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Abstract

The aim of this paper is to extend the TOPSIS to the fuzzy environment. Owing to vague concepts frequently represented
in decision data, the crisp value are inadequate to model real-life situations. In this paper, the rating of each alternative and the
weight of each criterion are described by linguistic terms which can be expressed in triangular fuzzy numbers. Then, a vertex
method is proposed to calculate the distance between two triangular fuzzy numbers. According to the concept of the TOPSIS,
a closeness coe�cient is de�ned to determine the ranking order of all alternatives by calculating the distances to both the
fuzzy positive-ideal solution (FPIS) and fuzzy negative-ideal solution (FNIS) simultaneously. Finally, an example is shown
to highlight the procedure of the proposed method at the end of this paper. c© 2000 Elsevier Science B.V. All rights reserved.

Keywords: TOPSIS; Linguistic variables; Triangular fuzzy number; MCDM

1. Introduction

Decision-making problems is the process of �nding
the best option from all of the feasible alternatives. In
almost all such problems the multiplicity of criteria for
judging the alternatives is pervasive. That is, for many
such problems, the decision maker wants to solve a
multiple criteria decision making (MCDM) problem.
A MCDM problem can be concisely expressed in ma-
trix format as
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D=

A1
A2
...
Am

C1 C2 · · · Cn

x11 x12 · · · x1n
x21 x22 · · · x2n
...

...
...

...
xm1 xm2 · · · xmn


;

W = [w1 w2 · · · wn];

where A1; A2; : : : ; Am are possible alternatives among
which decision makers have to choose, C1; C2; : : : ; Cn
are criteria with which alternative performance are
measured, xij is the rating of alternative Ai with re-
spect to criterion Cj; wj is the weight of criterion Cj.
In classical MCMD methods, the ratings and

the weights of the criteria are known precisely
[5, 10, 13]. A survey of the methods has been pre-
sented in Hwang and Yoon [10]. Technique for order
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performance by similarity to ideal solution (TOPSIS),
one of the known classical MCDM method, was �rst
developed by Hwang and Yoon [10] for solving a
MCDM problem. It bases upon the concept that the
chosen alternative should have the shortest distance
from the positive ideal solution (PIS) and the farthest
from the negative ideal solution (NIS). In the process
of TOPSIS, the performance ratings and the weights
of the criteria are given as crisp values.
Under many conditions, crisp data are inadequate

to model real-life situations. Since human judgements
including preferences are often vague and cannot es-
timate his preference with an exact numerical value.
A more realistic approach may be to use linguistic
assessments instead of numerical values, that is, to
suppose that the ratings and weights of the criteria
in the problem are assessed by means of linguistic
variables [1, 3, 4, 6, 9, 15]. In this paper, we fur-
ther extended the concept of TOPSIS to develop a
methodology for solving multi-person multi-criteria
decision-making problems in fuzzy environment. Con-
sidering the fuzziness in the decision data and group
decision-making process, linguistic variables are used
to assess the weights of all criteria and the ratings of
each alternative with respect to each criterion. We can
convert the decision matrix into a fuzzy decision ma-
trix and construct a weighted normalized fuzzy deci-
sion matrix once the decision makers’ fuzzy ratings
have been pooled. According to the concept of TOP-
SIS, we de�ne the fuzzy positive ideal solution (FPIS)
and the fuzzy negative ideal solution (FNIS). And
then, a vertex method is proposed in this paper to cal-
culate the distance between two triangular fuzzy rat-
ings. Using the vertex method, we can calculate the
distance of each alternative from FPIS and FNIS, re-
spectively. Finally, a closeness coe�cient of each al-
ternative is de�ned to determine the ranking order of
all alternatives. The higher value of closeness coe�-
cient indicates that an alternative is closer to FPIS and
farther from FNIS simultaneously.
In order to develop the linguistic TOPSIS method,

the paper is organized as follows. Next section intro-
duces the basic de�nitions and notations of the fuzzy
number and linguistic variable. Section 3 presents the
linguistic TOPSIS method in group decision making
and the choice process. And then, the proposedmethod
is illustrated with an example. Finally, some conclu-
sions are pointed out in the end of this paper.

Fig. 1. A fuzzy number ñ.

2. Preliminaries

In the following, we brie
y review some basic def-
initions of fuzzy sets from [2, 11, 12, 14–16]. These
basic de�nitions and notations below will be used
throughout the paper until otherwise stated.

De�nition 2.1. A fuzzy set Ã in a universe of dis-
course X is characterized by a membership function
�Ã (x) which associates with each element x in X a real
number in the interval [0; 1]. The function value �Ã (x)
is termed the grade of membership of x in Ã [14].

De�nition 2.2. A fuzzy set Ã of the universe of dis-
course X is convex if and only if for all x1; x2 in X ,

�Ã (�x1 + (1− �)x2)¿Min(�Ã (x1); �Ã (x2)); (1)

where �∈ [0; 1].

De�nition 2.3. A fuzzy set Ã of the universe of dis-
course X is called a normal fuzzy set implying that
∃xi ∈X; �Ã (xi)= 1.

De�nition 2.4. A fuzzy number is a fuzzy subset in
the universe of discourse X that is both convex and
normal. Fig. 1 shows a fuzzy number ñ of the universe
of discourse X which is both convex and normal.

De�nition 2.5. The �-cut of fuzzy number ñ is de�ned

ñ�= {xi: �ñ (xi)¿�; xi ∈X }; (2)

where �∈ [0; 1].

ñ� is a non-empty bounded closed interval con-
tained in X and it can be denoted by ñ�= [n�l; n

�
u]; n

�
l

and n�u are the lower and upper bounds of the closed
interval, respectively [11, 16]. Fig. 2 shows a fuzzy
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Fig. 2. Fuzzy number ñ with �-cuts.

Fig. 3. A triangular fuzzy number ñ.

number ñ with �-cuts, where

ñ�1 = [n�1l ; n
�1
u ]; ñ�2 = [n�2l ; n

�2
u ]: (3)

From Fig. 2, we can see that if �2¿�1, then n
�2
l ¿n

�1
l

and n�1u ¿n
�2
u .

De�nition 2.6. A triangular fuzzy number ñ can be
de�ned by a triplet (n1; n2; n3) shown in Fig. 3. The
membership function �ñ(x) is de�ned as [11]:

�ñ (x)=




0; x¡n1;
x − n1
n2 − n1 ; n16x6n2;

x − n3
n2 − n3 ; n26x6n3;

0; x¿n3.

(4)

De�nition 2.7. If ñ is a fuzzy number and n�l¿0 for
�∈ [0; 1], then ñ is called a positive fuzzy number
[2, 9].

Given any two positive fuzzy numbers m̃; ñ and a
positive real number r, the �-cut of two fuzzy num-
bers are m̃�= [m�l; m

�
u] and ñ

�= [n�l; n
�
u] (�∈ [0; 1]),

respectively. According to the interval of con�dence
[11], some main operations of positive fuzzy numbers

m̃ and ñ can be expressed as follows:

(m̃(+) ñ)�= [m�l + n
�
l; m

�
u + n

�
u]; (5)

(m̃(−) ñ)�= [m�l − n�u ; m�u − n�l]; (6)

(m̃(·)ñ)�= [m�l · n�l; m�u · n�u]; (7)

(m̃(:)ñ)�=
[
m�l
n�u
;
m�u
n�l

]
; (8)

(m̃�)−1 =
[
1
m�u
;
1
m�l

]
; (9)

(m̃(·)r)�= [m�l · r; m�u · r]; (10)

(m̃(:)r)�=
[
m�l
r
;
m�u
r

]
: (11)

De�nition 2.8. Let m̃=(m1; m2; m3) and ñ=(n1,
n2; n3) be two triangular fuzzy numbers. If m̃= ñ,
then m1 = n1, m2 = n2 and m3 = n3.

De�nition 2.9. If ñ is a triangular fuzzy number and
n�l¿0; n

�
u61 for �∈ [0; 1], then ñ is called a normal-

ized positive triangular fuzzy number [12].

De�nition 2.10. D̃ is called a fuzzy matrix, if at least
an entry in D̃ is a fuzzy number [2].

De�nition 2.11. A linguistic variable is a variable
whose values are linguistic terms [15].
The concept of linguistic variable is very useful in

dealing with situations which are too complex or too
ill-de�ned to be reasonably described in conventional
quantitative expressions [15]. For example, “weight”
is a linguistic variable, its values are very low, low,
medium, high, very high, etc. These linguistic values
can also be represented by fuzzy numbers.

De�nition 2.12. Let m̃=(m1; m2; m3) and ñ=
(n1; n2; n3) be two triangular fuzzy numbers, then the
vertex method is de�ned to calculate the distance
between them as

d(m̃; ñ) =
√

1
3 [(m1−n1)2+(m2−n2)2+(m3−n3)2]:

(12)

De�nition 2.13. Let Ã and B̃ be two triangular fuzzy
numbers. The fuzzy number Ã is closer to fuzzy num-
ber B̃ as d(Ã; B̃) approaches 0.
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Many distance measurement functions are proposed
in [17], but here the vertex method is an e�ective and
simple method to calculate the distance between two
triangular fuzzy numbers. Some important properties
of the vertex method are described as follows:

Property 1. If both m̃ and ñ are real numbers; then
the distance measurement d(m̃; ñ) is identical to the
Euclidean distance.

Proof. Suppose that both m̃=(m1; m2; m3) and ñ=
(n1; n2; n3) are two real numbers; then let m1=m2
=m3=m and n1=n2=n3=n. The distance measure-
ment (d(m̃; ñ)) can be calculated as

d(m̃; ñ)

=
√

1
3 [(m1 − n1)2 + (m2 − n2)2 + (m3 − n3)2]

=
√

1
3 [(m− n)2 + (m− n)2 + (m− n)2]

=
√
(m− n)2

= |m− n|:

Property 2. Two triangular fuzzy numbers m̃ and ñ
are identical if and only if d(m̃; ñ)= 0.

Proof. Let m̃=(m1; m2; m3) and ñ=(n1; n2; n3) be
two triangular fuzzy numbers.
(I) If m̃ and ñ are identical, then m1 = n1; m2 = n2

and m3 = n3. The distance between m̃ and ñ is

d(m̃; ñ)

=
√

1
3 [(m1 − n1)2 + (m2 − n2)2 + (m3 − n3)2]

=
√

1
3 [(0)

2 + (0)2 + (0)2]

= 0:

(II) If d(m̃; ñ)= 0, then

d(m̃; ñ)

=
√

1
3 [(m1 − n1)2 + (m2 − n2)2 + (m3 − n3)2]

= 0:

Implies that m1 = n1, m2 = n2 and m3 = n3. There-
fore, two triangular fuzzy numbers m̃ and ñ are
identical and the property has been proved.

Fig. 4. Three triangular fuzzy numbers.

Property 3. Let Ã; B̃ and C̃ be three triangular fuzzy
numbers. The fuzzy number B̃ is closer to fuzzy num-
ber Ã than the other fuzzy number C̃ if and only if
d(Ã; B̃)¡d(Ã; C̃).

This property is trivial. For example, Fig. 4 shows
three fuzzy numbers Ã=(1; 3; 5), B̃=(2; 4; 7) and
C̃ =(5; 7; 9). From Fig. 4, we can easily see that the
fuzzy number B̃ is closer to fuzzy number Ã than
the other fuzzy number C̃. According to the vertex
method, the distance measurement is calculated as

d(Ã; B̃) =
√

1
3 [(1− 2)2 + (3− 4)2 + (5− 7)2]

=
√
2;

d(Ã; C̃) =
√

1
3 [(1− 5)2 + (3− 7)2 + (5− 9)2]= 4:

According to the distance measurement and De�-
nition 2.13, we conclude that the fuzzy number B̃
is closer to fuzzy number Ã than the other fuzzy
number C̃.

Property 4. Let Õ=(0; 0; 0) be original. If d(Ã; Õ)¡
d(B̃; Õ); then fuzzy number Ã is closer to original
than the other fuzzy number B̃.

According to the Property 3, this property is trivial
and easily proved.

3. The proposed method

A systematic approach to extend the TOPSIS to
the fuzzy environment is proposed in this section.
This method is very suitable for solving the group
decision-making problem under fuzzy environment. In
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Table 1
Linguistic variables for the importance weight of each criterion

Very low (VL) (0; 0; 0:1)
Low (L) (0; 0:1; 0:3)
Medium low (ML) (0:1; 0:3; 0:5)
Medium (M) (0:3; 0:5; 0:7)
Medium high (MH) (0:5; 0:7; 0:9)
High (H) (0:7; 0:9; 1:0)
Very high (VH) (0:9; 1:0; 1:0)

Table 2
Linguistic variables for the ratings

Very poor (VP) (0; 0; 1)
Poor (P) (0; 1; 3)
Medium poor (MP) (1; 3; 5)
Fair (F) (3; 5; 7)
Medium good (MG) (5; 7; 9)
Good (G) (7; 9; 10)
Very good (VG) (9; 10; 10)

this paper, the importance weights of various criteria
and the ratings of qualitative criteria are considered
as linguistic variables. These linguistic variables can
be expressed in positive triangular fuzzy numbers as
Tables 1 and 2.
The importance weight of each criterion can be ob-

tained by either directly assign or indirectly using pair-
wise comparisons [7]. In here, it is suggested that the
decision makers use the linguistic variables (shown
as Tables 1 and 2) to evaluate the importance of the
criteria and the ratings of alternatives with respect to
various criteria.
Assume that a decision group has K persons, then

the importance of the criteria and the rating of alterna-
tives with respect to each criterion can be calculated as

x̃ij =
1
K
[x̃1ij(+)x̃

2
ij(+) · · · (+)x̃Kij ] (13)

w̃j =
1
K
[w̃1j (+)w̃

2
j (+) · · · (+)w̃Kj ] (14)

where x̃Kij and w̃
K
j are the rating and the importance

weight of the K th decision maker.
As stated above, a fuzzy multicriteria group

decision-making problem which can be concisely

expressed in matrix format as

D̃=



x̃11 x̃11 : : : x̃11
x̃21 x̃22 : : : x̃2n
...

... · · · ...
x̃m1 x̃m2 · · · x̃mn


 ;

W̃ = [w̃1; w̃2; : : : ; w̃n]

where x̃ij ; ∀i; j and w̃j; j=1; 2; : : : ; n are linguis-
tic variables. These linguistic variables can be de-
scribed by triangular fuzzy numbers, x̃ij =(aij; bij; cij)
and w̃j =(wj1; wj2; wj3).
To avoid the complicated normalization formula

used in classical TOPSIS, the linear scale transforma-
tion is used here to transform the various criteria scales
into a comparable scale. Therefore, we can obtain the
normalized fuzzy decision matrix denoted by R̃.

R̃= [r̃ij]m×n; (15)

where B and C are the set of bene�t criteria and cost
criteria, respectively, and

r̃ij =

(
aij
c∗j
;
bij
c∗j
;
cij
c∗j

)
; j∈B;

r̃ij =

(
a−j
cij
;
a−j
bij
;
a−j
aij

)
; j∈C;

c∗j =maxi
cij if j∈B;

a−j =mini
aij if j∈C:

The normalization method mentioned above is to pre-
serve the property that the ranges of normalized tri-
angular fuzzy numbers belong to [0; 1].
Considering the di�erent importance of each crite-

rion, we can construct the weighted normalized fuzzy
decision matrix as

Ṽ = [ṽij]m×n; i=1; 2; : : : ; m; j=1; 2; : : : ; n; (16)

where ṽij = r̃ij(·)w̃j.
According to the weighted normalized fuzzy de-

cision matrix, we know that the elements ṽij ; ∀i; j
are normalized positive triangular fuzzy numbers
and their ranges belong to the closed interval [0; 1].
Then, we can de�ne the fuzzy positive-ideal solu-
tion (FPIS, A∗) and fuzzy negative-ideal solution
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(FNIS, A−) as

A∗ = (ṽ∗1 ; ṽ
∗
2 ; : : : ; ṽ

∗
n );

A− = (ṽ−1 ; ṽ
−
2 ; : : : ; ṽ

−
n );

where ṽ∗j =(1; 1; 1) and ṽ
−
j =(0; 0; 0), j=1; 2; : : : ; n.

The distance of each alternative from A∗ and A−

can be currently calculated as

d∗i =
n∑
j=1

d(ṽij ; ṽ∗j ); i=1; 2; : : : ; m; (17)

d−i =
n∑
j=1

d(ṽij ; ṽ−j ); i=1; 2; : : : ; m; (18)

where d(· ; ·) is the distance measurement between two
fuzzy numbers.
A closeness coe�cient is de�ned to determine the

ranking order of all alternatives once the d∗i and d
−
i

of each alternative Ai (i=1; 2; : : : ; m) has been calcu-
lated. The closeness coe�cient of each alternative is
calculated as

CCi=
d−i

d∗i + d
−
i
; i=1; 2; : : : ; m: (19)

Obviously, an alternative Ai is closer to the
FPIS (A∗) and farther from FNIS(A−) as CCi ap-
proaches to 1. Therefore, according to the closeness
coe�cient, we can determine the ranking order of all
alternatives and select the best one from among a set
of feasible alternatives.
In sum, an algorithm of the multi-person multi-

criteria decision making with fuzzy set approach is
given in the following.
Step 1: Form a committee of decision-makers, then

identify the evaluation criteria.
Step 2: Choose the appropriate linguistic variables

for the importance weight of the criteria and the lin-
guistic ratings for alternatives with respect to criteria.
Step 3: Aggregate the weight of criteria to get the

aggregated fuzzy weight w̃j of criterion Cj, and pool
the decision makers’ opinions to get the aggregated
fuzzy rating x̃ij of alternative Ai under criterion Cj.
Step 4: Construct the fuzzy decision matrix and the

normalized fuzzy decision matrix.
Step 5: Construct the weighted normalized fuzzy

decision matrix.

Step 6: Determine FPIS and FNIS.
Step 7: Calculate the distance of each alternative

from FPIS and FNIS, respectively.
Step 8: Calculate the closeness coe�cient of each

alternative.
Step 9: According to the closeness coe�cient, the

ranking order of all alternatives can be determined.

4. Numerical example

Suppose that a software company desires to hire a
system analysis engineer. After preliminary screening,
three candidates A1; A2 and A3 remain for further eval-
uation. A committee of three decision-makers, D1; D2
and D3 has been formed to conduct the interview and
to select the most suitable candidate. Five bene�t cri-
teria are considered:
(1) emotional steadiness (C1),
(2) oral communication skill (C2),
(3) personality (C3),
(4) past experience (C4),
(5) self-con�dence (C5).
The hierarchical structure of this decision problem is
shown as Fig. 5. The proposed method is currently
applied to solve this problem and the computational
procedure is summarized as follows:
Step 1: The decision-makers use the linguistic

weighting variables (shown in Table 1) to assess
the importance of the criteria and present it in
Table 3.
Step 2: The decision-makers use the linguistic

rating variables (shown in Table 2) to evaluate the
rating of alternatives with respect to each criterion
and present it in Table 4.
Step 3: Converting the linguistic evaluation (shown

in Tables 3 and 4) into triangular fuzzy numbers to
construct the fuzzy decision matrix and determine the
fuzzy weight of each criterion as Table 5.

Table 3
The importance weight of the criteria

D1 D2 D3

C1 H VH MH
C2 VH VH VH
C3 VH H H
C4 VH VH VH
C5 M MH MH
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Fig. 5. The hierarchical structure.

Table 4
The ratings of the three candidates by decision makers under all
criteria

Criteria Candidates Decision-makers

D1 D2 D3

C1 A1 MG G MG
A2 G G MG
A3 VG G F

C2 A1 G MG F
A2 VG VG VG
A3 MG G VG

C3 A1 F G G
A2 VG VG G
A3 G MG VG

C4 A1 VG G VG
A2 VG VG VG
A3 G VG MG

C5 A1 F F F
A2 VG MG G
A3 G G MG

Step 4: Constructing the normalized fuzzy decision
matrix as Table 6.
Step 5: Constructing the weighted normalized fuzzy

decision matrix as Table 7.
Step 6: Determine FPIS and FNIS as

A∗ = [(1; 1; 1); (1; 1; 1); (1; 1; 1); (1; 1; 1); (1; 1; 1)];

A− = [(0; 0; 0); (0; 0; 0); (0; 0; 0); (0; 0; 0); (0; 0; 0)]:

Step 7: Calculate the distance of each candidate
from FPIS and FNIS, respectively, as Table 8.
Step 8: Calculate the closeness coe�cient of each

candidate as

CC1 = 0:62; CC2 = 0:77; CC3 = 0:71:

Step 9: According to the closeness coe�cient,
the ranking order of the three candidates is A2, A3;
and A1. Obviously, the best selection is candidate
A2.

5. Conclusion

In general, multicriteria problems adhere to uncer-
tain and imprecise data, and fuzzy set theory is ade-
quate to deal with it. In this paper, a linguistic decision
process is proposed to solve the multiple criteria
decision-making problem under fuzzy environment.
In decision-making process, very often, the assess-

ment of alternatives with respect to criteria and the
importance weight are suitable to use the linguistic
variables instead of numerical values. Here, we pro-
pose a vertex method which is an e�ective and simple
method to measure the distance between two triangu-
lar fuzzy numbers, and extend the TOPSIS procedure
to the fuzzy environment. In fact, the vertex method
can be easily applied to calculate the distance between
any two fuzzy numbers which their membership func-
tion are linear. Under group decision-making process,
it is not di�cult to use other aggregation functions
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Table 5
The fuzzy decision matrix and fuzzy weights of three alternatives

C1 C2 C3 C4 C5

A1 (5:7; 7:7; 9:3) (5; 7; 9) (5:7; 7:7; 9) (8:33; 9:67; 10) (3; 5; 7)
A2 (6:3; 8:3; 9:7) (9; 10; 10) (8:3; 9:7; 10) (9; 10; 10) (7; 9; 10)
A3 (6:3; 8; 9) (7; 9; 10) (7; 9; 10) (7; 9; 10) (6:3; 8:3; 9:7)
Weight (0:7; 0:9; 1) (0:9; 1; 1) (0:77; 0:93; 1) (0:9; 1; 1) (0:43; 0:63; 0:83)

Table 6
The fuzzy normalized decision matrix

C1 C2 C3 C4 C5

A1 (0:59; 0:79; 0:96) (0:5; 0:7; 0:9) (0:57; 0:77; 0:9) (0:83; 0:97; 1) (0:3; 0:5; 0:7)
A2 (0:65; 0:86; 1) (0:9; 1; 1) (0:83; 0:97; 1) (0:9; 1; 1) (0:7; 0:9; 1)
A3 (0:65; 0:82; 0:93) (0:7; 0:9; 1) (0:7; 0:9; 1) (0:7; 0:9; 1) (0:63; 0:83; 0:97)

Table 7
The fuzzy weighted normalized decision matrix

C1 C2 C3 C4 C5

A1 (0:41; 0:71; 0:96) (0:45; 0:7; 0:9) (0:44; 0:72; 0:9) (0:75; 0:97; 1) (0:13; 0:32; 0:58)
A2 (0:46; 0:77; 1) (0:81; 1; 1) (0:64; 0:9; 1) (0:81; 1; 1) (0:3; 0:57; 0:83)
A3 (0:46; 0:74; 0:93) (0:63; 0:9; 1) (0:54; 0:84; 1) (0:63; 0:9; 1) (0:27; 0:52; 0:81)

Table 8
The distance measurement

A∗ A−

A1 2.10 3.45
A2 1.24 4.13
A3 1.59 3.85

[8] to pool the fuzzy ratings of decision-makers in the
proposed method.
Although the proposed method presented in this

paper is illustrated by a personal selection prob-
lem, however, it can also be applied to problems
such as information project selection, material selec-
tion and many other areas of management decision
problems.
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