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ABSTRACT

We consider a generalization of the resource-constrained project scheduling problem (RCPSP), namely the
RCPSP with flexible resource profiles (FRCPSP) in discrete time periods. In the FRCPSP, for each activity the
given resource requirement is allocated in a variable number of contiguous periods in which the activ-
ity is processed. As the resource allocation can be adjusted between time periods, the resulting resource
profile of the activity becomes flexible. The FRCPSP consists of scheduling activities and determining for
each activity a resource profile and, thus, a duration in order to minimize the makespan. We propose
a Hybrid Metaheuristic for the FRCPSP. It contains the Flexible Resource Profile Parallel Schedule Gen-
eration Scheme which employs the concepts of delayed scheduling and non-greedy resource allocation,
embedded in a genetic algorithm. The best-found schedules are further improved in a variable neighbor-
hood search by transferring resource quantities between selected activities. The results of a computational
study demonstrate that the proposed method yields significantly better solutions than three benchmark
methods on problem instances with up to 200 activities.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

The resource-constrained project scheduling problem (RCPSP)
consists of scheduling a set of activities in order to minimize the
project completion time (makespan) under the constraints of lim-
ited resource availability and finish-to-start precedence relations
with zero time-lags. In the RCPSP, activity durations are given and
the resource allocation to each activity is assumed constant for its
entire duration. However, in real-world projects it is often the case
that only the total resource requirement of each activity is known
beforehand, whereas the activity durations and the resource allo-
cation must be planned accordingly. An activity’s duration indeed
results from the resource quantities allocated in the processing pe-
riods of the activity. As the quantities of allocated resources may
vary between time periods, the activity’s “resource profile” (Naber
& Kolisch, 2014) is flexible and not limited to rectangular shapes
as in the RCPSP.

As an example, consider the common case of human labor as
a project resource. An activity may have a resource requirement of
6 person-days to complete. Hence, the activity may be scheduled
with a constant resource allocation of 2 persons for 3 days. The
activity may also be scheduled with a non-constant resource allo-
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cation and a resulting flexible resource profile of 2 persons for the
first 2 days and 0.5 persons, i.e.,, 1 person working half-time, for
the next 4 days.

A model for a project scheduling problem that integrates such
decisions on the resource allocation was first proposed by Kolisch,
Meyer, Mohr, Schwindt, and Urmann (2003). Naber and Kolisch
(2014) denote this problem as the RCPSP with flexible resource
profiles (FRCPSP). The FRCPSP consists of scheduling activities and
determining for each activity a resource profile and, thus, a dura-
tion in order to minimize the makespan.

As a generalization of the RCPSP, the FRCPSP belongs to the
class of NP-hard problems. Hence, it becomes intractable for grow-
ing problem sizes. A study by Naber and Kolisch (2014) shows
that already for problem instances with 20 activities, a commercial
solver is unable to always find optimal solutions within 2 hours of
CPU time. Due to the high practical relevance and applicability of
the FRCPSP, metaheuristic solution methods are deemed more ap-
propriate to solve larger problem instances within reasonable time.

In this paper, we propose a Hybrid Metaheuristic (HM) for the
FRCPSP in discrete time periods. The HM consists of a genetic algo-
rithm (GA) combined with a variable neighborhood search (VNS).
Both make use of the new Flexible Resource Profile Parallel Sched-
ule Generation Scheme (FSGS). The FSGS uses the activity list rep-
resentation of Hartmann (1998) in combination with two new lists
governing non-greedy resource allocation and delayed scheduling.
We extend the GA of Hartmann (1998) because it has proven to be
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one of the best metaheuristics for the RCPSP. Its activity list encod-
ing together with the application of a schedule generation scheme
always ensures feasible solutions, while the GA framework allows
for an extension to solve the specifics of the FRCPSP. With the GA
we explore the solution space both systematically and randomly in
search of promising solutions. The VNS is then applied for a local
search in quest of further improvements (see Raidl, Puchinger, &
Blum, 2010) by transferring resource quantities from non-critical
to critical activities based on an analysis of resource flows (see
Artigues, Michelon, & Reusser, 2003).

The remainder of this paper is organized as follows. In
Section 2, we give a brief problem description before we pro-
vide a review of relevant literature in Section 3. In Section 4,
we outline solution characteristics relevant to the design of the
HM. The HM and its components are described in Section 5 to-
gether with an illustrative example. We report computational re-
sults in Section 6 and close the paper with concluding remarks in
Section 7.

2. Problem description

We follow the FRCPSP definition of Naber and Kolisch
(2014) and, therefore, just summarize it briefly. Table 1 provides
a summary of the notation used in this paper. A set of n nonpre-
emptive activities V = {1, ..., n} as well as the dummy source activ-
ity 0 and the dummy sink activity n + 1 are given. To schedule the
activities, we consider a planning time horizon of discrete time pe-
riods t e T. Each activity i has to start at the beginning of a period
s; € T and complete at the end of a period ¢; € T. In the remain-
der of this paper we only refer to the period in which the activity
starts or completes. Assuming so = cg = 0, the makespan is defined
as cmax = Max;cy (¢;). All activities are subject to the finish-to-start
precedence relations with zero time-lag given in set E. A prece-
dence relation (i — j) € E requires that s; > ¢;, that is an activity
can only start after all its predecessors have been completed.

Each activity i € V requires a subset R; of the given set of
resources R. For each resource r € R;, a resource profile has to
be determined. This profile specifies the allocated resource quan-
tity g+ € R.g, in each contiguous period t over the duration of
activity i. This duration d; = ¢; — s; + 1 results from a nonincreas-
ing function of the quantity of allocated resources, under the as-
sumption that resource quantities are continuously divisible and
additive.

Central to the problem is the concept of blocks. We define a
“block” for resource r of activity i as a number of consecutive pe-
riods with a constant allocated resource quantity.

A schedule f for the FRCPSP specifies for each activity i € V a
start period s;, a duration d;, and a resource profile for each re-
quired resource r € R;. The FRCPSP is to determine a schedule such
that the makespan is minimized. The resource profiles have to ad-
here to the following three constraints:

1. The quantity of resource r allocated to activity i in each pro-
cessing period t has to be within the range of the lower and
upper resource usage bounds: 4, =< it < G-

2. The quantity of resource r allocated to activity i has to remain
constant for at least a minimum block length (Fiindeling, 2006)
of I consecutive time periods.

3. The total quantity of resource r allocated to activity i has to
meet or cover the resource demand wj,: Zfi:si Qirt = Wir. Ex-
ceeding the resource demand might be necessary in order to
guarantee problem feasibility when taking into account mini-
mum block lengths.

All resources are renewable with b, denoting the availability
of resource r in each period. Resources are categorized into three
types (Naber & Kolisch, 2014):

Table 1
Summary of notation.

Indices

ij Activity

T Resource, specifically the principal resource

t Time period

Sets

A E Active and eligible activities

C Critical activities

E Immediate precedence relations

P Selected activity pairs (i, j)

R, R;, Rf’i Resources, required resources of activity i, required
principal and independent resources of activity i

T Discrete time horizon

Ty Time periods for resource transfer of activity pair (i, j)

Vv, yree Activities, activities with rectangular resource profiles

Parameters

b, Availability of resource r

G, Gi Earliest and latest completion period of activity i

Q,-,E,- Lower and upper bounds of duration of activity i

Ly Minimum block length of resource r and activity i

n Number of activities

Pi» Pps Po Mutation rates for A, p, and o

a4, Gir Lower and upper usage bounds of activity i for
resource r

i, Si Earliest and latest start period of activity i

Tnin Lower bound of the makespan

Wiy Requirement of activity i for resource r

A, Bir Coefficient and constant of linear resource function for

dependent resource r of activity i
A Activity list

0. Pi, Pi Resource limit list, resource limit of activity i, upper
bound of resource limit of activity i

0,0;,0; Start delay list, start delay of activity i, upper bound of
start delay of activity i

Q Maximum number of generated schedules per problem
instance

Variables

¢ Completion period of activity i

Crax Project makespan

d; Duration of activity i

f, frec Schedule, schedule featuring only rectangular resource
profiles

f;en Unique best schedule and corresponding solution
representation for each GA generation

k Neighborhood and number of resource transfers

Lire Periods in the block of resource r for activity i up to
the period t

Qirt Quantity of resource r allocated to activity i in period t

S; Start period of activity i

Or Current leftover quantity of resource r

Sijre Transfer quantity of resource r for activity pair (i, j) in
period t

& Remaining requirement of activity i for resource r

1. A principal resource 7 is the main resource of an activity and its
allocated quantity may define the required quantities of other
resources. An activity requires at most one principal resource,
but a project may contain multiple activity-specific principal re-
sources.

2. A dependent resource r of activity i is a resource whose al-
located quantity g;, depends on the positive allocated quan-
tity g;; of the activity’s principal resource 7 through a non-
decreasing linear resource function q;,¢ > oy, - qj + Bir With co-
efficient «; and constant $;. An activity may require multi-
ple dependent resources. The rationale for the nondecreasing
linear resource function is that for processing an activity each
principal resource often requires a dependent resource in a cer-
tain relative amount. For example, principal resource program-
mer 7 might need dependent resource computer r. In this case
the function is gj; = g;7. A similar example is the principal re-
source bio-lab technician requiring the dependent resource flu-
orescence microscope (Naber & Kolisch, 2014).

2 Jadod



264 M. Tritschler et al./European Journal of Operational Research 262 (2017) 262-273

3. An independent resource of an activity is a resource whose al-
located quantity is independent from any other resources. An
activity may also require multiple independent resources.

Additional parameters can be obtained for each activity, such as
the lower bound of duration d; = max,cg, ( max([w;-/Gy1. ;). The

upper bound of duration d; is calculated by using g;r instead of g,

By using d ; and d; in the preprocessing techniques of Naber and
Kolisch (2014), the activity’s earliest start period s; and its earli-
est completion period ¢; =s; +d; — 1 are obtained. 5; and ¢; are the
latest start and completion periods derived from an upper bound
of the makespan. Finally, T,;, = max;cy (c;) defines a lower bound
of the makespan.

The FRCPSP is also related to other project scheduling prob-
lems. The RCPSP is a special case of the FRCPSP characterized
by equal lower and upper resource usage bounds, no minimum
block length, and only independent resources. The Multi-mode
RCPSP (MMRCPSP) is similar to the FRCPSP in that each activity
can be processed in multiple ways (Weglarz, Jézefowska, Mika,
& Waligora, 2011). However, the MMRCPSP has a set of predeter-
mined modes with constant resource allocation per activity from
which one mode has to be selected. The FRCPSP also varies from
the discrete time-resource tradeoff problem (DTRTP), where the ac-
tivity duration is a function of the activity’s resource usage, which
is assumed constant (Weglarz et al., 2011).

3. Literature review

The FRCPSP was initially studied by Kolisch et al. (2003) in
the context of real-world pharmaceutical research projects. They
propose a mixed integer program (MIP) formulation as well as a
priority rule heuristic with a serial or parallel schedule genera-
tion scheme. Their schedule generation scheme (SGS) follows the
greedy principle of scheduling activities as early as possible and
allocating the largest possible resource quantities. We denote an
SGS that applies these greedy principles as a “standard” SGS. In
the following, we distinguish the FRCPSP with continuously divisi-
ble resources (continuous resources) from the FRCPSP with discrete
resources.

For the FRCPSP with continuous resources, four MIP models are
proposed and compared in Naber and Kolisch (2014). They also ap-
ply a priority rule heuristic with a standard serial SGS to com-
pute an upper bound of the makespan. In parallel to this work,
Schramme (2014) has developed an MIP model and a GA with
a non-greedy serial SGS for the FRCPSP without minimum block
lengths and without dependent resources. Our proposed FSGS dif-
fers from the SGS of Schramme (2014), as we specifically address
the minimum block length and determine activity durations as a
result of the resource allocation, whereas Schramme (2014) con-
siders activity durations as input parameters. Tritschler, Naber, and
Kolisch (2014) propose the Self-Adapting Genetic Algorithm, which
follows the idea of Hartmann (2002) to use a self-adaptive param-
eter to select from a standard serial or parallel SGS.

The FRCPSP with continuous resources is a relaxation of the FR-
CPSP with discrete resources and, hence, it holds that the optimal
objective function of the FRCPSP with continuous resources is less
than or equal to the optimal objective function of the FRCPSP with
discrete resources. For discrete resources, the sets of resource pro-
files for the activities are finite, which renders the problem purely
combinatorial. There are also two different paradigms in satisfy-
ing the resource requirements. The one addressed by Fiindeling
and Trautmann (2010), Schramme (2014) and Baumann, Fiindeling,
and Trautmann (2015) specifically allocates resources in the exact
amount required by each activity. The second addressed by Naber
and Kolisch (2014) and Tritschler et al. (2014) allows resources
to be allocated at least by the amount required by each activity.

20,3,5

L

0 3 B
Wi, g, q;

hogiNo

Fig. 1. Project featuring a single resource with availability of b = 7 and a minimum
block length of | = 2 for all activities.

S N O

S N O

1 2 3 4 5 6 1 2 3 4 5 6
(a) (b)

Fig. 2. Examples of schedules for the project given in Fig. 1.

Naber and Kolisch (2015) investigate empirically whether the two
paradigms yield equivalent makespans, however, under continuous
resources. The computational results show that the latter can yield
reductions both in makespans and computational time.

For the FRCPSP with discrete resources, Zimmermann
(2016) proposes an MIP-based heuristic. Baumann et al. (2015) pro-
vide an MIP model and also consider relaxations resulting in
continuously divisible resource quantities and equality resource
requirements. Fiindeling and Trautmann (2010) apply a priority
rule heuristic with a standard serial SGS and Fiindeling (2006) pro-
vides in addition a parallel SGS which allocates resources to the
maximum number of activities by first fulfilling their lower re-
source usage bounds. Both approaches assume that all activities in
a project require the same principal resource. For projects entirely
limited to a single resource, Ranjbar and Kianfar (2010) employ a
GA with a serial SGS based on an a priori generated set of feasible
resource profiles which are, however, limited to specific shape
types. For a related problem with several additional constraints
inspired from practice, Kuhlmann (2003) proposes multiple GA
variants.

4. Solution characteristics

In this section, we argue that approaches beyond the greedy
principles mentioned in Section 3 are required to generate opti-
mal solutions for the FRCPSP. The examples in this section apply
to both the standard serial and the standard parallel SGS.

4.1. Non-greedy resource allocation

The greedy principle of always allocating the maximum re-
source quantity does not necessarily lead to the minimum
makespan because it may prevent the start of other activities, as
pointed out by Fiindeling and Trautmann (2010), or increase their
durations. An optimal schedule may feature periods in which the
resource allocation to an activity is reduced, whereas in other pe-
riods it is maximized in order to utilize the available resources.

For the project in Fig. 1, Fig. 2a shows a schedule resulting from
a greedy resource allocation. Activity 1 starts with its maximum
resource allocation of 5 units. Hence, activity 2 cannot start until
period 5 and the resulting makespan is 6 periods. Fig. 2b shows
an optimal schedule resulting from a non-greedy resource alloca-
tion of only 3% resource units to both activities in periods 1 to 3.
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Wi g, q;

©

Fig. 3. Project featuring a single resource with availability of 3 and a minimum
block length of 3 for all activities.

However, in periods 4 and 5, the resource quantity allocated to ac-
tivity 1 is increased to the maximum of 5 units in order to uti-
lize the available resources. The resulting makespan of 5 periods is
optimal.

4.2. Delayed scheduling

Scheduling activities as early as possible does not necessarily
lead to the minimum makespan (see Baumann et al., 2015). By de-
laying the start of an activity to a later period, the activity may be
able to exploit a higher resource availability which otherwise could
not be utilized. This effect is caused by the minimum block length.

For the project given in Fig. 3, Fig. 4a illustrates a schedule in
which all activities start as early as possible. Activity 2 starts in
period 4, where due to the processing of activity 3 only 2 resource
units are available. Respecting the minimum block length of 3 pe-
riods, 1.8 resource units are allocated for 3 periods to activity 2,
resulting in a makespan of 8. By delaying the start of activity 2 to
period 5, where 3 resource units are available, an optimal sched-
ule with the minimum makespan of 7 can be obtained, as shown
in Fig. 2b.

5. Hybrid metaheuristic

First, the FSGS is introduced in Section 5.1. Then, the GA is de-
scribed in Section 5.2 and the VNS in Section 5.3. Generally, we as-
sume that a feasible schedule exists, that is the availability of each
resource is sufficient to fulfill the lower bound of resource usage
of each activity.

5.1. Flexible resource profile parallel schedule generation scheme

The FSGS implements non-greedy resource allocation, in which
it allows periods of limited and periods of maximized resource
allocation for the same activity, as well as delayed scheduling.
The FSGS always generates feasible solutions. However, due to its
heuristic resource allocation it may not always find the optimal re-
source profiles and makespan. The next sections describe the input
parameters, explain the algorithm and provide an example.

5.1.1. Input parameters
The FSGS uses three compact input parameters:

o Activity list A: The sequence of activities for resource allocation
is defined by activity list A (Hartmann, 1998). A is any prece-
dence feasible permutation of the set of activities V.

qit
3 ............................................ b
2 2
1
1
3
0 t
1 2 3 4 5 6 7 8
(a)

» Resource allocation limit list p: To facilitate non-greedy re-
source allocation, list p = (p1,...,on) contains for each activ-
ity i an integer p; € {0, ..., p;} that defines the limit for the al-
located resource quantity through function g;; = w;./(d; + p;)-
Instead of directly encoding the continuous resource quantities
for each resource and period, just one integer value p; is re-
quired per activity i. The upper bound p; = min(d; —d;, ¢ —5;)
for p; prevents too low limits leading to excessive prolongations
of activities.

Start delay list o: To delay the start of activities, list
o = (0y,...,0n) contains for each activity i an integer oj €
{0,1,...,0;} that specifies the number of periods in which ac-
tivity i is not started, despite a sufficient quantity of remaining
resources and fulfilled precedence relations. The upper bound
o; =5; —s; for o; is calculated from the earliest and latest start
periods.

5.1.2. Algorithm

The FSGS extends the period-based approach of the parallel
SGS to flexible resource profiles and minimum block lengths. The
FSGS increments time periods and considers in each iteration one
period t. Resources are allocated to an activity in the order of prin-
cipal, dependent, and independent resources. An activity is com-
pleted as soon as the resource requirements and the minimum
block lengths of all of its required resources are met. The dura-
tion d; of activity i results from the allocated resource quantities
per period. For simplicity, we assume for now that resource r of
activity i is either principal or independent, i.e., r € RI".

For each period t, the FSGS performs the steps given in
Algorithm 1. A provides the sequence of activities to which re-
sources are allocated in all steps. We use p to limit the resource
allocation in steps 2a and 2b and o to delay the start of activities
in step 2a. The FSGS considers set A of active activities, i.e., activi-
ties already started but not yet completed in t, and set E of eligible
activities, i.e., activities that have not yet started and whose pre-
decessors have been completed up to t — 1. ¢, denotes the current
leftover capacity of resource r, £;, the remaining requirement of ac-
tivity i for resource r, and the counter delay; denotes the number of
periods that the start of activity i has been delayed. Furthermore,
Iy is the length of the block of activity i with respect to resource r
until period t. All sets and variables are constantly updated after
each operation. These updates are not stated in the algorithm to
maintain brevity. We denote the block up to period t —1 as the
“current block” and the block starting in period t as the “new
block”. In the following, we explain steps 1 to 3 of Algorithm 1:

Step 1 Continue active activities to ensure nonpreemption: For
each resource r of activity i € A for which the minimum
block length [;; has been met, a quantity equal to the min-
imum resource usage bound q;; = g, is allocated. If I;; has
not been met, the current block is continued by allocating
the quantity of the previous period Gir = Gir—1)-

Step 2 Allocate remaining resources: Resources are distributed
among eligible and active activities in a non-greedy man-
ner according to sequence A. Two disjunct cases apply:

qit
3 ........................... b
2,

1 2
1

3

t
1 2 3 4 5 6 7 8

(b)

Fig. 4. Examples of schedules for the project given in Fig. 3.
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Algorithm 1 Steps of the FSGS in period t.

1. for i € A in sequence of A, r € R” do
if liy_1) = I;; then

Qire = g,»r
else
Qirt = Qir(e-1)

2. for i e AUE in sequence of A, reRfi :¢r>0do
(@) ificEand Vi eR;: ¢y > q,, then
if delay; > o; then
Girt = min(gar, Q:/ﬁ'p,)
else
delay; = delay; + 1
(b) ificAand I, q) >1; then
if gyt + ¢r > Girc—1) then
Ty, = max(g,, min(Gire + @r. £, 7%5))
if (501 2 L and (T51 < [5-1 oF giy > 2%

Qir(t—1) di+pi
Qirt = ql{ﬂ'
else
Qirt = qire-1)
else
Girt = Qirt + Pr

if [££] <21, then
Gire = Max(q,,. &/ 1)
3. for i € A in sequence of A, r € R” : ¢, > 0 do
Repeat step 2b with ¢}, = max(g, . min(ir + ¢@r, %,ﬁir))

Step 2a Start eligible activities: Eligible activities are started
based on the delays from o. Activity i € E starts if the
lower usage bound of each required resource is met and
the start of the activity has already been delayed for
at least o; periods. A delay is counted if activity i is
not started, despite a sufficient quantity of remaining re-
sources and fulfilled precedence relations. p; limits the al-
located resource quantity to q;; = min(gy, wi./(d; + p;))-

Step 2b Modify resource allocation of active activities: This step
only applies to resources required by active activities i € A
for which the minimum block length has been met. For
such resources, a quantity equal to the minimum usage
bound has already been allocated in step 1. Now, ad-
ditional resource quantities are allocated. We distinguish
three cases: (1) A new block has to be started due to
insufficient resources. (2) The current block is continued.
(3) A new block is started in order to change the resource
allocation. The operations of each case are as follows:

(1) If the current leftover quantity ¢, of resource r does
not suffice to continue the current block, i.e., ¢r < gir¢—1)
we add the leftover capacity ¢, to the so far allocated re-
source quantity q;; by setting q;+ = q;;+ + ¢ and, conse-
quently, start a new block.

(2) If ¢ suffices to continue the current block, the algo-
rithm checks whether to allocate the same quantity as in
the previous period ¢ — 1, i, gi = gir(—1), OF to start a
new block based on case (3).

(3) A new block with an allocation of qlfrt =
max (q,,, min(qi + ¢r, §ir/Lir, wir/(d; + p1))) is only started
by setting g = ¢, if the following condition (I) and
at least one out of conditions (II) or (IlI) apply: (I) The
remaining resource requirement &;. is sufficient to ac-
commodate at least one minimum block length, i.e.,
[€ir/q;, ] = L. (1) The new block resulting from an in-

creased resource quantity q;, is shorter than in the case of

10,2,4 13,2,3
0 5 ~
12,34 15,2.3 Wiy 4,5 s

G ©

Fig. 5. Project featuring a single resource with availability of b =5 and a minimum
block length of [; = 2 for all activities.

qit

O = N W e Ot

1 2 3 4 5 6 7 8 9 10 11 12

Fig. 6. Schedule f generated by the FSGS for the project from Fig. 5.

continuing the current block, i.e., [&;/q}, 1 < [&ir/Gir¢—1)]1-
(IIl) The allocated quantity in the current block is larger
than the limit defined by p;, ie., Gy¢_1) > Wir/(d; + 07).
Note that condition (III) can only apply if step 3 has been
performed at the beginning of the current block. Based on
condition (III), the new block resulting from a decreased
resource quantity q;, again adheres to the limit defined
by p;.

Next, if less than two minimum block lengths remain to
complete the activity, i.e., [£;/qi¢] < 2 - I, the resource
allocation has to be kept constant until the activity com-
pletes. Starting a new block in the following periods would
otherwise increase the duration of the activity. To prevent
an overallocation of resources beyond wj;, in this case, we
set Qirr = max(q,,. §ir/[&ir/qire 1)-

Step 3 Utilize leftover resources: After completing steps 1 and
2, a feasible partial schedule up to period t has been gen-
erated in which resources are allocated in a non-greedy
manner to active and eligible activities. However, due to
the resource allocation limits from p, it may be the case
that the available resources are not fully utilized in pe-
riod t. Hence, in step 3 we exploit these leftover re-
source quantities by exceeding the allocation limit (see
the example from Section 4.1). We allocate the leftover
resource quantities to active activities strictly in the se-
quence of A if the minimum block length permits it. For
this purpose, step 2b is repeated with the modification
e = max(g,., min(@r + Gire, &ir/lir, Gir)), which allows  al-
locating resources up to Gj,.

The allocation of dependent resources to activity i is per-
formed as follows. The allocated quantity of dependent resource r
is calculated based on the allocated quantity g;; of principal re-
source by qi¢ =« - g7 + B. If ¢, is lower than g, then we set
Gire = Max(g,. ¢r) and, as a consequence, also update the allocated
quantity of the principal resource to g = (qi+ — B)/c. This re-
quires to recalculate the amounts of other dependent resources
too. The process is repeated until g;; adheres to the availability
and the resource usage bounds of all dependent resources.

5.1.3. Example

To illustrate the FSGS, consider the project in Fig. 5. Given A =
(3,1,4,2), p=(1,0,0,0), and o = (0,0, 0,0), the FSGS generates
the schedule f shown in Fig. 6. In the following, we only relate to
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periods in which the allocated resource quantity is changed. In all
other periods, only step 1 of Algorithm 1 applies. The index for the
single resource is omitted.

In period 1, resources are first allocated to activity 3 due
to its position in A. As d3; =max([12/4],2)=3 and p3=1, a
resource quantity of min(5, 12/(3 + 1)) = 3 is allocated in step 2a.
The remaining 2 resource units are allocated to activity 1 in
step 2a. Activity 3 completes in period 4. In period 5, first 2 re-
source units are allocated to activity 1 based on step 1. This is suf-
ficient for activity 1 to complete. Then, the remaining 3 resource
units are allocated to start activity 4 in step 2a. In period 6, ac-
tivity 4 continues with the same allocated quantity as in period 5
due to step 1. Hence, activity 2 can only start with an allocated
quantity of 2 units from step 2a. Activity 4 completes in period 9.
In period 10, activity 2 requires additional &, =5 resource units
to complete. First, a resource quantity equal to the lower usage
bound g, 190 =2 is allocated in step 1. As the length of the cur-
rent block I, g =4 is greater than [, =2, step 2b increases the
quantity to g, = max(q,. min(qy 10 + ¢. &2/l W2/ (dy + 02))) =
max(2, min(2 +3,5/2,15/(5+0)) = 2.5. The new resulting block
has a length of 2 which equals the minimum block length and
is 1 period shorter than the continued current block. As the new
block does not overallocate resources, the resource quantity is
not changed by operation max(2,2.5/[2.5/2.5]) = 2.5. The activ-
ity completes in the following period, resulting in a makespan
of 11.

5.2. Genetic algorithm

A genetic algorithm (GA) is a population-based metaheuristic
inspired by the principles of natural evolution (Holland, 1975). To
apply a GA to the FRCPSP, we use the FSGS input parameter lists
A, p, and o as representation for a candidate solution. We employ
the FSGS to generate a feasible schedule from a candidate solution
and consider the resulting makespan as the fitness value.

Our proposed GA first creates an initial population of candi-
date solutions as described in Section 5.2.1. In each generation,
the elite solution with the lowest makespan is inserted into the
next generation. Based on the elite solution’s makespan, we up-
date the bounds §;, ¢;, p;, and o;, which are thus tightened with
every makespan improvement. Next, the GA selects a set of candi-
date solutions for the next generation by stochastic universal sam-
pling (Baker, 1987). These candidate solutions are modified by the
operators described in Section 5.2.2 and constitute the next gen-
eration. The whole process is repeated until a termination crite-
rion is fulfilled. The GA returns as result the list f;en. It contains as
unique elements the elite solution and the corresponding sched-
ule for each GA generation, sorted in ascending order of generation
count. As elite solutions are maintained, ﬁ;en is also sorted in non-
increasing order of makespan. fgen is used as input for the VNS as
described in Section 5.3.

5.2.1. Initial population

We construct activity list A by iteratively adding one activity
whose predecessors are already contained in A, assuming that the
dummy source activity is always present in A. Diversity is intro-
duced by selecting the next activity randomly as well as based on
the priority rules employed in Fiindeling (2006), namely longest
path following (LPF), most work remaining (MWR), and most to-
tal successors (MTS). For 75% of the population, we set with a
probability of 10% uniform random integer values for p; within its
bounds, whereas for the rest we set p; to 0. All o; are set to 0 in
order to prevent delayed activity starts in the initial population.

5.2.2. Operators

To recombine solution candidates, we apply the precedence-
order maintaining two-point crossover of Hartmann (1998). It ran-
domly selects two crossover points in lists A, p, and o of two par-
ent solutions and generates two new feasible child solutions. We
then apply three mutation operators. For A we use the mutation
operator of Hartmann (1998). It exchanges an activity in A with
the one at the next position with a probability of p, if the ex-
change is feasible regarding the precedences of the activities. The
mutation of po; has a probability of p,. Here, one of the following
two operations is done with equal probability. p; is either replaced
by a uniform random integer within its bounds or increased (de-
creased) by one. Finally, o; is replaced with a probability of p, by
a uniform random integer within its bounds.

5.3. Variable neighborhood search

Variable neighborhood search (VNS) is a metaheuristic which
combines local search with systematic change of neighborhoods
(Hansen & Mladenovic, 2005). We propose a VNS to further im-
prove the best schedules found by the GA in list fgen by transfer-
ring resource quantities between selected pairs of activities (i, j).
VNS is an appropriate metaheuristic for this purpose, as its con-
cept of nested neighborhoods represents combinations of multiple
pairwise resource transfers. The VNS intensifies the search along
the GA’s search trajectory on solutions of already high quality.

We first describe how activity pairs are selected in Section 5.3.1,
before we explain the resource transfer in Section 5.3.2. In
Section 5.3.3, we define the neighborhoods and embed the re-
source transfer into the VNS framework. Finally, we provide an il-
lustrated example in Section 5.3.4.

5.3.1. Activity selection

For most activity pairs a resource transfer either is infeasible
or does not reduce the makespan. Thus, we construct subset P
of the set of all activity pairs. The idea is to select activity pairs
(i, j) € P such that resource quantities are only transferred from
“non-critical” activity i to “critical” activity j in order to reduce the
duration of j. Critical activities, as defined below, correspond to a
longest path in a network representation of the schedule which
utilizes the resource flow concept of Artigues et al. (2003). We con-
struct set P for schedule f in five steps:

1. Prevent cycles: Due to the flexible resource profiles, the re-
source quantity allocated to an activity over time may first de-
crease and then increase again. In this case, there is a resource
flow from the activity via other activities to itself. Hence, the
resulting resource flow network contains cycles and the calcu-
lation of a longest path becomes NP-hard (Garey & Johnson,
1979). To derive an acyclic resource flow network, we transform
schedule f into schedule f¢ in which all activities i"¢ e V"¢ fea-
ture rectangular resource profiles for all required resources. Re-
source profiles that contain more than one block are split into
multiple new activities that each represent one single block. In
each period in which an activity i € V from schedule f starts
a new block, a new corresponding activity i e V™ starts in
schedule frec.

2. Generate resource flow network: An acyclic resource flow net-
work is derived from f¢ by adapting the algorithm of Artigues,
Demassey, and Neron (2008, p. 34). In the resulting resource
flow network, an arc from activity i to j™¢ exists if there is a
positive resource flow from i"®¢ to j™¢. The weight of the arc is
set to mill(Sjrec — Sirec, d,‘rec).

3. Identify critical activities: A given maximum number of
longest paths in the resource flow network is calculated. For
a longest path, we denote activity j € V as critical if it corre-
sponds to an activity from set V"¢ which is on this longest path.
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Set C contains all critical activities j € V corresponding to this
longest path.

4, Select activity pairs: Set P contains activity pairs (i, j) in which
activity i is non-critical, while activity j is critical and its dura-
tion is greater than its minimum duration, and the set T; of pe-
riods for resource transfer is nonempty. Tj; consists of the peri-
ods in which activity i currently has an allocated quantity above
its lower usage bound, while activity j has a quantity below its
upper usage bound for a shared principal or independent re-
source r:

P={{.)li¢CjeCd;>d;T;#0}
Tj={teTI3r eRMNRY: @i > G- Tjre < Tjr)}

5. Break ties: In case of multiple longest paths, multiple sets P
occur. In this case, we select the set P that has the highest
makespan reduction potential }°; ;).p(d; —d;).

5.3.2. Resource transfer )

For (i, j) e P.r e R mR;" and t € Ty, we define the maximum
transfer quantity 9;; as the minimum between the maximum
possible sendable and receivable resource quantity, ie., ¥ =
min(qyr — g, qjr — qjre)- The quantity of dependent resources is
determined based on the quantity of the principal resource. Start-
ing from feasible schedule f we perform k resource transfers for
activity pairs (i, j) € P to generate a new feasible schedule f as
follows. We apply the FSGS based on A, p, and o. However, in
each period t € T; the allocated resource quantity in steps 2a and
2b of Algorithm 1 is modified in an additional operation to gj; =
max(gir,min(ﬁ,»r, qirt — Vijre)) for sending activity i and to g =
max(gjr,min(ﬁjr, qjrt + Vijre)) for receiving activity j. In step 2b
of Algorithm 1, a new block is started if the remaining resource
requirement &;. suffices to generate at least one minimum block
length.

The resource transfer is only performed if both activities meet
the minimum block length. This requirement is not considered in
the activity selection, as in case of multiple resource transfers we
have to actually generate a schedule in order to determine the re-
sulting block lengths.

5.3.3. Schedule improvement

We define neighborhood k of feasible schedule f as the set of
all feasible schedules which can be generated from f by k resource
transfers for activity pairs (i, j) € P. The VNS integrates two com-
ponents: (1) the first-improvement variable neighborhood descent
of Hansen and Mladenovic (2005) which is a local search method
employing a purely deterministic neighborhood change mechanism
and (2) a perturbation method to escape local minima based on
feen from the GA:

1. The VNS starts in neighborhood k=1 of the last schedule f
from fgen. This schedule has the shortest makespan found by
the GA. In each local search step in neighborhood k, we gen-
erate a new schedule f from the current incumbent f by k re-
source transfers based on activity pairs from P. If no makespan
improvement is found within the given maximum number of
generated schedules per neighborhood, the VNS proceeds to the
next neighborhood k = k + 1. If the makespan of f is reduced,
the VNS moves from f to f and continues the search in neigh-
borhood k =1 of schedule f. The information which transfers
have been performed is saved.

2. If f is not improved within the given maximum number of non-
improving schedules or if the maximum allowed neighborhood
has been reached, the VNS escapes the local optimum f by se-
lecting the next unique schedule f from fgen and moving from
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Fig. 7. Improved schedule f resulting from schedule f of Fig. 6.

f to f. Thus, the VNS exploits the results of the GA and oper-
ates on schedules of already high quality instead of moving to
a randomly generated schedule.

The VNS terminates and returns the overall best-found sched-
ule if fgen has been fully processed or the given maximum num-
ber of schedules has been generated or the lower bound of the
makespan Tp,;, has been reached.

5.3.4. Example

Assume that schedule f from Fig. 6 for the project from Fig. 5 is
processed by the VNS. In the activity selection, schedule f is trans-
formed into schedule f*¢. The non-constant resource profile of ac-
tivity 2 in f contains 2 blocks. Hence, it corresponds to 2 activi-
ties with rectangular shape resource profiles in f¢, one from pe-
riods 6 to 9 and the other from periods 10 to 11. The result-
ing resource flow network contains 2 longest paths of length 11.
For the first longest path with critical activities C = {1, 2}, activ-
ities 1 and 2 are parallel to activity 4. Hence, we obtain periods
Ty1=1(5} and Ty, ={6,7,8,9}. We get P={(4,1), (4,2)} with a
reduction potential of (dy —d;) + (dy —dy)=(5-3)+(6-5)=3
periods. However, the other longest path with critical activities
C' = {3, 4, 2} has no reduction potential. For all activities in C/, the
only parallel activity which is not in C itself is activity 1. As the
allocated resource quantity of activity 1 is equal to its lower usage
bound in all periods, no resource transfer is possible.

Neighborhood k =1 of f contains all schedules resulting from
k=1 resource transfer. The first resource transfer for activity
pair (4, 1) with T; 1 = {5} in period 5 is not performed, as activ-
ity 1’s remaining resource requirement of 2 units does not suf-
fice to accommodate the minimum block length. For the resource
transfer of activity pair (4, 2) with T, = {6, 7, 8,9}, the minimum
block lengths of activities 4 and 2 prevent a transfer in periods 6
and 7. In period 8, a transfer of ¥4, g = min(3 — 2,3 —2) = 1 units
is feasible, resulting in 3 resource units allocated to activity 2 and
2 units allocated to activity 4, as shown in schedule f of Fig. 7. Due
to the minimum block length, both activities have the same alloca-
tion in period 9. Both activities complete in period 10. As a result,
the makespan is reduced by 1 period to 10, which is optimal.

6. Computational study

In this section, we present the computational study. First, we
describe the design of the study in Section 6.1, before we present
the test problem instances in Section 6.2 and give details on the
parameter settings in Section 6.3. In Section 6.4, we report and
analyze the computational results. Lastly, Section 6.5 demonstrates
an application of the HM to the FRCPSP with discrete resources.

6.1. Test design

We compare the HM to the following benchmark methods:

P
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e SGA: The Self-Adaptive Genetic Algorithm of Tritschler et al.
(2014) uses an activity list representation and an additional
self-adaptive parameter (Hartmann, 2002), the SGS flag, which
determines whether a standard serial or a standard parallel SGS
is used.

e PRS: The Parallel Random Sampling heuristic resembles the
method of Kolisch et al. (2003). It constructs activity lists by
random sampling and generates schedules with a standard par-
allel SGS.

o SRS: The Serial Random Sampling heuristic is the same as the
PRS but uses a standard serial SGS.

o MIP: As a reference we employ a commercial solver using
the best-performing MIP model FP-DT3 of Naber and Kolisch
(2014). The best solution obtained after a time limit of two
hours per problem instance is considered as a reference value.

Furthermore, in order to analyze the influence of the HM com-
ponents on the solution quality, three HM variants are compared:

* GA-FSGS: The FSGS is embedded into the GA without the VNS.
This combination is used to evaluate the impact of the VNS.

o MP-FSGS: In order to assess the GA’s impact, the FSGS is em-
ployed in a multi-pass method (see Kolisch & Hartmann, 2006).
By using the FSGS, the method generates a large number of
schedules and selects the one with the best objective function
value. Following Fiindeling and Trautmann (2010), we generate
three A with the priority rules LPF, MTS, and MWR and p and o
set to zero. We generate the remaining A by random activity se-
lection and p and o chosen randomly within the given bounds.

e GA-SGS: The GA operates only on A and is combined with a
standard parallel SGS. This combination is used to evaluate the
FSGS.

The methods are compared based on a maximum number of
generated schedules per problem instance (€2). This widely ac-
cepted methodology has previously been applied in studies on the
RCPSP (Kolisch & Hartmann, 2006) and the MRCPSP (van Peteghem
& Vanhoucke, 2014). According to Kolisch and Hartmann (2006),
the termination criterion has the advantages that it is platform in-
dependent and allows direct comparison with future studies. Each
started schedule generation process is counted as one schedule. If
a makespan equals Ty;;,;, an optimal schedule is obtained and the
method terminates. We report the required computation time of
each method as single-threaded CPU time.

All methods, except the MIP, are implemented in Java 7 on a
desktop PC with a 3.3 gigahertz Intel Core i3-2120 CPU and 4 gi-
gabytes of RAM. Naber and Kolisch (2014) solve their MIP model
with CLPEX on a computer with a 3.4 gigahertz Intel Core i7-3770
CPU and 16 gigabytes RAM.

6.2. Test data

The study is conducted on problem instances from test sets A
and B of Fiindeling and Trautmann (2010). Test set A contains in-
stances with up to 4 resources, derived from the RCPSP instances
of the PSPLIB (Kolisch & Sprecher, 1997). The study only includes
instances of test set A with at most 55 activities because for larger
instances no MIP results are available. These 509 instances of test
set A are labeled as instance set A_ss, where the subscript indi-
cates the number of activities.

Test set B consists of instance sets Bqg, Byg, Bsg, B1gg, and Bygg
with 10, 20, 40, 100, and 200 activities, respectively, and up to 4
resources. Fiindeling and Trautmann (2010) generate 480 problem
instances in each set by using a factorial design of the problem
parameters order strength, resource factor, and resource strength.
The higher the order strength (OS) is, the more precedence rela-
tions are in the project network. OS values of 0.25, 0.5, and 0.75

are used. The resource factor (RF) indicates the number of re-
quired resources per activity (Kolisch & Sprecher, 1997). Its values
are set to 0.25, 0.5, 0.75, and 1. For example, a value of 0.5 indi-
cates that each activity requires 2 out of the 4 resources. The re-
source strength (RS) measures the scarcity of resources by compar-
ing the resource requirements to the resource availability (Kolisch
& Sprecher, 1997). RS values of 0, 0.25, 0.5, and 0.75 are used. A
lower value indicates a higher scarcity. For RS = 0, there is for each
resource at least one activity that may exclusively occupy the re-
source due to the upper bound of resource usage g;, (see Fiindeling
& Trautmann, 2010). For RS = 1, the resource availability does not
constrain the scheduling. The minimum block length is randomly
assigned to values between 2 and 4 periods.

In each problem instance, all activities require the same prin-
cipal resource 7. To ensure that a feasible solution exists we fol-
low Naber and Kolisch (2014) and set for dependent resource
r the resource function coefficients «; = (g — q,.)/ @i — q;;) and
Bir = g, — q;;%ir- Before solving a problem instance, the preprocess-
ing of Naber and Kolisch (2014) is applied.

6.3. Parameter settings

The parameters of the HM have been determined in a pre-
study. To adapt the GA to different problem sizes, we set its popu-
lation size according to the function min(10-n, 400) of the num-
ber of activities n. We use a mutation rate for the activity list
of p, =5%, which is in line with the values used by Hartmann
(1998), as well as p, = 0.5% and p, = 5%. We facilitate the inter-
play between GA and VNS by adapting the number of schedules as
termination criterion based on the problem size. The VNS sched-
ule limit is set to Qyns = |2 -max(n/200,0.25)] schedules, the
GA schedule limit is set to Qg4 = Q2 — Qyns. In the VNS, we use
a limit of 1000 non-improving schedules per incumbent solution,
200 generated schedules per neighborhood, a maximum neighbor-
hood of 5, and a limit of 5 longest paths in the activity selection.

For the SGA a population size of min(5-n, 200) is used. The
activity lists in the initial population are constructed in the same
manner as in the HM. The SGS flag is set randomly with the equal
probability to serial or parallel. The mutation rate for the activity
list and for the SGS flag are both set to 5% according to Hartmann
(2002).

6.4. Computational results

In the following, whenever stating statistical significance we re-
fer to the a = 0.05 significance level verified in a Kruskal-Wallis
one-way analysis of variance or a Mann-Whitney U test.

6.4.1. Solution quality

First, we report on the solution quality. Table 2 lists the average
relative deviation A, from the best MIP solution and the average
relative deviation Ay, from the lower bound of the makespan T,,;,.
The optimal MIP solutions are obtained for all instances of set Bqg,
whereas for sets By, B4g, and A_ss not all MIP solutions are opti-
mal. For the larger sets Bqgp and B,pg no MIP solutions are avail-
able. For each instance set, the average results for schedule lim-
its  of 1000, 5000, 15,000, and 25,000 schedules are given and
the average result across all schedule limits is set in bold. The last
row of the table provides the overall results across all instance sets
and schedule limits. The differences between the methods are sta-
tistically significant in all rows.

Considering the overall results, the HM yields better results
than all other methods with statistical significance. The advantage
of the HM is largest on data set B;g, where all MIPs are solved to
optimality and A, equals the optimality gap. For 25,000 sched-
ules the HM’s optimality gap of 0.14% is about 9 times lower than

P
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Table 2
Average deviation in percent from best MIP solution (Ap;,) and from Ty, (Ap).
HM SGA PRS SRS
Set [ Q2 Ay Apy Amip Ay Anmip Apy Amip Ay
Ass 003 5.60 212 7.82 264 841 389 983
1000 064 627 252 830 326 9.09 466  10.68
5000 0.01 558 213 7.83 267 845 3.95 9.89
15000 —024 530 195 7.63 237 810 3.57 9.47
25000 -027 525 188  7.53 226 7.98 340 928
Bo 024 540 1.31 657 155 6.81 159  6.88
1000 044 562 134 661 156  6.83 1.62 6.91
5000 022 538 130  6.56 1.55  6.82 1.58 6.87
15,000 015 531 130  6.56 155  6.81 1.58 6.87
25,000 014 528 130 656 155 681 1.58 6.87
Bo 028 424 075 477 128 5.34 1.31 5.40
1000 0.60  4.60 0.86  4.90 163 573 1.70 5.84
5000 027 423 075 478 131 537 1.30 5.39
15,000 015 410 070 471 112 516 1.15 5.23
25,000 010  4.04 069 470 1.07 510 1.09 5.16
Bao -1.88 408 -173 429 -005 621 032 674
1000 -1.66 435 -153 455 049 684 0.93 7.44
5000 —1.88 4.09 -1.72 431 —0.01 6.26 0.42 6.85
15000 -198 396 -1.82 418 -029 594 004 641
25000 -201 393 -185 413 040 581 -009 626
Bioo 3.94 4.05 715 8.09
1000 4,07 421 7.68 8.68
5000 3.94 4,08 7.21 8.14
15,000 3.89 3.97 6.92 7.84
25,000 3.87 3.93 6.80 7.7
B2oo 341 3.55 712 8.20
1000 3.46 3.65 7.53 8.67
5000 3.40 3.57 7.16 8.27
15,000 3.39 3.51 6.95 7.98
25,000 3.39 3.48 6.83 7.88
Overall -0.33 4.46 063 5.20 137 6.86 1.81 7.55
Table 3 determine the resource quantity, compared to the other SGSs (see
Average time to generate 1000 schedules in seconds. Section 5.1.2)
Set HM GA VNS SGA PRS SRS
Ass 0.14 011 024 0.05 0.06 0.02 6.4.3. Instance parameters . .
Bio 0.08 0.08 0.17 0.04 0.04 0.02 Let us now assess the influence of the instance parameters on
By 0.20 0.18 0.28 0.09 0.09 0.05 the solution quality. Fig. 8 visualizes the gap to T,;, for differ-
Bao 050 038 0.65 021 0.21 0.0 ent values of order strength (0OS), resource factor (RF), resource
Bioo 155 119 2.72 0.84 0.69 0.31 strength (RS), and minimum block length. The averages across all
Baoo 444 358 908 26l 185 070 : g bedule e o O tg B o B 8 ottod
r imi r instan r in
Overal 115 092 219 064 049 020 our schedule 5 5% TOT INStANCE SELS Bro 10 Boop are plotte

those of the other methods. The HM further improves when in-
creasing 2 from 15,000 to 25,000 schedules, whereas the other
methods are stagnant or likely trapped to suboptimality. For the
medium data sets A_ss and By, the HM finds many new best-
known solutions. On the large data sets Bygg and B,qg, the HM and
the SGA clearly outperform the random sampling heuristics.

6.4.2. Computation time

The average computation time in seconds required to generate
1000 schedules per problem instance (based on the average for
25,000 generated schedules) is listed in Table 3. Although not per-
fectly linear, the HM scales well. By doubling the number of ac-
tivities, the HM’s computation time grows by a constant factor of
2.5, when considering the range from 10 to 100 activities. For 200
activities, the factor slightly increases to 2.86. The HM’s VNS re-
quires more time than the HM’s GA due to the repeated genera-
tion and analysis of resource flows in the activity selection. As the
VNS is not executed on all solutions, its impact on the computa-
tion time of the HM is small. The key driver for computation time
is the used SGS, as the FSGS performs more complex operations to

Fig. 8.

The order strength has a negligible impact on the solution qual-
ity, in line with the results of Fiindeling (2006). The impact of the
minimum block length is similarly small. The resource strength
and the resource factor have a significant impact on the solution
quality. These observations are similar to those for the RCPSP (see
Kolisch, Sprecher, & Drexl, 1995). For instances which are highly
resource-constrained, i.e. for which RS = 0 holds, the advantage of
the HM and the SGA over the random sampling heuristics is most
distinct.

6.4.4. Components of the hybrid metaheuristic

For the different HM variants, Table 4 lists the gap to T, av-
eraged across all four schedule limits €2. The difference in the re-
sults is statistically significant in all rows of the table. Considering
pairwise comparisons for the overall results in the last row, the
GA-FSGS generates better results than the MP-FSGS and the GA-
SGS with statistical significance. This clearly demonstrates the pos-
itive impacts of the GA (between GA-FSGS and MP-FSGS) and the
FSGS (between GA-FSGS and GA-SGS). The improvements of the
complete HM compared to the GA-FSGS are statistically insignif-
icant when considering all instances. However, this analysis also
includes instances on which the VNS is not even executed. Since
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Fig. 8. Influence of instance parameters on solution quality.
Table 4 1.5 q
Average gap to Ty, in percent.
Set HM GA-FSGS MP-FSGS GA-SGS s 1254
Ass 5.60 5.69 6.92 7.88 2 14
B1o 5.40 541 5.60 6.85 §
B2o 424 428 5.02 5.09 = 075 1
Bygo 4.08 417 5.84 4.54 =
Bioo 3.94 4.09 523 416 Z 054
Baoo 341 3.58 424 3.69 ’g ’
Overall 4.46 455 5.49 5.39 a 025 4
&) L\
0 T T T T N
Table 5 0 5,000 10,000 15,000 20,000 25,000

VNS: Improved instances as % of the instances on which VNS
is executed (Inst %) and makespan reduction per improved in-
stance in periods (ACng) and in percent (ACna%).

Set Inst % ACpax ACnax%
Acss 559 1.06 227
Bqo 1.56 1.06 244
Byo 7.57 123 1.39
Bso 20.63 134 0.85
Bioo 5424 212 0.57
Boo 61.84 3.84 0.55
Overall 2291 2.58 1.34

the VNS operates within the HM after completion of the GA, the
VNS is not started in case the GA has already solved an instance to
optimality.

The potential of the VNS becomes visible when considering
only the instances on which the VNS is actually executed. Only for
this subset of instances, Table 5 lists the percentage of instances
for which the HM including VNS yields a lower makespan than the
GA-FSGS (Inst %). The larger the problem size, the more instances
are improved by the VNS, peaking at 62% on instance set Byqg. Note
that the VNS schedule limit Qyys is also highest on this instance

Generated solutions

Fig. 9. Convergence of the HM.

set. On average, the VNS improves 23% of the considered instances,
which corresponds to 12% of all instances. Table 5 also provides
the absolute makespan reduction per improved instance in periods
(ACmnax) and in percent of the GA-FSGS’s makespan (A Cpax%).

Next, we analyze the characteristics of the best solutions ob-
tained by the HM regarding the use of the resource allocation limit
and the start delay. On average, 59% of the best solutions gener-
ated by the HM employ a resource allocation limit p; > 0 and 25%
a start delay o; > 0.

Finally, Fig. 9 provides the average gap to the best solu-
tion found as a function of the generated schedules for instance
sets Big to Bygg and 2 = 25,000. Since the VNS’s start is de-
termined by its variable schedule limit Qyys, the vertical dashed
line indicates the earliest start at 18,000 generated schedules. Un-
til 18,000 generated schedules the GA shows a typical convergence
behavior. From 18,000 generated schedules on, the VNS leads to a
considerable further improvement of the solutions.

2 Jadod
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Table 6
Solution quality for the FRCPSP with discrete resources.
HM GA-FSGS
Apip Ay Apip Ay
Bio 0.29 5.77 0.31 5.79
1000 0.55 6.06 0.58 6.09
5000 0.26 5.74 0.28 5.76
15,000 0.18 5.64 0.19 5.66
25,000 0.18 5.65 0.19 5.66
Bao -0.04 4.56 —-0.02 4.58
1000 0.26 4.89 0.27 491
5000 -0.03 4.57 —-0.02 4.58
15,000 -0.17 441 -0.14 444
25,000 -0.22 436 -0.19 439
Bao -2.01 447 -2.01 447
1000 -1.67 4.86 -1.77 4.76
5000 -2.04 443 -2.02 445
15,000 -2.14 431 -2.10 436
25,000 -2.18 4.26 -2.14 431
Bioo 4.21 434
1000 434 4.42
5000 4.20 434
15,000 417 430
25,000 415 4.29
Overall —-0.58 4.75 -0.57 4.79

6.5. Application to the FRCPSP with discrete resources

Beside the continuous resources (CR) addressed in this paper,
there are practical cases in which resource quantities are not in-
finitely divisible, such as those addressed in Fiindeling and Traut-
mann (2010) and Baumann et al. (2015). In this section, we demon-
strate, as a preliminary attempt, how the proposed HM and its GA-
FSGS variant can also be applied to solve the FRCPSP with discrete
resources (DR). It is important to note that despite dealing with
discrete resources, the DR computational results cannot be com-
pared with those of Fiindeling and Trautmann (2010) and Baumann
et al. (2015), since their problems specifically allocate resources in
the exact amount required by each activity, while our FRCPSP al-
lows resources to be allocated at least by the amount required by
each activity. In other words, more resources may be assigned to
activities, if the overall makespan can be reduced, while attempt-
ing to satisfy the required minimum block length.

The main variable that differentiates DR from CR is the assigned
resource quantity g, as obtained in Algorithm 1 of the FSGS. We,
therefore, transform a continuous value of g;, to an integer value
by either rounding up or down to respectively observe the resource
requirements of each activity and the limited availability of each
resource. Additionally, for the VNS to yield feasible DR solutions,
we assume, for each activity i and resource r, integer values of the
resource requirement w;, and both lower and upper bounds of re-
source quantity, g; and q;. These conditions result in an integer
value of the maximum quantity 9jr that may be transferred for
each activity pair (i, j) by the VNS as explained in Section 5.3.2.

We conduct pilot DR runs whose computational results of solv-
ing test sets Big, Byg, B4g, and Bqgg are summarized in Table 6.
Note that the VNS is applicable to these instance sets as they up-
hold the aforementioned integer conditions of resource require-
ments and bounds. The rounding operations for DR are expected
to result in a negligible increment in runtimes. Similar to Table 2,
Table 6 reports the solution quality in terms of the average
deviations from the best MIP DR solution and from the lower
bound of the makespan T, for both HM and GA-FSGS . While
the reference T,,;,, values remain unaffected, the best MIP DR so-
lutions are obtained from solving the best model FP-DT3 of Naber
and Kolisch (2014), however, with the integrality imposed on all

resource quantity variables. Despite the fact that the MIP DR model
is generally more difficult to solve than the CR one, all MIP solu-
tions are found optimal for test set Bqg. For each of those instances
whose MIPs are not solved to optimality, the best makespan or,
otherwise, the upper bound of the makespan obtained from the
DR modified heuristic of Naber and Kolisch (2014) is used as the
MIP reference value instead.

Due to the additional integrality of resource variables, the aver-
age gap Ay, of DR is, as expected, slightly higher than that of CR
across all test sets. The average gap A, of DR is, on the other
hand, slightly better than that of CR in all test sets except Bqg. This
favorable outcome is attributed to the lower quality of MIP solu-
tions found within limited runtime.

The effectiveness of the VNS is also reported by the percent-
age of instances on which the VNS is executed and for which the
HM including VNS yields a lower makespan than the GA-FSGS. On
set Byg 2.14% of the instances are improved, on set By 7.57%, on
set Byg 22.26%, and on set Bjgg 58.42%, leading to an average im-
provement of 22.60% of all instances on which the VNS is executed.
The results also verify that the average VNS improvement is posi-
tively correlated to the problem size, as in the continuous case.

Despite the valid applicability of the HM and GA-FSGS to deal
with discrete resources, it should be emphasized that the proposed
HM and especially the VNS are designed for continuous resources
and that, as it is out of scope of this paper, more tailoring of the
HM and the VNS is recommended for further study to improve the
solution quality for the FRCPSP with discrete resources and beyond,
for example, mixed-types of resources.

7. Conclusions

We proposed a Hybrid Metaheuristic (HM) for the resource-
constrained project scheduling problem with flexible resource pro-
files. It uses the Flexible Resource Profile Parallel Schedule Gen-
eration Scheme (FSGS) which employs the concepts of delayed
scheduling and non-greedy resource allocation to construct feasible
schedules. The FSGS generates significantly lower makespans for
the FRCPSP than a standard parallel schedule generation scheme.
The best schedules are further improved in a novel variable neigh-
borhood search by transferring resource quantities between activi-
ties that are selected based on an analysis of resource flows. Over-
all, the HM yields significantly better results than three benchmark
(meta-)heuristics and generates near-optimal solutions in short
computation time.

Further research may include an extension of the HM to deal
with both discrete and continuous resources, incorporation of a
mathematical model to optimally allocate resources, and perhaps
an extended application of the HM to the FRCPSP in continuous
time.
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