were scanned (see the supplemental 
information for.gif animations of the temperature distribution of each 
sequence as a function of time). 

Fig. 15 shows a picture of the scanned plates while Fig. 16 shows the 
deformation profiles of each of the plates. The maximum deformation of 
the plate marked using SmartScan is 1.8, 1.75 and 1.7 times (or 45%, 
43% and 41%) lower than those of the plates marked using Successive, 

Successive Chessboard and LHI, respectively. Similarly, the mean 
deformation of the plate marked using SmartScan is 1.56, 1.55 and 1.53 
times (or 36%, 35% and 35%) lower than those of the plates marked 
using Successive, Successive Chessboard and LHI, respectively. These 
clearly demonstrates that the proposed SmartScan generates signifi-
cantly lower internal thermal stresses than the competing approaches. 

The scanning (cycle) time for executing each sequence on the PANDA 
11 machine is listed in Table 4. The proposed SmartScan took 2.7% 
longer than both the Successive and Successive Chessboard, and 1.9% 
longer than LHI due to the fact that it required the laser to jump around 
more than the competing methods. This shows that the performance 
improvement of SmartScan did not come at the expense of significantly 
increased scanning time compared to the heuristic approaches. 

4.2.2. Case 2: Stripe Scan Pattern 
The stripe scan sequences discussed in Section 3 were evaluated in 

experiments. Fig. 17 shows the R values of the tested sequences, calcu-
lated from the measured apparent temperatures, as a function of time. 
The time axis is normalized by the total number of islands scanned such 
that the end time corresponds to the completion of the 250th stripe, and 
the intermediary time steps approximate the number of stripes scanned 

Fig. 15. Picture of 6 cm × 6 cm AISI 316 L stainless steel plates after laser marking using the four island scan sequences under study. Observe that the plate marked 
using the proposed SmartScan scan sequence shows much less deformation than those marked using the competing heuristic approaches. 

Fig. 16. Measured deformation profiles of 6 cm × 6 cm AISI 316 L stainless steel plates using the four island scan sequences under study. The numbers in parenthesis 
are respectively the maximum and mean deformations of each plate in mm. Notice that the proposed SmartScan shows significantly lower deformations than the 
competing heuristic approaches. The plates were scanned upside down. 

Table 4 
Scanning time for island scan sequences.  

Scanning Sequence Scanning time (s) 

Successive  25.7 
Successive chessboard  25.7 
LHI  25.9 
SmartScan (proposed)  26.4  

Fig. 17. Experimentally measured thermal uniformity metric (R) for different scan sequences as a function of the number of stripes scanned (approximately). The 
numbers in parenthesis show the mean of R for each scan sequence. 
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at each time step. Similar to the simulations, the Sequential method 
shows the least uniform temperature distribution while the proposed 
SmartScan sequence generally exhibits the most uniform temperature 
distribution throughout the scanning process. The mean R value for 
SmartScan is 1.6, 1.3 and 1.3 times (or 38%, 25% and 21%) lower than 
those of the Sequential, Alternating and Out-to-in approaches, respec-
tively. This confirms the findings in the simulations that the proposed 

SmartScan sequence yields better thermal uniformity compared to the 
competing approaches. This fact is confirmed by Fig. 18 which shows 
the thermal distribution of the four approaches at four instances – after 
62, 124, 186 and 250 stripes were scanned (see the supplemental in-
formation for.gif animations of the temperature distribution of each 
sequence as a function of time). SmartScan generally shows better 
temperature distribution than the heuristic approaches at all instances. 

Fig. 18. Experimentally measured temperature distribution of 6 cm × 6 cm AISI 316 L stainless steel plate for the stripe scan pattern at four instances during the 
scanning process. The proposed SmartScan shows more uniform temperature distribution than the competing heuristic approaches. 

Fig. 19. Picture of 6 cm × 6 cm AISI 316 L stainless steel plates after laser marking using the four stripe scan sequences under study. Observe that the proposed 
SmartScan scan sequence shows less deformation than the competing heuristic approaches. 

Fig. 20. Measured deformation profiles of 6 cm × 6 cm AISI 316 L stainless steel plates using the four stripe scan sequences under study. The numbers in parenthesis 
are respectively the maximum and mean deformations for each plate. Notice that the proposed SmartScan shows significantly lower deformations than the competing 
heuristic approaches. The plates were scanned upside down. 

K.S. Ramani et al.                                                                                                                                                                                                                              



Additive Manufacturing 52 (2022) 102643

12

Fig. 19 shows a picture of the scanned plates while Fig. 20 shows the 
deformation profiles of each of the plates. The maximum deformation of 
the plate marked using SmartScan is 1.4, 1.9 and 1.3 times (or 29%, 47% 
and 21%) lower than those of the plates marked using the Sequential, 
Alternating and Out-to-in approaches, respectively. Similarly, the mean 
deformation of the plate marked using SmartScan is 1.3, 1.8 and 1.2 
times (or 21%, 46% and 16%) lower than those of the plates marked 
using the Sequential, Alternating and Out-to-in approaches, respec-
tively. These clearly demonstrates that the proposed SmartScan gener-
ates significantly lower internal thermal stresses than the competing 
heuristic approaches. 

The scanning (cycle) time for executing each sequence on the PANDA 
11 machine is listed in Table 5. The proposed SmartScan takes 8.8% and 
0.9% longer than the sequential and alternating methods, respectively, 
and saves 0.4% time compared to the out-to-in approach. This shows 
that the performance improvement of SmartScan does not necessarily 
come at the expense of significantly increased scanning time compared 
to heuristic approaches. In some cases, it could both reduce scanning 
time and improve thermal uniformity. 

5. Conclusions and future work 

This paper has presented a new approach, called SmartScan, for 
optimally determining scan sequences in powder bed fusion (PBF) ad-
ditive manufacturing in order to attain more uniform temperature dis-
tribution, reduced residual stresses and deformations. What makes 
SmartScan unique is that it is an intelligent approach that is model- 
based, optimization-driven and computationally-efficient enough to be 
executed online. It is paradigm shift away from existing approaches for 
determining scan sequences which depend on trial-and-error or 
geometry-based heuristics. Our first attempt at SmartScan, detailed in 
this paper, is achieved using a simplified finite difference model of PBF 
consisting of only heat conduction and convection. The model order is 
reduced using radial basis functions and the optimal sequences that 
minimize a thermal uniformity metric are determined efficiently using 
control theory. 

Simulations and experiments involving laser marking of AISI 316 L 
stainless steel plates using stripe and island scan patterns show that 
SmartScan drastically improves thermal uniformity and thermal-stress 
induced deformations compared to well-known heuristic approaches. 
Moreover, it is computationally efficient enough to be run online and is 
reasonably robust to errors in model parameters. The use of a thermal 
model based on the finite difference method makes SmartScan amenable 
to a wide range of geometries and boundary conditions encountered in 
PBF. Moreover, even though SmartScan was discussed in the context of 
stripe and island scan patterns, which are very popular in practice, it is 
applicable to a variety of other scan patterns with repeating features, 
like fractals [34] and varying-helix islands [35]. However, a key limi-
tation is that the model used for SmartScan considers only one scanned 
layer and does not include the physics of the powder melting process. 
Hence, it is currently only applicable to the layer re-scanning process in 
PBF [27], or the plate marking process often used to evaluate the effects 
of heat accumulation and scanning strategies in PBF, e.g., [5,28]. Future 
work will be focused on improving the SmartScan approach by incor-
porating more advanced models of PBF, e.g., powder melting related 
phenomena, using a combination of physics-based and data-driven ap-
proaches. Multiple scanned layers will also be considered and the 

SmartScan approach will be implemented online. These improvements 
in the models used in SmartScan will likely necessitate new scan 
sequence optimization techniques to handle their increased complex-
ities while maintaining high computational efficiency. Also, the 
SmartScan approach (see Fig. 5) is a greedy optimization approach and 
in future, limited preview horizons will be considered to find an optimal 
global solution. Also, the efficacy of the SmartScan approach when the 
substrate is preheated will be studied in future work. In addition, future 
work will seek to understand how SmartScan affects microstructure, 
porosity, and other defects/properties of the manufactured part that are 
(indirectly) influenced by scan sequence. For example, the direction of 
scanning relative to the gas flow, spatter and plume cloud formation 
within the build chamber may affect void formation and porosity, hence, 
must be considered. 
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APPENDIX 

The full sequences for the LHI and SmartScan shown in Fig. 6(b) and 
(c) based on the island numbering template in Fig. 6(a) are as follows: 

LHI: 
1,91,10,100,45,52,86,5,41,23,27,63,31,67,97,3,7,21,25,43,47,61,65,-
71,88,12,15,17,19,33,35,37,39,55,57,59,77,79,83,94,2,4,6,8,9,11,13,-
14,16,18,20,22,24,26,28,29,30,32,34,36,38,40,42,44,46,48,49,50,51, 
53,54,56, 58,60,62,64,66,68,69,70,72,73,74,75,76,78,80,81,82,84,85, 
87,89,90,92,93,95,96,98 and 99. 

SmartScan: 
49,79,19,93,6,10,45,96,75,41,71,100,27,91,24,68,30,1,58,4,50,98,8,-
61,77,21,55,94,34,81,70,38,11,92,2,5,7,25,97,60,74,31,53,57,40,95,-
90,99,9,20,80,78,51,3,28,46,65,37,15,88,42,67,85,48,69,12,22,82,17, 
62,89,14,32,35,44,87,84,64,66,39,18,52,16,59,13,72,29,83,86,47,36,-
56,23,63,73,43,26,33,76 and 54. 

The full sequence for SmartScan shown in Fig. 9, based on stripes 
numbered sequentially from 1 at the bottom edge to 250 at the top edge 
of the scanned area, is as follows:  

250,1,27,51,75,224,200,176,152,12,244,38,62,86,110,134,218,194, 
13,238,39,63,87,111,159,183,207,231,6,26,50,74,98,122,245,219,-
195,171,7,33,57,81,239,212,188,164,140,116,8,32,56,236,213,189,-
165,141,93, 9,45,69,237,201,177,153,129,105,21,44,225,249,2,182,-
206,158,135,99,15,230,68,248,117,170,146,3,25,92,243,221,128,147, 
14,36,80,104,242,220,123,20,42,202,233,4,60,24,215,247,191,-
43,226,19,72,167,246,214,37,5,232,18,190,61,209,84,227,30,10,166-

Table 5 
Scanning time for stripe scan sequences.  

Scanning Sequence Scanning time (s) 

Sequential  21.7 
Alternating  23.4 
Out-to-in  23.7 
SmartScan (proposed)  23.6  
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,48,240,208,73,31,11,184,228,49,203,161,131,241,22,66,46,90,196,-
216,172,142,234,23,55,109,89,197,217,173,143,235,16,34,54,85,-
115,178,198,154,222,17,35,67,97,179,199,155,223,130,28,108,76,-
58,185,205,149,229,29,96,52,120,78,168,148,192,210,41,107,127,83, 
65,169,151,193,211,47,103,71,126,180,160,204,40,94,114,70,138,-
181,163,53,95,113,133,77,186,156,59,91,121,139,174,106,64,157,-
88,132,187,119,162,79,101,145,125,175,82,102,150,118,136,100, 
124,144,112 and 137. 

Appendix A. Supporting information 

Supplementary data associated with this article can be found in the 
online version at doi:10.1016/j.addma.2022.102643. 
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