

European Journal of Operational Research 262 (2017) 262–273

Contents lists available at ScienceDirect

European Journal of Operational Research

journal homepage: www.elsevier.com/locate/ejor

Innovative Applications of O.R.

A hybrid metaheuristic for resource-constrained project scheduling

with flexible resource profiles

Martin Tritschler, Anulark Naber, Rainer Kolisch

∗

TUM School of Management, Technical University of Munich, Arcisstr. 21, München 80333, Germany

a r t i c l e i n f o

Article history:

Received 22 April 2015

Accepted 1 March 2017

Available online 7 March 2017

Keywords:

Project scheduling

Flexible resource profiles

Schedule generation scheme

Metaheuristics

a b s t r a c t

We consider a generalization of the resource-constrained project scheduling problem (RCPSP), namely the

RCPSP with flexible resource profiles (FRCPSP) in discrete time periods. In the FRCPSP, for each activity the

given resource requirement is allocated in a variable number of contiguous periods in which the activ-

ity is processed. As the resource allocation can be adjusted between time periods, the resulting resource

profile of the activity becomes flexible. The FRCPSP consists of scheduling activities and determining for

each activity a resource profile and, thus, a duration in order to minimize the makespan. We propose

a Hybrid Metaheuristic for the FRCPSP. It contains the Flexible Resource Profile Parallel Schedule Gen-

eration Scheme which employs the concepts of delayed scheduling and non-greedy resource allocation,

embedded in a genetic algorithm. The best-found schedules are further improved in a variable neighbor-

hood search by transferring resource quantities between selected activities. The results of a computational

study demonstrate that the proposed method yields significantly better solutions than three benchmark

methods on problem instances with up to 200 activities.

© 2017 Elsevier B.V. All rights reserved.

c

fi

t

d

M

(

p

d

t

c

i

t

s

C

t

p

F

r

B
1. Introduction

The resource-constrained project scheduling problem (RCPSP)

consists of scheduling a set of activities in order to minimize the

project completion time (makespan) under the constraints of lim-

ited resource availability and finish-to-start precedence relations

with zero time-lags. In the RCPSP, activity durations are given and

the resource allocation to each activity is assumed constant for its

entire duration. However, in real-world projects it is often the case

that only the total resource requirement of each activity is known

beforehand, whereas the activity durations and the resource allo-

cation must be planned accordingly. An activity’s duration indeed

results from the resource quantities allocated in the processing pe-

riods of the activity. As the quantities of allocated resources may

vary between time periods, the activity’s “resource profile” (Naber

& Kolisch, 2014) is flexible and not limited to rectangular shapes

as in the RCPSP.

As an example, consider the common case of human labor as

a project resource. An activity may have a resource requirement of

6 person-days to complete. Hence, the activity may be scheduled

with a constant resource allocation of 2 persons for 3 days. The

activity may also be scheduled with a non-constant resource allo-
∗ Corresponding author.

E-mail addresses: martin.tritschler@tum.de (M. Tritschler), anulark.naber@tum.

de (A. Naber), rainer.kolisch@tum.de (R. Kolisch).

u

r

g

W

http://dx.doi.org/10.1016/j.ejor.2017.03.006

0377-2217/© 2017 Elsevier B.V. All rights reserved.
ation and a resulting flexible resource profile of 2 persons for the

rst 2 days and 0.5 persons, i.e., 1 person working half-time, for

he next 4 days.

A model for a project scheduling problem that integrates such

ecisions on the resource allocation was first proposed by Kolisch,

eyer, Mohr, Schwindt, and Urmann (2003) . Naber and Kolisch

2014) denote this problem as the RCPSP with f lexible resource

rofiles (F RCPSP). The FRCPSP consists of scheduling activities and

etermining for each activity a resource profile and, thus, a dura-

ion in order to minimize the makespan.

As a generalization of the RCPSP, the FRCPSP belongs to the

lass of NP-hard problems. Hence, it becomes intractable for grow-

ng problem sizes. A study by Naber and Kolisch (2014) shows

hat already for problem instances with 20 activities, a commercial

olver is unable to always find optimal solutions within 2 hours of

PU time. Due to the high practical relevance and applicability of

he FRCPSP, metaheuristic solution methods are deemed more ap-

ropriate to solve larger problem instances within reasonable time.

In this paper, we propose a Hybrid Metaheuristic (HM) for the

RCPSP in discrete time periods. The HM consists of a genetic algo-

ithm (GA) combined with a variable neighborhood search (VNS).

oth make use of the new Flexible Resource Profile Parallel Sched-

le Generation Scheme (FSGS). The FSGS uses the activity list rep-

esentation of Hartmann (1998) in combination with two new lists

overning non-greedy resource allocation and delayed scheduling.

e extend the GA of Hartmann (1998) because it has proven to be

http://dx.doi.org/10.1016/j.ejor.2017.03.006
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ejor
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ejor.2017.03.006&domain=pdf
mailto:martin.tritschler@tum.de
mailto:anulark.naber@tum.de
mailto:rainer.kolisch@tum.de
http://dx.doi.org/10.1016/j.ejor.2017.03.006

M. Tritschler et al. / European Journal of Operational Research 262 (2017) 262–273 263

o

i

a

f

w

s

s

B

t

A

S

v

w

H

g

s

S

2

(

a

e

i

a

r

s

d

s

a

p

d

c

r

b

t

a

i

s

a

“

r

s

q

t

h

o

t

Table 1

Summary of notation.

Indices

i , j Activity

r, ̂ r Resource, specifically the principal resource

t Time period

Sets

A , E Active and eligible activities

C Critical activities

E Immediate precedence relations

P Selected activity pairs (i , j)

R, R i , R
pi
i

Resources, required resources of activity i , required

principal and independent resources of activity i

T Discrete time horizon

T ij Time periods for resource transfer of activity pair (i , j)

V , V rec Activities, activities with rectangular resource profiles

Parameters

b r Availability of resource r

c i , c i Earliest and latest completion period of activity i

d i , d i Lower and upper bounds of duration of activity i

l ir Minimum block length of resource r and activity i

n Number of activities

p λ , p ρ , p σ Mutation rates for λ, ρ , and σ

q
ir
, q ir Lower and upper usage bounds of activity i for

resource r

s i , s i Earliest and latest start period of activity i

T min Lower bound of the makespan

w ir Requirement of activity i for resource r

αir , β ir Coefficient and constant of linear resource function for

dependent resource r of activity i

λ Activity list

ρ, ρi , ρ i Resource limit list, resource limit of activity i , upper

bound of resource limit of activity i

σ, σi , σ i Start delay list, start delay of activity i , upper bound of

start delay of activity i

� Maximum number of generated schedules per problem

instance

Variables

c i Completion period of activity i

c max Project makespan

d i Duration of activity i

f , f rec Schedule, schedule featuring only rectangular resource

profiles
�
 f gen Unique best schedule and corresponding solution

representation for each GA generation

k Neighborhood and number of resource transfers

l irt Periods in the block of resource r for activity i up to

the period t

q irt Quantity of resource r allocated to activity i in period t

s i Start period of activity i

ϕr Current leftover quantity of resource r

ϑijrt Transfer quantity of resource r for activity pair (i , j) in

period t

ξ ir Remaining requirement of activity i for resource r

ne of the best metaheuristics for the RCPSP. Its activity list encod-

ng together with the application of a schedule generation scheme

lways ensures feasible solutions, while the GA framework allows

or an extension to solve the specifics of the FRCPSP. With the GA

e explore the solution space both systematically and randomly in

earch of promising solutions. The VNS is then applied for a local

earch in quest of further improvements (see Raidl, Puchinger, &

lum, 2010) by transferring resource quantities from non-critical

o critical activities based on an analysis of resource flows (see

rtigues, Michelon, & Reusser, 2003).

The remainder of this paper is organized as follows. In

ection 2 , we give a brief problem description before we pro-

ide a review of relevant literature in Section 3 . In Section 4 ,

e outline solution characteristics relevant to the design of the

M. The HM and its components are described in Section 5 to-

ether with an illustrative example. We report computational re-

ults in Section 6 and close the paper with concluding remarks in

ection 7 .

. Problem description

We follow the FRCPSP definition of Naber and Kolisch

2014) and, therefore, just summarize it briefly. Table 1 provides

 summary of the notation used in this paper. A set of n nonpre-

mptive activities V = { 1 , ..., n } as well as the dummy source activ-

ty 0 and the dummy sink activity n + 1 are given. To schedule the

ctivities, we consider a planning time horizon of discrete time pe-

iods t ∈ T . Each activity i has to start at the beginning of a period

 i ∈ T and complete at the end of a period c i ∈ T . In the remain-

er of this paper we only refer to the period in which the activity

tarts or completes. Assuming s 0 = c 0 = 0 , the makespan is defined

s c max = max i ∈ V (c i) . All activities are subject to the finish-to-start

recedence relations with zero time-lag given in set E . A prece-

ence relation (i → j) ∈ E requires that s j > c i , that is an activity

an only start after all its predecessors have been completed.

Each activity i ∈ V requires a subset R i of the given set of

esources R . For each resource r ∈ R i , a resource profile has to

e determined. This profile specifies the allocated resource quan-

ity q irt ∈ R > 0 , in each contiguous period t over the duration of

ctivity i . This duration d i = c i − s i + 1 results from a nonincreas-

ng function of the quantity of allocated resources, under the as-

umption that resource quantities are continuously divisible and

dditive.

Central to the problem is the concept of blocks. We define a

block” for resource r of activity i as a number of consecutive pe-

iods with a constant allocated resource quantity.

A schedule f for the FRCPSP specifies for each activity i ∈ V a

tart period s i , a duration d i , and a resource profile for each re-

uired resource r ∈ R i . The FRCPSP is to determine a schedule such

hat the makespan is minimized. The resource profiles have to ad-

ere to the following three constraints:

1. The quantity of resource r allocated to activity i in each pro-

cessing period t has to be within the range of the lower and

upper resource usage bounds: q
ir

≤ q irt ≤ q ir .

2. The quantity of resource r allocated to activity i has to remain

constant for at least a minimum block length (Fündeling, 2006)

of l ir consecutive time periods.

3. The total quantity of resource r allocated to activity i has to

meet or cover the resource demand w ir :
∑ c i

t= s i q irt ≥ w ir . Ex-

ceeding the resource demand might be necessary in order to

guarantee problem feasibility when taking into account mini-

mum block lengths.

All resources are renewable with b r denoting the availability

f resource r in each period. Resources are categorized into three

ypes (Naber & Kolisch, 2014):
1. A principal resource ˆ r is the main resource of an activity and its

allocated quantity may define the required quantities of other

resources. An activity requires at most one principal resource,

but a project may contain multiple activity-specific principal re-

sources.

2. A dependent resource r of activity i is a resource whose al-

located quantity q irt depends on the positive allocated quan-

tity q i ̂ r t of the activity’s principal resource ˆ r through a non-

decreasing linear resource function q irt ≥ αir · q i ̂ r t + βir with co-

efficient αir and constant β ir . An activity may require multi-

ple dependent resources. The rationale for the nondecreasing

linear resource function is that for processing an activity each

principal resource often requires a dependent resource in a cer-

tain relative amount. For example, principal resource program-

mer ˆ r might need dependent resource computer r . In this case

the function is q irt = q i ̂ r t . A similar example is the principal re-

source bio-lab technician requiring the dependent resource flu-

orescence microscope (Naber & Kolisch, 2014).

264 M. Tritschler et al. / European Journal of Operational Research 262 (2017) 262–273

Fig. 1. Project featuring a single resource with availability of b = 7 and a minimum

block length of l = 2 for all activities.

Fig. 2. Examples of schedules for the project given in Fig. 1 .

N

p

r

r

(

v

c

r

r

v

m

s

a

l

G

r

t

i

v

4

p

m

t

4

s

m

p

d

r

r

a

r

p

a

t

3. An independent resource of an activity is a resource whose al-

located quantity is independent from any other resources. An

activity may also require multiple independent resources.

Additional parameters can be obtained for each activity, such as

the lower bound of duration d i = max r∈ R i
(

max (� w ir / q ir � , l ir)
)
. The

upper bound of duration d i is calculated by using q ir instead of q ir .

By using d i and d i in the preprocessing techniques of Naber and

Kolisch (2014) , the activity’s earliest start period s i and its earli-

est completion period c i = s i + d i − 1 are obtained. s i and c i are the

latest start and completion periods derived from an upper bound

of the makespan. Finally, T min = max i ∈ V (c i) defines a lower bound

of the makespan.

The FRCPSP is also related to other project scheduling prob-

lems. The RCPSP is a special case of the FRCPSP characterized

by equal lower and upper resource usage bounds, no minimum

block length, and only independent resources. The Multi-mode

RCPSP (MMRCPSP) is similar to the FRCPSP in that each activity

can be processed in multiple ways (W ̨eglarz, Józefowska, Mika,

& Waligóra, 2011). However, the MMRCPSP has a set of predeter-

mined modes with constant resource allocation per activity from

which one mode has to be selected. The FRCPSP also varies from

the discrete time-resource tradeoff problem (DTRTP), where the ac-

tivity duration is a function of the activity’s resource usage, which

is assumed constant (W ̨eglarz et al., 2011).

3. Literature review

The FRCPSP was initially studied by Kolisch et al. (2003) in

the context of real-world pharmaceutical research projects. They

propose a mixed integer program (MIP) formulation as well as a

priority rule heuristic with a serial or parallel schedule genera-

tion scheme. Their schedule generation scheme (SGS) follows the

greedy principle of scheduling activities as early as possible and

allocating the largest possible resource quantities. We denote an

SGS that applies these greedy principles as a “standard” SGS. In

the following, we distinguish the FRCPSP with continuously divisi-

ble resources (continuous resources) from the FRCPSP with discrete

resources.

For the FRCPSP with continuous resources, four MIP models are

proposed and compared in Naber and Kolisch (2014) . They also ap-

ply a priority rule heuristic with a standard serial SGS to com-

pute an upper bound of the makespan. In parallel to this work,

Schramme (2014) has developed an MIP model and a GA with

a non-greedy serial SGS for the FRCPSP without minimum block

lengths and without dependent resources. Our proposed FSGS dif-

fers from the SGS of Schramme (2014) , as we specifically address

the minimum block length and determine activity durations as a

result of the resource allocation, whereas Schramme (2014) con-

siders activity durations as input parameters. Tritschler, Naber, and

Kolisch (2014) propose the Self-Adapting Genetic Algorithm, which

follows the idea of Hartmann (2002) to use a self-adaptive param-

eter to select from a standard serial or parallel SGS.

The FRCPSP with continuous resources is a relaxation of the FR-

CPSP with discrete resources and, hence, it holds that the optimal

objective function of the FRCPSP with continuous resources is less

than or equal to the optimal objective function of the FRCPSP with

discrete resources. For discrete resources, the sets of resource pro-

files for the activities are finite, which renders the problem purely

combinatorial. There are also two different paradigms in satisfy-

ing the resource requirements. The one addressed by Fündeling

and Trautmann (2010) , Schramme (2014) and Baumann, Fündeling,

and Trautmann (2015) specifically allocates resources in the exact

amount required by each activity. The second addressed by Naber

and Kolisch (2014) and Tritschler et al. (2014) allows resources

to be allocated at least by the amount required by each activity.
aber and Kolisch (2015) investigate empirically whether the two

aradigms yield equivalent makespans, however, under continuous

esources. The computational results show that the latter can yield

eductions both in makespans and computational time.

For the FRCPSP with discrete resources, Zimmermann

2016) proposes an MIP-based heuristic. Baumann et al. (2015) pro-

ide an MIP model and also consider relaxations resulting in

ontinuously divisible resource quantities and equality resource

equirements. Fündeling and Trautmann (2010) apply a priority

ule heuristic with a standard serial SGS and Fündeling (2006) pro-

ides in addition a parallel SGS which allocates resources to the

aximum number of activities by first fulfilling their lower re-

ource usage bounds. Both approaches assume that all activities in

 project require the same principal resource. For projects entirely

imited to a single resource, Ranjbar and Kianfar (2010) employ a

A with a serial SGS based on an a priori generated set of feasible

esource profiles which are, however, limited to specific shape

ypes. For a related problem with several additional constraints

nspired from practice, Kuhlmann (2003) proposes multiple GA

ariants.

. Solution characteristics

In this section, we argue that approaches beyond the greedy

rinciples mentioned in Section 3 are required to generate opti-

al solutions for the FRCPSP. The examples in this section apply

o both the standard serial and the standard parallel SGS.

.1. Non-greedy resource allocation

The greedy principle of always allocating the maximum re-

ource quantity does not necessarily lead to the minimum

akespan because it may prevent the start of other activities, as

ointed out by Fündeling and Trautmann (2010) , or increase their

urations. An optimal schedule may feature periods in which the

esource allocation to an activity is reduced, whereas in other pe-

iods it is maximized in order to utilize the available resources.

For the project in Fig. 1 , Fig. 2 a shows a schedule resulting from

 greedy resource allocation. Activity 1 starts with its maximum

esource allocation of 5 units. Hence, activity 2 cannot start until

eriod 5 and the resulting makespan is 6 periods. Fig. 2 b shows

n optimal schedule resulting from a non-greedy resource alloca-

ion of only 3 1 resource units to both activities in periods 1 to 3.
3

M. Tritschler et al. / European Journal of Operational Research 262 (2017) 262–273 265

Fig. 3. Project featuring a single resource with availability of 3 and a minimum

block length of 3 for all activities.

H

t

l

o

4

l

l

a

n

w

p

u

r

r

p

u

i

5

s

s

r

o

5

i

a

T

h

s

p

5

5

S

F

p

c

p

b

t

p

a

A

s

a

i

t

a

d

l

t

p

l

u

e

m

“

b

owever, in periods 4 and 5, the resource quantity allocated to ac-

ivity 1 is increased to the maximum of 5 units in order to uti-

ize the available resources. The resulting makespan of 5 periods is

ptimal.

.2. Delayed scheduling

Scheduling activities as early as possible does not necessarily

ead to the minimum makespan (see Baumann et al., 2015). By de-

aying the start of an activity to a later period, the activity may be

ble to exploit a higher resource availability which otherwise could

ot be utilized. This effect is caused by the minimum block length.

For the project given in Fig. 3 , Fig. 4 a illustrates a schedule in

hich all activities start as early as possible. Activity 2 starts in

eriod 4, where due to the processing of activity 3 only 2 resource

nits are available. Respecting the minimum block length of 3 pe-

iods, 1.8 resource units are allocated for 3 periods to activity 2,

esulting in a makespan of 8. By delaying the start of activity 2 to

eriod 5, where 3 resource units are available, an optimal sched-

le with the minimum makespan of 7 can be obtained, as shown

n Fig. 2 b.

. Hybrid metaheuristic

First, the FSGS is introduced in Section 5.1 . Then, the GA is de-

cribed in Section 5.2 and the VNS in Section 5.3 . Generally, we as-

ume that a feasible schedule exists, that is the availability of each

esource is sufficient to fulfill the lower bound of resource usage

f each activity.

.1. Flexible resource profile parallel schedule generation scheme

The FSGS implements non-greedy resource allocation, in which

t allows periods of limited and periods of maximized resource

llocation for the same activity, as well as delayed scheduling.

he FSGS always generates feasible solutions. However, due to its

euristic resource allocation it may not always find the optimal re-

ource profiles and makespan. The next sections describe the input

arameters, explain the algorithm and provide an example.

.1.1. Input parameters

The FSGS uses three compact input parameters:

• Activity list λ: The sequence of activities for resource allocation

is defined by activity list λ (Hartmann, 1998). λ is any prece-

dence feasible permutation of the set of activities V .
Fig. 4. Examples of schedules for
• Resource allocation limit list ρ: To facilitate non-greedy re-

source allocation, list ρ = (ρ1 , . . . , ρn) contains for each activ-

ity i an integer ρi ∈ { 0 , . . . , ρ i } that defines the limit for the al-

located resource quantity through function q irt = w ir / (d i + ρi) .

Instead of directly encoding the continuous resource quantities

for each resource and period, just one integer value ρ i is re-

quired per activity i . The upper bound ρ i = min (d i − d i , c i − s i)

for ρ i prevents too low limits leading to excessive prolongations

of activities.
• Start delay list σ: To delay the start of activities, list

σ = (σ1 , . . . , σn) contains for each activity i an integer σi ∈
{ 0 , 1 , . . . , σ i } that specifies the number of periods in which ac-

tivity i is not started, despite a sufficient quantity of remaining

resources and fulfilled precedence relations. The upper bound

σ i = s i − s i for σ i is calculated from the earliest and latest start

periods.

.1.2. Algorithm

The FSGS extends the period-based approach of the parallel

GS to flexible resource profiles and minimum block lengths. The

SGS increments time periods and considers in each iteration one

eriod t . Resources are allocated to an activity in the order of prin-

ipal, dependent, and independent resources. An activity is com-

leted as soon as the resource requirements and the minimum

lock lengths of all of its required resources are met. The dura-

ion d i of activity i results from the allocated resource quantities

er period. For simplicity, we assume for now that resource r of

ctivity i is either principal or independent, i.e., r ∈ R
pi
i

.

For each period t , the FSGS performs the steps given in

lgorithm 1 . λ provides the sequence of activities to which re-

ources are allocated in all steps. We use ρ to limit the resource

llocation in steps 2a and 2b and σ to delay the start of activities

n step 2a. The FSGS considers set A of active activities, i.e., activi-

ies already started but not yet completed in t , and set E of eligible

ctivities, i.e., activities that have not yet started and whose pre-

ecessors have been completed up to t − 1 . ϕr denotes the current

eftover capacity of resource r , ξ ir the remaining requirement of ac-

ivity i for resource r , and the counter delay i denotes the number of

eriods that the start of activity i has been delayed. Furthermore,

 irt is the length of the block of activity i with respect to resource r

ntil period t . All sets and variables are constantly updated after

ach operation. These updates are not stated in the algorithm to

aintain brevity. We denote the block up to period t − 1 as the

current block” and the block starting in period t as the “new

lock”. In the following, we explain steps 1 to 3 of Algorithm 1 :

Step 1 Continue active activities to ensure nonpreemption: For

each resource r of activity i ∈ A for which the minimum

block length l ir has been met, a quantity equal to the min-

imum resource usage bound q irt = q
ir

is allocated. If l ir has

not been met, the current block is continued by allocating

the quantity of the previous period q irt = q ir(t−1) .

Step 2 Allocate remaining resources: Resources are distributed

among eligible and active activities in a non-greedy man-

ner according to sequence λ. Two disjunct cases apply:
 the project given in Fig. 3 .

266 M. Tritschler et al. / European Journal of Operational Research 262 (2017) 262–273

Algorithm 1 Steps of the FSGS in period t .

1. for i ∈ A in sequence of λ, r ∈ R pi
i

do

if l ir(t−1) ≥ l ir then

q irt = q
ir

else

q irt = q ir(t−1)

2. for i ∈ A ∪ E in sequence of λ, r ∈ R pi
i

: ϕ r > 0 do

(a) if i ∈ E and ∀ r ′ ∈ R i : ϕ r ′ ≥ q
ir ′ then

if delay i ≥ σi then

q irt = min (ϕ r ,
w ir

d i + ρi
)

else

delay i = delay i + 1

(b) if i ∈ A and l ir(t−1) ≥ l ir then

if q irt + ϕ r ≥ q ir(t−1) then

q ′
irt

= max (q
ir
, min (q irt + ϕ r ,

ξir

l ir
,

w ir
d i + ρi

))

if � ξir

q ′
irt

� ≥ l ir and (� ξir

q ′
irt

� < � ξir

q ir(t−1)
� or q ir(t−1) >

w ir
d i + ρi

)

q irt = q ′
irt

else

q irt = q ir(t−1)

else

q irt = q irt + ϕ r

if � ξir

q irt
� < 2 · l ir then

q irt = max (q
ir
, ξir / � ξir

q irt
�)

3. for i ∈ A in sequence of λ, r ∈ R pi
i

: ϕ r > 0 do

Repeat step 2b with q ′
irt

= max (q
ir
, min (q irt + ϕ r ,

ξir

l ir
, q ir))

S

S

Fig. 5. Project featuring a single resource with availability of b = 5 and a minimum

block length of l i = 2 for all activities.

Fig. 6. Schedule f generated by the FSGS for the project from Fig. 5 .

f

i

s

q

q

q

t

a

5

t
tep 2a Start eligible activities: Eligible activities are started

based on the delays from σ . Activity i ∈ E starts if the

lower usage bound of each required resource is met and

the start of the activity has already been delayed for

at least σ i periods. A delay is counted if activity i is

not started, despite a sufficient quantity of remaining re-

sources and fulfilled precedence relations. ρ i limits the al-

located resource quantity to q irt = min (ϕ r , w ir / (d i + ρi)) .

tep 2b Modify resource allocation of active activities: This step

only applies to resources required by active activities i ∈ A

for which the minimum block length has been met. For

such resources, a quantity equal to the minimum usage

bound has already been allocated in step 1. Now, ad-

ditional resource quantities are allocated. We distinguish

three cases: (1) A new block has to be started due to

insufficient resources. (2) The current block is continued.

(3) A new block is started in order to change the resource

allocation. The operations of each case are as follows:

(1) If the current leftover quantity ϕr of resource r does

not suffice to continue the current block, i.e., ϕ r < q ir(t−1) ,

we add the leftover capacity ϕr to the so far allocated re-

source quantity q irt by setting q irt = q irt + ϕ r and, conse-

quently, start a new block.

(2) If ϕr suffices to continue the current block, the algo-

rithm checks whether to allocate the same quantity as in

the previous period t − 1 , i.e., q irt = q ir(t−1) , or to start a

new block based on case (3).

(3) A new block with an allocation of q ′
irt

=
max (q

ir
, min (q irt + ϕ r , ξir / l ir , w ir / (d i + ρi))) is only started

by setting q irt = q ′
irt

if the following condition (I) and

at least one out of conditions (II) or (III) apply: (I) The

remaining resource requirement ξir is sufficient to ac-

commodate at least one minimum block length, i.e.,

� ξir /q ′
irt

� ≥ l ir . (II) The new block resulting from an in-

creased resource quantity q ′
irt

is shorter than in the case of
continuing the current block, i.e., � ξir /q ′
irt

� < � ξir /q ir(t−1) � .
(III) The allocated quantity in the current block is larger

than the limit defined by ρ i , i.e., q ir(t−1) > w ir / (d i + ρi) .

Note that condition (III) can only apply if step 3 has been

performed at the beginning of the current block. Based on

condition (III), the new block resulting from a decreased

resource quantity q ′
irt

again adheres to the limit defined

by ρ i .

Next, if less than two minimum block lengths remain to

complete the activity, i.e., � ξ ir / q irt � < 2 · l ri , the resource

allocation has to be kept constant until the activity com-

pletes. Starting a new block in the following periods would

otherwise increase the duration of the activity. To prevent

an overallocation of resources beyond w ir in this case, we

set q irt = max (q
ir
, ξir / � ξir /q irt �) .

Step 3 Utilize leftover resources: After completing steps 1 and

2, a feasible partial schedule up to period t has been gen-

erated in which resources are allocated in a non-greedy

manner to active and eligible activities. However, due to

the resource allocation limits from ρ , it may be the case

that the available resources are not fully utilized in pe-

riod t . Hence, in step 3 we exploit these leftover re-

source quantities by exceeding the allocation limit (see

the example from Section 4.1). We allocate the leftover

resource quantities to active activities strictly in the se-

quence of λ if the minimum block length permits it. For

this purpose, step 2b is repeated with the modification

q ′
irt

= max (q
ir
, min (ϕ r + q irt , ξir / l ir , q ir)) , which allows al-

locating resources up to q ir .

The allocation of dependent resources to activity i is per-

ormed as follows. The allocated quantity of dependent resource r

s calculated based on the allocated quantity q i ̂ r t of principal re-

ource ˆ r by q irt = α · q i ̂ r t + β . If ϕr is lower than q irt , then we set

 irt = max (q
ir
, ϕ r) and, as a consequence, also update the allocated

uantity of the principal resource to q i ̂ r t = (q irt − β) /α. This re-

uires to recalculate the amounts of other dependent resources

oo. The process is repeated until q i ̂ r t adheres to the availability

nd the resource usage bounds of all dependent resources.

.1.3. Example

To illustrate the FSGS, consider the project in Fig. 5 . Given λ =
(3 , 1 , 4 , 2) , ρ = (1 , 0 , 0 , 0) , and σ = (0 , 0 , 0 , 0) , the FSGS generates

he schedule f shown in Fig. 6 . In the following, we only relate to

M. Tritschler et al. / European Journal of Operational Research 262 (2017) 262–273 267

p

o

s

t

r

T

s

s

fi

u

t

d

q

I

t

b

r

q

m

h

i

b

n

i

o

5

i

a

λ

t

a

d

t

n

d

e

d

p

o

e

r

u

u

c

i

d

5

w

d

d

t

p

t

p

b

o

5

o

d

e

t

o

t

c

m

t

b

c

a

5

c

(

p

r

V

c

p

t

b

S

s

l

5

o

o

(

“

d

l

u

s

eriods in which the allocated resource quantity is changed. In all

ther periods, only step 1 of Algorithm 1 applies. The index for the

ingle resource is omitted.

In period 1, resources are first allocated to activity 3 due

o its position in λ. As d 3 = max (� 12 / 4 � , 2) = 3 and ρ3 = 1 , a

esource quantity of min (5 , 12 / (3 + 1)) = 3 is allocated in step 2a.

he remaining 2 resource units are allocated to activity 1 in

tep 2a. Activity 3 completes in period 4. In period 5, first 2 re-

ource units are allocated to activity 1 based on step 1. This is suf-

cient for activity 1 to complete. Then, the remaining 3 resource

nits are allocated to start activity 4 in step 2a. In period 6, ac-

ivity 4 continues with the same allocated quantity as in period 5

ue to step 1. Hence, activity 2 can only start with an allocated

uantity of 2 units from step 2a. Activity 4 completes in period 9.

n period 10, activity 2 requires additional ξ2 = 5 resource units

o complete. First, a resource quantity equal to the lower usage

ound q 2 , 10 = 2 is allocated in step 1. As the length of the cur-

ent block l 2 , 9 = 4 is greater than l 2 = 2 , step 2b increases the

uantity to q ′
2 , 10

= max (q
2
, min (q 2 , 10 + ϕ, ξ2 / l 2 , w 2 / (d 2 + ρ2))) =

ax (2 , min (2 + 3 , 5 / 2 , 15 / (5 + 0)) = 2 . 5 . The new resulting block

as a length of 2 which equals the minimum block length and

s 1 period shorter than the continued current block. As the new

lock does not overallocate resources, the resource quantity is

ot changed by operation max (2 , 2 . 5 / � 2 . 5 / 2 . 5 �) = 2 . 5 . The activ-

ty completes in the following period, resulting in a makespan

f 11.

.2. Genetic algorithm

A genetic algorithm (GA) is a population-based metaheuristic

nspired by the principles of natural evolution (Holland, 1975). To

pply a GA to the FRCPSP, we use the FSGS input parameter lists

, ρ , and σ as representation for a candidate solution. We employ

he FSGS to generate a feasible schedule from a candidate solution

nd consider the resulting makespan as the fitness value.

Our proposed GA first creates an initial population of candi-

ate solutions as described in Section 5.2.1 . In each generation,

he elite solution with the lowest makespan is inserted into the

ext generation. Based on the elite solution’s makespan, we up-

ate the bounds s i , c i , ρ i , and σ i , which are thus tightened with

very makespan improvement. Next, the GA selects a set of candi-

ate solutions for the next generation by stochastic universal sam-

ling (Baker, 1987). These candidate solutions are modified by the

perators described in Section 5.2.2 and constitute the next gen-

ration. The whole process is repeated until a termination crite-

ion is fulfilled. The GA returns as result the list � f gen . It contains as

nique elements the elite solution and the corresponding sched-

le for each GA generation, sorted in ascending order of generation

ount. As elite solutions are maintained, � f gen is also sorted in non-

ncreasing order of makespan. � f gen is used as input for the VNS as

escribed in Section 5.3 .

.2.1. Initial population

We construct activity list λ by iteratively adding one activity

hose predecessors are already contained in λ, assuming that the

ummy source activity is always present in λ. Diversity is intro-

uced by selecting the next activity randomly as well as based on

he priority rules employed in Fündeling (2006) , namely longest

ath following (LPF), most work remaining (MWR), and most to-

al successors (MTS). For 75% of the population, we set with a

robability of 10% uniform random integer values for ρ i within its

ounds, whereas for the rest we set ρ i to 0. All σ i are set to 0 in

rder to prevent delayed activity starts in the initial population.
.2.2. Operators

To recombine solution candidates, we apply the precedence-

rder maintaining two-point crossover of Hartmann (1998) . It ran-

omly selects two crossover points in lists λ, ρ , and σ of two par-

nt solutions and generates two new feasible child solutions. We

hen apply three mutation operators. For λ we use the mutation

perator of Hartmann (1998) . It exchanges an activity in λ with

he one at the next position with a probability of p λ if the ex-

hange is feasible regarding the precedences of the activities. The

utation of ρ i has a probability of p ρ . Here, one of the following

wo operations is done with equal probability. ρ i is either replaced

y a uniform random integer within its bounds or increased (de-

reased) by one. Finally, σ i is replaced with a probability of p σ by

 uniform random integer within its bounds.

.3. Variable neighborhood search

Variable neighborhood search (VNS) is a metaheuristic which

ombines local search with systematic change of neighborhoods

 Hansen & Mladenovi ́c, 2005). We propose a VNS to further im-

rove the best schedules found by the GA in list �
 f gen by transfer-

ing resource quantities between selected pairs of activities (i , j).

NS is an appropriate metaheuristic for this purpose, as its con-

ept of nested neighborhoods represents combinations of multiple

airwise resource transfers. The VNS intensifies the search along

he GA’s search trajectory on solutions of already high quality.

We first describe how activity pairs are selected in Section 5.3.1 ,

efore we explain the resource transfer in Section 5.3.2 . In

ection 5.3.3 , we define the neighborhoods and embed the re-

ource transfer into the VNS framework. Finally, we provide an il-

ustrated example in Section 5.3.4 .

.3.1. Activity selection

For most activity pairs a resource transfer either is infeasible

r does not reduce the makespan. Thus, we construct subset P

f the set of all activity pairs. The idea is to select activity pairs

 i , j) ∈ P such that resource quantities are only transferred from

non-critical” activity i to “critical” activity j in order to reduce the

uration of j . Critical activities, as defined below, correspond to a

ongest path in a network representation of the schedule which

tilizes the resource flow concept of Artigues et al. (2003) . We con-

truct set P for schedule f in five steps:

1. Prevent cycles: Due to the flexible resource profiles, the re-

source quantity allocated to an activity over time may first de-

crease and then increase again. In this case, there is a resource

flow from the activity via other activities to itself. Hence, the

resulting resource flow network contains cycles and the calcu-

lation of a longest path becomes NP-hard (Garey & Johnson,

1979). To derive an acyclic resource flow network, we transform

schedule f into schedule f rec in which all activities i rec ∈ V

rec fea-

ture rectangular resource profiles for all required resources. Re-

source profiles that contain more than one block are split into

multiple new activities that each represent one single block. In

each period in which an activity i ∈ V from schedule f starts

a new block, a new corresponding activity i rec ∈ V

rec starts in

schedule f rec .

2. Generate resource flow network: An acyclic resource flow net-

work is derived from f rec by adapting the algorithm of Artigues,

Demassey, and Neron (2008 , p. 34). In the resulting resource

flow network, an arc from activity i rec to j rec exists if there is a

positive resource flow from i rec to j rec . The weight of the arc is

set to min (s j rec − s i rec , d i rec) .

3. Identify critical activities: A given maximum number of

longest paths in the resource flow network is calculated. For

a longest path, we denote activity j ∈ V as critical if it corre-

sponds to an activity from set V

rec which is on this longest path.

268 M. Tritschler et al. / European Journal of Operational Research 262 (2017) 262–273

Fig. 7. Improved schedule f ′ resulting from schedule f of Fig. 6 .

u

b

m

5

p

f

t

t

r

i

F

i

T

r

p

C

o

a

b

k

p

i

fi

t

b

a

i

2

t

t

t

6

d

t

p

a

a

6

Set C contains all critical activities j ∈ V corresponding to this

longest path.

4. Select activity pairs: Set P contains activity pairs (i , j) in which

activity i is non-critical, while activity j is critical and its dura-

tion is greater than its minimum duration, and the set T ij of pe-

riods for resource transfer is nonempty. T ij consists of the peri-

ods in which activity i currently has an allocated quantity above

its lower usage bound, while activity j has a quantity below its

upper usage bound for a shared principal or independent re-

source r :

P = { (i, j) | i / ∈ C, j ∈ C, d j > d j , T i j � = ∅}
T i j = { t ∈ T |∃ r ∈ R

pi
i

∩ R

pi
j

: (q irt > q
ir
, q jrt < q jr) }

5. Break ties: In case of multiple longest paths, multiple sets P

occur. In this case, we select the set P that has the highest

makespan reduction potential
∑

(i, j) ∈ P (d j − d j) .

5.3.2. Resource transfer

For (i, j) ∈ P, r ∈ R
pi
i

∩ R
pi
j

and t ∈ T ij , we define the maximum

transfer quantity ϑijrt as the minimum between the maximum

possible sendable and receivable resource quantity, i.e., ϑ i jrt =
min (q irt − q

ir
, q jr − q jrt) . The quantity of dependent resources is

determined based on the quantity of the principal resource. Start-

ing from feasible schedule f we perform k resource transfers for

activity pairs (i , j) ∈ P to generate a new feasible schedule f ′ as

follows. We apply the FSGS based on λ, ρ , and σ . However, in

each period t ∈ T ij the allocated resource quantity in steps 2a and

2b of Algorithm 1 is modified in an additional operation to q irt =
max (q

ir
, min (q ir , q irt − ϑ i jrt)) for sending activity i and to q jrt =

max (q
jr
, min (q jr , q jrt + ϑ i jrt)) for receiving activity j . In step 2b

of Algorithm 1 , a new block is started if the remaining resource

requirement ξ ir suffices to generate at least one minimum block

length.

The resource transfer is only performed if both activities meet

the minimum block length. This requirement is not considered in

the activity selection, as in case of multiple resource transfers we

have to actually generate a schedule in order to determine the re-

sulting block lengths.

5.3.3. Schedule improvement

We define neighborhood k of feasible schedule f as the set of

all feasible schedules which can be generated from f by k resource

transfers for activity pairs (i , j) ∈ P . The VNS integrates two com-

ponents: (1) the first-improvement variable neighborhood descent

of Hansen and Mladenovi ́c (2005) which is a local search method

employing a purely deterministic neighborhood change mechanism

and (2) a perturbation method to escape local minima based on
�
 f gen from the GA:

1. The VNS starts in neighborhood k = 1 of the last schedule f

from

�
 f gen . This schedule has the shortest makespan found by

the GA. In each local search step in neighborhood k , we gen-

erate a new schedule f ′ from the current incumbent f by k re-

source transfers based on activity pairs from P . If no makespan

improvement is found within the given maximum number of

generated schedules per neighborhood, the VNS proceeds to the

next neighborhood k = k + 1 . If the makespan of f ′ is reduced,

the VNS moves from f to f ′ and continues the search in neigh-

borhood k = 1 of schedule f ′ . The information which transfers

have been performed is saved.

2. If f is not improved within the given maximum number of non-

improving schedules or if the maximum allowed neighborhood

has been reached, the VNS escapes the local optimum f by se-

lecting the next unique schedule f ′ from

�
 f gen and moving from
f to f ′ . Thus, the VNS exploits the results of the GA and oper-

ates on schedules of already high quality instead of moving to

a randomly generated schedule.

The VNS terminates and returns the overall best-found sched-

le if �
 f gen has been fully processed or the given maximum num-

er of schedules has been generated or the lower bound of the

akespan T min has been reached.

.3.4. Example

Assume that schedule f from Fig. 6 for the project from Fig. 5 is

rocessed by the VNS. In the activity selection, schedule f is trans-

ormed into schedule f rec . The non-constant resource profile of ac-

ivity 2 in f contains 2 blocks. Hence, it corresponds to 2 activi-

ies with rectangular shape resource profiles in f rec , one from pe-

iods 6 to 9 and the other from periods 10 to 11. The result-

ng resource flow network contains 2 longest paths of length 11.

or the first longest path with critical activities C = { 1 , 2 } , activ-

ties 1 and 2 are parallel to activity 4. Hence, we obtain periods

 4 , 1 = { 5 } and T 4 , 2 = { 6 , 7 , 8 , 9 } . We get P = { (4 , 1) , (4 , 2) } with a

eduction potential of (d 1 − d 1) + (d 2 − d 2) = (5 − 3) + (6 − 5) = 3

eriods. However, the other longest path with critical activities

′ = { 3 , 4 , 2 } has no reduction potential. For all activities in C ′ , the

nly parallel activity which is not in C ′ itself is activity 1. As the

llocated resource quantity of activity 1 is equal to its lower usage

ound in all periods, no resource transfer is possible.

Neighborhood k = 1 of f contains all schedules resulting from

 = 1 resource transfer. The first resource transfer for activity

air (4, 1) with T 4 , 1 = { 5 } in period 5 is not performed, as activ-

ty 1’s remaining resource requirement of 2 units does not suf-

ce to accommodate the minimum block length. For the resource

ransfer of activity pair (4, 2) with T 4 , 2 = { 6 , 7 , 8 , 9 } , the minimum

lock lengths of activities 4 and 2 prevent a transfer in periods 6

nd 7. In period 8, a transfer of ϑ 4 , 2 , 8 = min (3 − 2 , 3 − 2) = 1 units

s feasible, resulting in 3 resource units allocated to activity 2 and

 units allocated to activity 4, as shown in schedule f ′ of Fig. 7 . Due

o the minimum block length, both activities have the same alloca-

ion in period 9. Both activities complete in period 10. As a result,

he makespan is reduced by 1 period to 10, which is optimal.

. Computational study

In this section, we present the computational study. First, we

escribe the design of the study in Section 6.1 , before we present

he test problem instances in Section 6.2 and give details on the

arameter settings in Section 6.3 . In Section 6.4 , we report and

nalyze the computational results. Lastly, Section 6.5 demonstrates

n application of the HM to the FRCPSP with discrete resources.

.1. Test design

We compare the HM to the following benchmark methods:

M. Tritschler et al. / European Journal of Operational Research 262 (2017) 262–273 269

p

g

c

R

&

t

d

s

a

m

e

d

g

w

C

6

a

s

o

i

i

s

c

w

r

i

p

T

t

a

q

a

c

s

i

&

l

r

s

&

c

a

c

l

r

β

i

6

s

l

b

o

(

p

t

u

G

a

2

h

a

m

p

l

(

6

f

o

6

r

r

T

w

m

a

i

t

r

a

t

t

o

o

u

• SGA : The Self-Adaptive Genetic Algorithm of Tritschler et al.

(2014) uses an activity list representation and an additional

self-adaptive parameter (Hartmann, 2002), the SGS flag, which

determines whether a standard serial or a standard parallel SGS

is used.
• PRS : The Parallel Random Sampling heuristic resembles the

method of Kolisch et al. (2003) . It constructs activity lists by

random sampling and generates schedules with a standard par-

allel SGS.
• SRS : The Serial Random Sampling heuristic is the same as the

PRS but uses a standard serial SGS.
• MIP : As a reference we employ a commercial solver using

the best-performing MIP model FP-DT3 of Naber and Kolisch

(2014) . The best solution obtained after a time limit of two

hours per problem instance is considered as a reference value.

Furthermore, in order to analyze the influence of the HM com-

onents on the solution quality, three HM variants are compared:

• GA-FSGS : The FSGS is embedded into the GA without the VNS.

This combination is used to evaluate the impact of the VNS.
• MP-FSGS : In order to assess the GA’s impact, the FSGS is em-

ployed in a multi-pass method (see Kolisch & Hartmann, 2006).

By using the FSGS, the method generates a large number of

schedules and selects the one with the best objective function

value. Following Fündeling and Trautmann (2010) , we generate

three λ with the priority rules LPF, MTS, and MWR and ρ and σ
set to zero. We generate the remaining λ by random activity se-

lection and ρ and σ chosen randomly within the given bounds.
• GA-SGS : The GA operates only on λ and is combined with a

standard parallel SGS. This combination is used to evaluate the

FSGS.

The methods are compared based on a maximum number of

enerated schedules per problem instance (�). This widely ac-

epted methodology has previously been applied in studies on the

CPSP (Kolisch & Hartmann, 2006) and the MRCPSP (van Peteghem

 Vanhoucke, 2014). According to Kolisch and Hartmann (2006) ,

he termination criterion has the advantages that it is platform in-

ependent and allows direct comparison with future studies. Each

tarted schedule generation process is counted as one schedule. If

 makespan equals T min , an optimal schedule is obtained and the

ethod terminates. We report the required computation time of

ach method as single-threaded CPU time.

All methods, except the MIP, are implemented in Java 7 on a

esktop PC with a 3.3 gigahertz Intel Core i3-2120 CPU and 4 gi-

abytes of RAM. Naber and Kolisch (2014) solve their MIP model

ith CLPEX on a computer with a 3.4 gigahertz Intel Core i7-3770

PU and 16 gigabytes RAM.

.2. Test data

The study is conducted on problem instances from test sets A

nd B of Fündeling and Trautmann (2010) . Test set A contains in-

tances with up to 4 resources, derived from the RCPSP instances

f the PSPLIB (Kolisch & Sprecher, 1997). The study only includes

nstances of test set A with at most 55 activities because for larger

nstances no MIP results are available. These 509 instances of test

et A are labeled as instance set A ≤55 , where the subscript indi-

ates the number of activities.

Test set B consists of instance sets B 10 , B 20 , B 40 , B 100 , and B 200

ith 10, 20, 40, 100, and 200 activities, respectively, and up to 4

esources. Fündeling and Trautmann (2010) generate 480 problem

nstances in each set by using a factorial design of the problem

arameters order strength, resource factor, and resource strength.

he higher the order strength (OS) is, the more precedence rela-

ions are in the project network. OS values of 0.25, 0.5, and 0.75
re used. The resource factor (RF) indicates the number of re-

uired resources per activity (Kolisch & Sprecher, 1997). Its values

re set to 0.25, 0.5, 0.75, and 1. For example, a value of 0.5 indi-

ates that each activity requires 2 out of the 4 resources. The re-

ource strength (RS) measures the scarcity of resources by compar-

ng the resource requirements to the resource availability (Kolisch

 Sprecher, 1997). RS values of 0, 0.25, 0.5, and 0.75 are used. A

ower value indicates a higher scarcity. For RS = 0 , there is for each

esource at least one activity that may exclusively occupy the re-

ource due to the upper bound of resource usage q ir (see Fündeling

 Trautmann, 2010). For RS = 1 , the resource availability does not

onstrain the scheduling. The minimum block length is randomly

ssigned to values between 2 and 4 periods.

In each problem instance, all activities require the same prin-

ipal resource ˆ r . To ensure that a feasible solution exists we fol-

ow Naber and Kolisch (2014) and set for dependent resource

 the resource function coefficients αir = (q ir − q
ir
) / (q i ̂ r − q

i ̂ r
) and

ir = q
ir

− q
i ̂ r
αir . Before solving a problem instance, the preprocess-

ng of Naber and Kolisch (2014) is applied.

.3. Parameter settings

The parameters of the HM have been determined in a pre-

tudy. To adapt the GA to different problem sizes, we set its popu-

ation size according to the function min (10 ·n , 400) of the num-

er of activities n . We use a mutation rate for the activity list

f p λ = 5% , which is in line with the values used by Hartmann

1998) , as well as p σ = 0 . 5% and p ρ = 5% . We facilitate the inter-

lay between GA and VNS by adapting the number of schedules as

ermination criterion based on the problem size. The VNS sched-

le limit is set to �V NS = � � · max (n/ 200 , 0 . 25) � schedules, the

A schedule limit is set to �GA = � − �V NS . In the VNS, we use

 limit of 10 0 0 non-improving schedules per incumbent solution,

00 generated schedules per neighborhood, a maximum neighbor-

ood of 5, and a limit of 5 longest paths in the activity selection.

For the SGA a population size of min (5 ·n , 200) is used. The

ctivity lists in the initial population are constructed in the same

anner as in the HM. The SGS flag is set randomly with the equal

robability to serial or parallel. The mutation rate for the activity

ist and for the SGS flag are both set to 5% according to Hartmann

2002) .

.4. Computational results

In the following, whenever stating statistical significance we re-

er to the α = 0 . 05 significance level verified in a Kruskal–Wallis

ne-way analysis of variance or a Mann–Whitney U test.

.4.1. Solution quality

First, we report on the solution quality. Table 2 lists the average

elative deviation �mip from the best MIP solution and the average

elative deviation �lb from the lower bound of the makespan T min .

he optimal MIP solutions are obtained for all instances of set B 10 ,

hereas for sets B 20 , B 40 , and A ≤55 not all MIP solutions are opti-

al. For the larger sets B 100 and B 200 no MIP solutions are avail-

ble. For each instance set, the average results for schedule lim-

ts � of 10 0 0, 50 0 0, 15,0 0 0, and 25,0 0 0 schedules are given and

he average result across all schedule limits is set in bold. The last

ow of the table provides the overall results across all instance sets

nd schedule limits. The differences between the methods are sta-

istically significant in all rows.

Considering the overall results, the HM yields better results

han all other methods with statistical significance. The advantage

f the HM is largest on data set B 10 , where all MIPs are solved to

ptimality and �mip equals the optimality gap. For 25,0 0 0 sched-

les the HM’s optimality gap of 0.14% is about 9 times lower than

270 M. Tritschler et al. / European Journal of Operational Research 262 (2017) 262–273

Table 2

Average deviation in percent from best MIP solution (�mip) and from T min (�lb).

HM SGA PRS SRS

Set / � �mip �lb �mip �lb �mip �lb �mip �lb

A ≤55 0 .03 5 .60 2 .12 7 .82 2 .64 8 .41 3 .89 9 .83

10 0 0 0 .64 6 .27 2 .52 8 .30 3 .26 9 .09 4 .66 10 .68

50 0 0 0 .01 5 .58 2 .13 7 .83 2 .67 8 .45 3 .95 9 .89

15,0 0 0 −0 .24 5 .30 1 .95 7 .63 2 .37 8 .10 3 .57 9 .47

25,0 0 0 −0 .27 5 .25 1 .88 7 .53 2 .26 7 .98 3 .40 9 .28

B 10 0 .24 5 .40 1 .31 6 .57 1 .55 6 .81 1 .59 6 .88

10 0 0 0 .44 5 .62 1 .34 6 .61 1 .56 6 .83 1 .62 6 .91

50 0 0 0 .22 5 .38 1 .30 6 .56 1 .55 6 .82 1 .58 6 .87

15,0 0 0 0 .15 5 .31 1 .30 6 .56 1 .55 6 .81 1 .58 6 .87

25,0 0 0 0 .14 5 .28 1 .30 6 .56 1 .55 6 .81 1 .58 6 .87

B 20 0 .28 4 .24 0 .75 4 .77 1 .28 5 .34 1 .31 5 .40

10 0 0 0 .60 4 .60 0 .86 4 .90 1 .63 5 .73 1 .70 5 .84

50 0 0 0 .27 4 .23 0 .75 4 .78 1 .31 5 .37 1 .30 5 .39

15,0 0 0 0 .15 4 .10 0 .70 4 .71 1 .12 5 .16 1 .15 5 .23

25,0 0 0 0 .10 4 .04 0 .69 4 .70 1 .07 5 .10 1 .09 5 .16

B 40 −1 .88 4 .08 −1 .73 4 .29 −0 .05 6 .21 0 .32 6 .74

10 0 0 −1 .66 4 .35 −1 .53 4 .55 0 .49 6 .84 0 .93 7 .44

50 0 0 −1 .88 4 .09 −1 .72 4 .31 −0 .01 6 .26 0 .42 6 .85

15,0 0 0 −1 .98 3 .96 −1 .82 4 .18 −0 .29 5 .94 0 .04 6 .41

25,0 0 0 −2 .01 3 .93 −1 .85 4 .13 −0 .40 5 .81 −0 .09 6 .26

B 100 3 .94 4 .05 7 .15 8 .09

10 0 0 4 .07 4 .21 7 .68 8 .68

50 0 0 3 .94 4 .08 7 .21 8 .14

15,0 0 0 3 .89 3 .97 6 .92 7 .84

25,0 0 0 3 .87 3 .93 6 .80 7 .71

B 200 3 .41 3 .55 7 .12 8 .20

10 0 0 3 .46 3 .65 7 .53 8 .67

50 0 0 3 .40 3 .57 7 .16 8 .27

15,0 0 0 3 .39 3 .51 6 .95 7 .98

25,0 0 0 3 .39 3 .48 6 .83 7 .88

Overall −0 .33 4 .46 0 .63 5 .20 1 .37 6 .86 1 .81 7 .55

Table 3

Average time to generate 10 0 0 schedules in seconds.

Set HM GA VNS SGA PRS SRS

A ≤55 0.14 0.11 0.24 0.05 0.06 0.02

B 10 0.08 0.08 0.17 0.04 0.04 0.02

B 20 0.20 0.18 0.28 0.09 0.09 0.05

B 40 0.50 0.38 0.65 0.21 0.21 0.10

B 100 1.55 1.19 2.72 0.84 0.69 0.31

B 200 4.44 3.58 9.08 2.61 1.85 0.70

Overall 1.15 0.92 2.19 0.64 0.49 0.20

d

S

6

t

e

s

f

F

i

m

a

q

K

r

t

d

6

e

s

p

G

S

i

F

c

i

i
those of the other methods. The HM further improves when in-

creasing � from 15,0 0 0 to 25,0 0 0 schedules, whereas the other

methods are stagnant or likely trapped to suboptimality. For the

medium data sets A ≤55 and B 40 , the HM finds many new best-

known solutions. On the large data sets B 100 and B 200 , the HM and

the SGA clearly outperform the random sampling heuristics.

6.4.2. Computation time

The average computation time in seconds required to generate

10 0 0 schedules per problem instance (based on the average for

25,0 0 0 generated schedules) is listed in Table 3 . Although not per-

fectly linear, the HM scales well. By doubling the number of ac-

tivities, the HM’s computation time grows by a constant factor of

2.5, when considering the range from 10 to 100 activities. For 200

activities, the factor slightly increases to 2.86. The HM’s VNS re-

quires more time than the HM’s GA due to the repeated genera-

tion and analysis of resource flows in the activity selection. As the

VNS is not executed on all solutions, its impact on the computa-

tion time of the HM is small. The key driver for computation time

is the used SGS, as the FSGS performs more complex operations to
etermine the resource quantity, compared to the other SGSs (see

ection 5.1.2).

.4.3. Instance parameters

Let us now assess the influence of the instance parameters on

he solution quality. Fig. 8 visualizes the gap to T min for differ-

nt values of order strength (OS), resource factor (RF), resource

trength (RS), and minimum block length. The averages across all

our schedule limits � for instance sets B 10 to B 200 are plotted in

ig. 8 .

The order strength has a negligible impact on the solution qual-

ty, in line with the results of Fündeling (2006) . The impact of the

inimum block length is similarly small. The resource strength

nd the resource factor have a significant impact on the solution

uality. These observations are similar to those for the RCPSP (see

olisch, Sprecher, & Drexl, 1995). For instances which are highly

esource-constrained, i.e. for which RS = 0 holds, the advantage of

he HM and the SGA over the random sampling heuristics is most

istinct.

.4.4. Components of the hybrid metaheuristic

For the different HM variants, Table 4 lists the gap to T min av-

raged across all four schedule limits �. The difference in the re-

ults is statistically significant in all rows of the table. Considering

airwise comparisons for the overall results in the last row, the

A-FSGS generates better results than the MP-FSGS and the GA-

GS with statistical significance. This clearly demonstrates the pos-

tive impacts of the GA (between GA-FSGS and MP-FSGS) and the

SGS (between GA-FSGS and GA-SGS). The improvements of the

omplete HM compared to the GA-FSGS are statistically insignif-

cant when considering all instances. However, this analysis also

ncludes instances on which the VNS is not even executed. Since

M. Tritschler et al. / European Journal of Operational Research 262 (2017) 262–273 271

Fig. 8. Influence of instance parameters on solution quality.

Table 4

Average gap to T min in percent.

Set HM GA-FSGS MP-FSGS GA-SGS

A ≤55 5.60 5.69 6.92 7.88

B 10 5.40 5.41 5.60 6.85

B 20 4.24 4.28 5.02 5.09

B 40 4.08 4.17 5.84 4.54

B 100 3.94 4.09 5.23 4.16

B 200 3.41 3.58 4.24 3.69

Overall 4.46 4.55 5.49 5.39

Table 5

VNS: Improved instances as % of the instances on which VNS

is executed (Inst %) and makespan reduction per improved in-

stance in periods (�C max) and in percent (�C max %).

Set Inst % �C max �C max %

A ≤55 5 .59 1.06 2.27

B 10 1 .56 1.06 2.44

B 20 7 .57 1.23 1.39

B 40 20 .63 1.34 0.85

B 100 54 .24 2.12 0.57

B 200 61 .84 3.84 0.55

Overall 22 .91 2.58 1.34

t

V

o

o

t

f

G

a

t

Fig. 9. Convergence of the HM.

s

w

t

(

t

a

a

a

t

s

t

l

t

b

c

he VNS operates within the HM after completion of the GA, the

NS is not started in case the GA has already solved an instance to

ptimality.

The potential of the VNS becomes visible when considering

nly the instances on which the VNS is actually executed. Only for

his subset of instances, Table 5 lists the percentage of instances

or which the HM including VNS yields a lower makespan than the

A-FSGS (Inst %). The larger the problem size, the more instances

re improved by the VNS, peaking at 62% on instance set B 200 . Note

hat the VNS schedule limit � is also highest on this instance
VNS
et. On average, the VNS improves 23% of the considered instances,

hich corresponds to 12% of all instances. Table 5 also provides

he absolute makespan reduction per improved instance in periods

 �C max) and in percent of the GA-FSGS’s makespan (�C max %).

Next, we analyze the characteristics of the best solutions ob-

ained by the HM regarding the use of the resource allocation limit

nd the start delay. On average, 59% of the best solutions gener-

ted by the HM employ a resource allocation limit ρ i > 0 and 25%

 start delay σ i > 0.

Finally, Fig. 9 provides the average gap to the best solu-

ion found as a function of the generated schedules for instance

ets B 10 to B 200 and � = 25,0 0 0. Since the VNS’s start is de-

ermined by its variable schedule limit �VNS , the vertical dashed

ine indicates the earliest start at 18,0 0 0 generated schedules. Un-

il 18,0 0 0 generated schedules the GA shows a typical convergence

ehavior. From 18,0 0 0 generated schedules on, the VNS leads to a

onsiderable further improvement of the solutions.

272 M. Tritschler et al. / European Journal of Operational Research 262 (2017) 262–273

Table 6

Solution quality for the FRCPSP with discrete resources.

HM GA-FSGS

�mip �lb �mip �lb

B 10 0 .29 5.77 0 .31 5.79

10 0 0 0 .55 6.06 0 .58 6.09

50 0 0 0 .26 5.74 0 .28 5.76

15,0 0 0 0 .18 5.64 0 .19 5.66

25,0 0 0 0 .18 5.65 0 .19 5.66

B 20 −0 .04 4.56 −0 .02 4.58

10 0 0 0 .26 4.89 0 .27 4.91

50 0 0 −0 .03 4.57 −0 .02 4.58

15,0 0 0 −0 .17 4.41 −0 .14 4.44

25,0 0 0 −0 .22 4.36 −0 .19 4.39

B 40 −2 .01 4.47 −2 .01 4.47

10 0 0 −1 .67 4.86 −1 .77 4.76

50 0 0 −2 .04 4.43 −2 .02 4.45

15,0 0 0 −2 .14 4.31 −2 .10 4.36

25,0 0 0 −2 .18 4.26 −2 .14 4.31

B 100 4.21 4.34

10 0 0 4.34 4.42

50 0 0 4.20 4.34

15,0 0 0 4.17 4.30

25,0 0 0 4.15 4.29

Overall −0 .58 4.75 −0 .57 4.79

r

i

t

w

o

D

M

a

a

h

f

t

a

H

s

s

p

T

t

w

H

a

H

s

f

7

c

fi

e

s

s

t

T

b

t

a

(

c

w

m

a

t

A

v

c

G

u

R

A

A

B

6.5. Application to the FRCPSP with discrete resources

Beside the continuous resources (CR) addressed in this paper,

there are practical cases in which resource quantities are not in-

finitely divisible, such as those addressed in Fündeling and Traut-

mann (2010) and Baumann et al. (2015) . In this section, we demon-

strate, as a preliminary attempt, how the proposed HM and its GA-

FSGS variant can also be applied to solve the FRCPSP with discrete

resources (DR). It is important to note that despite dealing with

discrete resources, the DR computational results cannot be com-

pared with those of Fündeling and Trautmann (2010) and Baumann

et al. (2015) , since their problems specifically allocate resources in

the exact amount required by each activity, while our FRCPSP al-

lows resources to be allocated at least by the amount required by

each activity. In other words, more resources may be assigned to

activities, if the overall makespan can be reduced, while attempt-

ing to satisfy the required minimum block length.

The main variable that differentiates DR from CR is the assigned

resource quantity q irt , as obtained in Algorithm 1 of the FSGS. We,

therefore, transform a continuous value of q irt to an integer value

by either rounding up or down to respectively observe the resource

requirements of each activity and the limited availability of each

resource. Additionally, for the VNS to yield feasible DR solutions,

we assume, for each activity i and resource r , integer values of the

resource requirement w ir and both lower and upper bounds of re-

source quantity, q ir and q ir . These conditions result in an integer

value of the maximum quantity ϑijrt that may be transferred for

each activity pair (i , j) by the VNS as explained in Section 5.3.2 .

We conduct pilot DR runs whose computational results of solv-

ing test sets B 10 , B 20 , B 40 , and B 100 are summarized in Table 6 .

Note that the VNS is applicable to these instance sets as they up-

hold the aforementioned integer conditions of resource require-

ments and bounds. The rounding operations for DR are expected

to result in a negligible increment in runtimes. Similar to Table 2,

Table 6 reports the solution quality in terms of the average

deviations from the best MIP DR solution and from the lower

bound of the makespan T min for both HM and GA-FSGS . While

the reference T min values remain unaffected, the best MIP DR so-

lutions are obtained from solving the best model FP-DT3 of Naber

and Kolisch (2014) , however, with the integrality imposed on all
esource quantity variables. Despite the fact that the MIP DR model

s generally more difficult to solve than the CR one, all MIP solu-

ions are found optimal for test set B 10 . For each of those instances

hose MIPs are not solved to optimality, the best makespan or,

therwise, the upper bound of the makespan obtained from the

R modified heuristic of Naber and Kolisch (2014) is used as the

IP reference value instead.

Due to the additional integrality of resource variables, the aver-

ge gap �lb of DR is, as expected, slightly higher than that of CR

cross all test sets. The average gap �mip of DR is, on the other

and, slightly better than that of CR in all test sets except B 10 . This

avorable outcome is attributed to the lower quality of MIP solu-

ions found within limited runtime.

The effectiveness of the VNS is also reported by the percent-

ge of instances on which the VNS is executed and for which the

M including VNS yields a lower makespan than the GA-FSGS. On

et B 10 2.14% of the instances are improved, on set B 20 7.57%, on

et B 40 22.26%, and on set B 100 58.42%, leading to an average im-

rovement of 22.60% of all instances on which the VNS is executed.

he results also verify that the average VNS improvement is posi-

ively correlated to the problem size, as in the continuous case.

Despite the valid applicability of the HM and GA-FSGS to deal

ith discrete resources, it should be emphasized that the proposed

M and especially the VNS are designed for continuous resources

nd that, as it is out of scope of this paper, more tailoring of the

M and the VNS is recommended for further study to improve the

olution quality for the FRCPSP with discrete resources and beyond,

or example, mixed-types of resources.

. Conclusions

We proposed a Hybrid Metaheuristic (HM) for the resource-

onstrained project scheduling problem with flexible resource pro-

les. It uses the Flexible Resource Profile Parallel Schedule Gen-

ration Scheme (FSGS) which employs the concepts of delayed

cheduling and non-greedy resource allocation to construct feasible

chedules. The FSGS generates significantly lower makespans for

he FRCPSP than a standard parallel schedule generation scheme.

he best schedules are further improved in a novel variable neigh-

orhood search by transferring resource quantities between activi-

ies that are selected based on an analysis of resource flows. Over-

ll, the HM yields significantly better results than three benchmark

meta-)heuristics and generates near-optimal solutions in short

omputation time.

Further research may include an extension of the HM to deal

ith both discrete and continuous resources, incorporation of a

athematical model to optimally allocate resources, and perhaps

n extended application of the HM to the FRCPSP in continuous

ime.

cknowledgments

The authors would like to thank Norbert Trautmann for pro-

iding the test instances and the anonymous reviewers for giving

omments and suggestions. The support of Anulark Naber by the

erman Research Foundation (Deutsche Forschungsgemeinschaft)

nder grant NA 1059/1-1 is graciously acknowledged.

eferences

rtigues, C. , Demassey, S. , & Neron, E. (2008). Resource-constrained project schedul-

ing: Models, algorithms, extensions and applications. Control systems, robotics
and manufacturing series . London and Hoboken: ISTE and Wiley .

rtigues, C. , Michelon, P. , & Reusser, S. (2003). Insertion techniques for static and

dynamic resource-constrained project scheduling. European Journal of Opera-
tional Research, 149 (2), 249–267 .

aker, J. E. (1987). Reducing bias and inefficiency in the selection algorithm. In Pro-
ceedings of the second international conference on genetic algorithms and their ap-

plication (pp. 14–21). Hillsdale, USA: L. Erlbaum Associates .

http://refhub.elsevier.com/S0377-2217(17)30189-3/sbref0001
http://refhub.elsevier.com/S0377-2217(17)30189-3/sbref0001
http://refhub.elsevier.com/S0377-2217(17)30189-3/sbref0001
http://refhub.elsevier.com/S0377-2217(17)30189-3/sbref0001
http://refhub.elsevier.com/S0377-2217(17)30189-3/sbref0001
http://refhub.elsevier.com/S0377-2217(17)30189-3/sbref0002
http://refhub.elsevier.com/S0377-2217(17)30189-3/sbref0002
http://refhub.elsevier.com/S0377-2217(17)30189-3/sbref0002
http://refhub.elsevier.com/S0377-2217(17)30189-3/sbref0002
http://refhub.elsevier.com/S0377-2217(17)30189-3/sbref0002
http://refhub.elsevier.com/S0377-2217(17)30189-3/sbref0003
http://refhub.elsevier.com/S0377-2217(17)30189-3/sbref0003

M. Tritschler et al. / European Journal of Operational Research 262 (2017) 262–273 273

B

F

F

G

H

H

H

H

K

K

K

K

K

N

N

R

R

S

T

v

W

Z

aumann, P. , Fündeling, C.-U. , & Trautmann, N. (2015). The resource-constrained
project scheduling problem with work-content constraints. In C. Schwindt, &

J. Zimmermann (Eds.), Handbook on project management and scheduling . In In-
ternational handbooks on information systems: 1 (pp. 533–544). Springer Inter-

national Publishing .
ündeling, C.-U. (2006). Ressourcenbeschränkte Projektplanung bei vorgegebenen

Arbeitsvolumina (Resource-constrained project scheduling with given work
contents). Gabler Edition Wissenschaft Produktion und Logistik . Wiesbaden: Dt.

Univ.-Verl .

ündeling, C.-U. , & Trautmann, N. (2010). A priority-rule method for project schedul-
ing with work-content constraints. European Journal of Operational Research,

203 (3), 568–574 .
arey, M. R. , & Johnson, D. S. (1979). Computers and intractability: A guide to the

theory of NP-completeness. Series of books in the mathematical sciences . San
Francisco: W.H. Freeman .

ansen, P. , & Mladenovi ́c, N. (2005). Variable neighborhood search. In E. Burke, &

G. Kendall (Eds.), Search methodologies (pp. 211–238). US: Springer .
artmann, S. (1998). A competitive genetic algorithm for resource-constrained

project scheduling. Naval Research Logistics, 45 (7), 733–750 .
artmann, S. (2002). A self-adapting genetic algorithm for project scheduling under

resource constraints. Naval Research Logistics, 49 (5), 433–448 .
olland, J. H. (1975). Adaptation in natural and artificial systems . Ann Arbor: Univer-

sity of Michigan Press .

olisch, R. , & Hartmann, S. (2006). Experimental investigation of heuristics for re-
source-constrained project scheduling: An update. European Journal of Opera-

tional Research, 174 (1), 23–37 .
olisch, R. , Meyer, K. , Mohr, R. , Schwindt, C. , & Urmann, M. (2003). Ablaufpla-

nung für die Leitstrukturoptimierung in der Pharmaforschung (Scheduling of
lead structure optimization in pharmaceutical research). Zeitschrift für Betrieb-

swirtschaft, 73 (8), 825–848 .

olisch, R. , & Sprecher, A. (1997). PSPLIB - a project scheduling problem library. Eu-
ropean Journal of Operational Research, 96 (1), 205–216 .

olisch, R. , Sprecher, A . , & Drexl, A . (1995). Characterization and generation of a
general class of resource-constrained project scheduling problems. Management

Science, 41 (10), 1693–1703 .
uhlmann, A. (2003). Entwicklung eines praxisnahen Project-Scheduling-Ansatzes auf
der Basis von genetischen Algorithmen (Development of a practical project schedul-

ing approach based on genetic algorithms) . Berlin: Logos-Verlag .
aber, A. , & Kolisch, R. (2014). MIP models for resource-constrained project schedul-

ing with flexible resource profiles. European Journal of Operational Research,
239 (2), 335–348 .

aber, A. , & Kolisch, R. (2015). MIP models for resource-constrained project schedul-
ing with flexible resource profiles: Comparisons between Baumann & Traut-

mann (2013) and Naber & Kolisch (2014). Technical Report . TUM School of Man-

agement, Technical University of Munich .
aidl, G. R. , Puchinger, J. , & Blum, C. (2010). Metaheuristic hybrids. In M. Gendreau,

& J.-Y. Potvin (Eds.), Handbook of metaheuristics . In International series in opera-
tions research & management science: 146 (pp. 469–496). New York: Springer .

anjbar, M. , & Kianfar, F. (2010). Resource-constrained project scheduling problem
with flexible work profiles: A genetic algorithm approach. Scientia Iranica, 17 (1),

25–35 .

chramme, T. (2014). Modelle und Methoden zur Lösung des ressourcenbeschränk-
ten Projektablaufplanungsproblems unter Berücksichtigung praxisrelevanter Aspekte

(Models and methods to solve the resource-constrained project scheduling problem
under consideration of practical aspects) . Paderborn: Paderborn University .

ritschler, M. , Naber, A. , & Kolisch, R. (2014). A genetic algorithm for the re-
source-constrained project scheduling problem with flexible resource profiles.

In T. Fliedner, R. Kolisch, & A. Naber (Eds.), Proceedings of the 14th international

conference on project management and scheduling (pp. 230–233). Munich: TUM
School of Management .

an Peteghem, V. , & Vanhoucke, M. (2014). An experimental investigation of meta-
heuristics for the multi-mode resource-constrained project scheduling prob-

lem on new dataset instances. European Journal of Operational Research, 235 (1),
62–72 .

 ̨eglarz, J. , Józefowska, J. , Mika, M. , & Waligóra, G. (2011). Project scheduling with

finite or infinite number of activity processing modes – a survey. European Jour-
nal of Operational Research, 208 (3), 177–205 .

immermann, A. (2016). An MIP-based heuristic for scheduling projects with work–
content constraints. In 2016 IEEE international conference on industrial engineer-

ing and engineering management (IEEM) (pp. 1195–1199) .

http://refhub.elsevier.com/S0377-2217(17)30189-3/sbref0004
http://refhub.elsevier.com/S0377-2217(17)30189-3/sbref0004
http://refhub.elsevier.com/S0377-2217(17)30189-3/sbref0004
http://refhub.elsevier.com/S0377-2217(17)30189-3/sbref0004
http://refhub.elsevier.com/S0377-2217(17)30189-3/sbref0004
http://refhub.elsevier.com/S0377-2217(17)30189-3/sbref0005
http://refhub.elsevier.com/S0377-2217(17)30189-3/sbref0005
http://refhub.elsevier.com/S0377-2217(17)30189-3/sbref0006
http://refhub.elsevier.com/S0377-2217(17)30189-3/sbref0006
http://refhub.elsevier.com/S0377-2217(17)30189-3/sbref0006
http://refhub.elsevier.com/S0377-2217(17)30189-3/sbref0006
http://refhub.elsevier.com/S0377-2217(17)30189-3/sbref0007
http://refhub.elsevier.com/S0377-2217(17)30189-3/sbref0007
http://refhub.elsevier.com/S0377-2217(17)30189-3/sbref0007
http://refhub.elsevier.com/S0377-2217(17)30189-3/sbref0007
http://refhub.elsevier.com/S0377-2217(17)30189-3/sbref0008
http://refhub.elsevier.com/S0377-2217(17)30189-3/sbref0008
http://refhub.elsevier.com/S0377-2217(17)30189-3/sbref0008
http://refhub.elsevier.com/S0377-2217(17)30189-3/sbref0008
http://refhub.elsevier.com/S0377-2217(17)30189-3/sbref0009
http://refhub.elsevier.com/S0377-2217(17)30189-3/sbref0009
http://refhub.elsevier.com/S0377-2217(17)30189-3/sbref0010
http://refhub.elsevier.com/S0377-2217(17)30189-3/sbref0010
http://refhub.elsevier.com/S0377-2217(17)30189-3/sbref0011
http://refhub.elsevier.com/S0377-2217(17)30189-3/sbref0011
http://refhub.elsevier.com/S0377-2217(17)30189-3/sbref0012
http://refhub.elsevier.com/S0377-2217(17)30189-3/sbref0012
http://refhub.elsevier.com/S0377-2217(17)30189-3/sbref0012
http://refhub.elsevier.com/S0377-2217(17)30189-3/sbref0012
http://refhub.elsevier.com/S0377-2217(17)30189-3/sbref0013
http://refhub.elsevier.com/S0377-2217(17)30189-3/sbref0013
http://refhub.elsevier.com/S0377-2217(17)30189-3/sbref0013
http://refhub.elsevier.com/S0377-2217(17)30189-3/sbref0013
http://refhub.elsevier.com/S0377-2217(17)30189-3/sbref0013
http://refhub.elsevier.com/S0377-2217(17)30189-3/sbref0013
http://refhub.elsevier.com/S0377-2217(17)30189-3/sbref0013
http://refhub.elsevier.com/S0377-2217(17)30189-3/sbref0014
http://refhub.elsevier.com/S0377-2217(17)30189-3/sbref0014
http://refhub.elsevier.com/S0377-2217(17)30189-3/sbref0014
http://refhub.elsevier.com/S0377-2217(17)30189-3/sbref0014
http://refhub.elsevier.com/S0377-2217(17)30189-3/sbref0015
http://refhub.elsevier.com/S0377-2217(17)30189-3/sbref0015
http://refhub.elsevier.com/S0377-2217(17)30189-3/sbref0015
http://refhub.elsevier.com/S0377-2217(17)30189-3/sbref0015
http://refhub.elsevier.com/S0377-2217(17)30189-3/sbref0015
http://refhub.elsevier.com/S0377-2217(17)30189-3/sbref0016
http://refhub.elsevier.com/S0377-2217(17)30189-3/sbref0016
http://refhub.elsevier.com/S0377-2217(17)30189-3/sbref0017
http://refhub.elsevier.com/S0377-2217(17)30189-3/sbref0017
http://refhub.elsevier.com/S0377-2217(17)30189-3/sbref0017
http://refhub.elsevier.com/S0377-2217(17)30189-3/sbref0017
http://refhub.elsevier.com/S0377-2217(17)30189-3/sbref0018
http://refhub.elsevier.com/S0377-2217(17)30189-3/sbref0018
http://refhub.elsevier.com/S0377-2217(17)30189-3/sbref0018
http://refhub.elsevier.com/S0377-2217(17)30189-3/sbref0018
http://refhub.elsevier.com/S0377-2217(17)30189-3/sbref0019
http://refhub.elsevier.com/S0377-2217(17)30189-3/sbref0019
http://refhub.elsevier.com/S0377-2217(17)30189-3/sbref0019
http://refhub.elsevier.com/S0377-2217(17)30189-3/sbref0019
http://refhub.elsevier.com/S0377-2217(17)30189-3/sbref0019
http://refhub.elsevier.com/S0377-2217(17)30189-3/sbref0020
http://refhub.elsevier.com/S0377-2217(17)30189-3/sbref0020
http://refhub.elsevier.com/S0377-2217(17)30189-3/sbref0020
http://refhub.elsevier.com/S0377-2217(17)30189-3/sbref0020
http://refhub.elsevier.com/S0377-2217(17)30189-3/sbref0021
http://refhub.elsevier.com/S0377-2217(17)30189-3/sbref0021
http://refhub.elsevier.com/S0377-2217(17)30189-3/sbref0022
http://refhub.elsevier.com/S0377-2217(17)30189-3/sbref0022
http://refhub.elsevier.com/S0377-2217(17)30189-3/sbref0022
http://refhub.elsevier.com/S0377-2217(17)30189-3/sbref0022
http://refhub.elsevier.com/S0377-2217(17)30189-3/sbref0022
http://refhub.elsevier.com/S0377-2217(17)30189-3/sbref0023
http://refhub.elsevier.com/S0377-2217(17)30189-3/sbref0023
http://refhub.elsevier.com/S0377-2217(17)30189-3/sbref0023
http://refhub.elsevier.com/S0377-2217(17)30189-3/sbref0023
http://refhub.elsevier.com/S0377-2217(17)30189-3/sbref0024
http://refhub.elsevier.com/S0377-2217(17)30189-3/sbref0024
http://refhub.elsevier.com/S0377-2217(17)30189-3/sbref0024
http://refhub.elsevier.com/S0377-2217(17)30189-3/sbref0024
http://refhub.elsevier.com/S0377-2217(17)30189-3/sbref0024
http://refhub.elsevier.com/S0377-2217(17)30189-3/sbref0024
http://refhub.elsevier.com/S0377-2217(17)30189-3/sbref0025
http://refhub.elsevier.com/S0377-2217(17)30189-3/sbref0025

	A hybrid metaheuristic for resource-constrained project scheduling with flexible resource profiles
	1 Introduction
	2 Problem description
	3 Literature review
	4 Solution characteristics
	4.1 Non-greedy resource allocation
	4.2 Delayed scheduling

	5 Hybrid metaheuristic
	5.1 Flexible resource profile parallel schedule generation scheme
	5.1.1 Input parameters
	5.1.2 Algorithm
	5.1.3 Example

	5.2 Genetic algorithm
	5.2.1 Initial population
	5.2.2 Operators

	5.3 Variable neighborhood search
	5.3.1 Activity selection
	5.3.2 Resource transfer
	5.3.3 Schedule improvement
	5.3.4 Example

	6 Computational study
	6.1 Test design
	6.2 Test data
	6.3 Parameter settings
	6.4 Computational results
	6.4.1 Solution quality
	6.4.2 Computation time
	6.4.3 Instance parameters
	6.4.4 Components of the hybrid metaheuristic

	6.5 Application to the FRCPSP with discrete resources

	7 Conclusions
	 Acknowledgments
	 References

