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Event-based average consensus of disturbed MASs
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Abstract—Under undirected graph, we design the fully dis-
tributed static and dynamic event-triggered sliding mode con-
trollers concerning the average consensus issues for single- and
double-integrator multi-agent systems with perturbations. To
guarantee the consensus convergence of disturbed first- and
second-order multi-agent systems, two distributed sliding mani-
folds with respect to an odd function are firstly devised in this
paper. Secondly, two types of event-triggered mechanisms, i.e., a
static event-triggering mechanism and a dynamic event-triggering
mechanism, are established to improve the utilization efficiency of
network resources and avoid the continuous communication with
neighbors. In both event-triggered sliding mode control strategies,
the fully distributed event-triggered sliding mode control laws
without global information of the multi-agent networks are
proposed, and they can ensure the state trajectories of disturbed
first- and second-order multi-agent systems to reach the average
consensus. Meanwhile, the finite-time reachability of the specified
sliding manifold can be guaranteed and Zeno behavior can be
also averted. Thirdly, taking advantage of the Lyapunov stability
theory and sliding mode control, sufficient conditions for the
average consensus of single- and double-integrator continuous-
time multi-agent systems are established. At the end, in order to
show the validity of the proposed event-triggered sliding mode
control strategies, a numerical simulation and comparative study
are offered.

Index Terms—Average consensus; disturbed multi-agent sys-
tems; dynamic event-triggering mechanism; fully distributed
event-triggered robust controller; sliding mode control.

I. INTRODUCTION

OVer the past decades, with the development of computer
science and network communication, the cooperative

control of multi-agent systems (MASs) has received growing
attentions from the academia [1]–[5], and has been widely
employed in practical fields such as robot formation, sensor
networks, power systems and so on. Notice that the consen-
sus control, which aims to ensure that all agents reach an
agreement, is one of the basic problems in the research of
cooperative control, and has attracted more and more attention.
For example, the distributed consensus issues for linear and
nonlinear MASs are studied via designing distributed adaptive
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protocols in [3]. The authors in [4] discussed the distributed
consensus control problem for a class of disturbed second-
order MASs with leader and leaderless cases. Therefore, the
consensus control of disturbed MASs governed by single- and
double-integrator dynamics is studied in this paper.

It merits noticing that the aforementioned works on the con-
sensus control are in a manner of time-triggered control which
may bring a heavy communication burden. To cope with the
communication burden problem for MASs, the event-triggered
control strategy has received increasing attention in the control
community. The fundamental idea of event-triggered control
method is to replace periodic control with aperiodic control
to cut down the frequency of data transmission, which has
gained an extremely considerable research in [6]–[13] and the
references therein. For example, in order to better regulate the
triggering intervals, the authors in [11] studied the average
consensus issue for first-order MASs by designing dynamic
event-triggered control protocols under undigraphs. To avert
the demand for a priori knowledge of the minimal positive
eigenvalue of the Laplacian matrix, the authors developed an
event-based adaptive control strategy to address the robust
cooperative output regulation issue for linear MASs with
disturbances and uncertainties in [12]. It is worth stressing that,
in the aforementioned works, some controller parameters and
the triggering transmission mechanism are determined by the
global smallest positive eigenvalue of the Laplacian matrix of
the communication topology, i.e., the designed event-triggered
control laws were not fully distributed in fact. In order not
to require any global information of multi-agent network,
the fully distributed adaptive controllers for linear MASs
are devised in [14] to obtain the static triggering condition.
But, the fully dynamic event-triggered control protocol that
can strike a balance between decreasing the frequency of
data transmission and guaranteeing the average consensus for
disturbed continuous-time MASs determined by single- and
double-integrator dynamics has not yet been considered.

On the other hand, it needs to be especially emphasized
that sliding mode control (SMC) is an efficacious robust
control scheme to suppress external disturbances due to its
strong adaptability to perturbations and parameter uncertain-
ties [15], [16], and there are some entertaining works about
the SMC-based consensus have been extensively studied for
MASs [17]–[20], where a robust sliding mode controller
is designed for heterogeneous higher-order nonlinear MASs
suffering from mismatched uncertainties in [17]. Under these
SMC methods, it is of great importance to handle the event-
triggered communication issue for dynamic systems, such as
[21]–[23]. Of them, to eliminate the claim for continuous
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state measurement, the periodic event-triggered mechanism
of the SMC design issue for linear time-invariant systems is
investigated in [22]. However, there are few studies on the fully
distributed static and dynamic event-triggered SMC protocols
for disturbed continuous-time MASs with single- and double-
integrator dynamics.

Enlightened by what has been discussed aforementioned,
we propose the fully distributed static and dynamic event-
triggered SMC protocols for disturbed single- and double-
integrator continuous-time MASs to cope with the problems
of average consensus and the utilization of limited commu-
nication resources simultaneously in this paper, respectively.
The core contributions are summarized as follows.

i) This article proposes the distributed static and dynam-
ic triggering control schemes for disturbed single- and
double-integrator continuous-time MASs to reduce the
continuous communication between agents equipped with
many kinds of sensors and actuators. Unlike [11], [24]
without considering external disturbances, the dynam-
ic triggering rule proposed in this work introduces an
extra positive signal to lessen the amount of transmit-
ted data, and analyzes the consensus with considering
disturbances. Besides, Zeno phenomena in both event-
triggered control strategies are ruled out by proving that
the activated time sequence is divergent for each agent.

ii) A more common framework for the SMC-based average
consensus performance of single- and double-integrator
continuous-time MASs subjected to disturbances is estab-
lished. Under such a framework, the distributed discon-
tinuous sliding surface with an odd function is devised
which is different from [25]. Distinguished from [26],
[27], the distributed discontinuous sliding manifold with
decoupled agent states is constructed so that the design
of static and dynamic sliding mode controllers is fully
distributed without any knowledge of global network
parameters.

iii) The average consensus control issues for disturbed first-
and second-order continuous-time MASs are, respective-
ly, studied by utilizing the fully distributed static and
dynamic event-triggered SMC protocols. Meanwhile, in
comparison with the previous results [23], [28], the
designed control law does not need to involve the extra
dynamic variable value of the dynamic event-triggering
mechanism in our work, which makes the control imple-
mentation easier and more convenient. Via the Lyapunov
stability theory and SMC, sufficient conditions for the
average consensus of single- and double-integrator MASs
are derived.

Notations: The transpose of a matrix A is denoted by A T.
Rn shows an n× 1 real column vector. Define a vector X =
[X1, X2, . . . , XN ]T ∈ RN , whose 1-norm is denoted as |X| =∑N
i=1 |Xi|.

II. PRELIMINARIES AND PROBLEM DESCRIPTION

A. Graph theory

In this paper, among the agents, we utilize an undirected
graph S = (W ,D , P ) to characterize the information inter-

action with W = {1, 2, . . . , N} and D = {(i, j) , i, j ∈ W }
being the node set and the edge set. In addition, the weighted
adjacency matrix is shown by P = [aij ]N×N with aij = 1 if
agent i and agent j are connected; otherwise, aij = 0. The
Laplacian matrix of the undirected graph S is expressed by
R = [lij ]N×N , where lii =

∑N
j=1 aij , and lij = −aij if

i ̸= j.

III. DISTURBED SINGLE-INTEGRATOR CONTINUOUS-TIME
MASS

A. Static triggering mechanism

There exist N agents in this part for the disturbed single-
integrator continuous-time MAS. The dynamics of the ith agent
are as follows:

ẋi(t) = ui(t) + di(t), i = 1, 2, . . . , N (1)

where xi(t) ∈ R, ui(t) ∈ R and di(t) ∈ R are the state,
control input and disturbance, respectively.

The control objective of the paper is to establish a type
of fully distributed event-based control protocols ui(t) for
disturbed continuous-time MASs to guarantee that the average
consensus is achieved, while reducing controller update fre-
quency, averting continuous information communication, and
excluding Zeno behavior.

To achieve the average consensus for disturbed continuous-
time MASs, a lemma, a definition and some mild hypotheses
are stated.

Lemma 1: [11] Consider the continuous-time MAS in (1)
and the undirected graph S . The states of all agents converge
to a common point, which equals to 1

N

∑N
i=1 xi(0) for ∀t ≥ 0.

Definition 1: [19] sig(·) : Rk → Rk represents an odd
function, whose definition is presented as follows:

sig(φ)γ = [|φ1|γsign(φ1), . . . , |φk|γsign(φk)]T,

in which γ > 0, |φi| stands for the absolute value of φi for
i = 1, 2, . . . , k, φ = [φ1, φ2, . . . , φk]

T, and sign(·) denotes
the sign function.

Assumption 1: [9], [25] The undirected graph S is con-
nected.

Assumption 2: [22], [26] Assume that the disturbance
di (t) is norm-bounded, i.e., |di (t) | ≤ ϖi with ϖi > 0 being
a known constant.

Following the SMC design principle in [16], the distributed
sliding manifold is devised for the system (1) by

Si (t) = xi (t) + ϕi (t) , (2)

where ϕ̇i(t) = m1

∑N
j=1 aijsig (xi(t)− xj(t))

c1 with m1 > 0
and odd integer c1 > 1 being designed parameters.

Now, we describe how the SMC method is employed under
the event-triggered control mechanism. Define a relative state
variable as x̃i(t) = −m1

∑N
j=1 aijsig(xi(t) − xj(t))

c1 that
can be available by the ith agent. The fully distributed event-
triggered control protocol is constructed by

ui (t) = x̃i(t
i
k)−K1isign(Si(tik)), t ∈ [tik, t

i
k+1) (3)

Si(t
i
k) = xi(t

i
k)−

∫ t

tik

x̃i(t
i
k)dt, t ∈ [tik, t

i
k+1) (4)

This article has been accepted for publication in IEEE Transactions on Automatic Control. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TAC.2023.3317505

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.



IEEE TRANSACTIONS ON AUTOMATIC CONTROL 3

where K1i > 0, and tik are the lastest activated instants of the
ith agent determined by the triggering rule constructed in (5).
That is, when the triggering condition in (5) is met, x̃i

(
tik
)

and
xi

(
tik
)

are broadcasted to calculate Si(tik) and update ui (t).
Remark 1: It should be noticed that, referring to [29], the

Filippov solutions for the closed-loop system in (1) with the
control law in (3) exist.

Remark 2: The fully distributed event-triggered protocol
in (3) of this work includes a sig function and a signum
function, so it is switched. Hence, to restrain the unlimited
switching of controllers, the tanh function replaces the signum
function to facilitate the derivation of the sign function, and
the approximation function sign(Si(t)) ≈ Si(t)

|Si(t)|+~ [27] with
a small constant ~ > 0 is simulated to take the place of the
signum function in Section V.

To verify the finite-time reachability of the assigned switch-
ing surface, an error variable is established in the following
form:

eix(t) = x̃i(t)−K1isign(Si(t))− x̃i(t
i
k) +K1isign(Si(tik)),

Below, we construct a distributed fixed threshold triggering
rule as

tik+1 = inf{t > tik||eix(t)| ≥ πi}, πi > 0 (5)

for each agent i, where the requirement πi +ϖi + ςi ≤ K1i

holds with ςi being a positive scalar.
The finite-time reachability of the sliding mode surface can

be ensured by Theorem 1, the system state can thus begin the
sliding motion after reaching the switching surface in (2).

Theorem 1: Under the fully distributed robust control law
in (3) and the fixed threshold triggering rule in (5), the states
of the disturbed single-integrator continuous-time MAS in (1)
can be driven to the prescribed sliding manifold in (4) within

a limited time t⋆i ≤
√∑N

i=1 S
2
i (0)

ς .
Proof: The Lyapunov function is selected as

V1 (t) =
1

2

N∑
i=1

S2
i (t) . (6)

Taking the time-derivative of (6) results in

V̇1(t) =
N∑
i=1

Si (t) (ui(t) + di(t)− x̃i(t)), (7)

then, by employing the error variable eix(t), Equation (3), the
triggering rule in (5) and Assumption 2, one further obtains

V̇1(t) =

N∑
i=1

Si (t)
(
−eix(t)−K1isign(Si(t)) + di(t)

)
≤ −

N∑
i=1

|Si(t)| (K1i − πi −ϖi) . (8)

According to the design constraint πi + ϖi + ςi ≤ K1i,
Equation (8) is further derived as V̇1(t) ≤ −

∑N
i=1 ς|Si(t)|,

where ς = min
i
{ςi} > 0. Hence, the reaching time for each

agent is reckoned as t⋆i ≤
√

2V1(0)

ς .
Consequently, although there has restricted network band-

width, the states of the closed-loop MAS in (1) governed by

single-integrator dynamics can still be driven into the switch-
ing surface within a limited period of time by constituting a
fully distributed controller in (3). The proof is finished. �

B. Stability analysis of the closed-loop system

After the system state reaches the sliding mode of the ith

agent, we can get Si = 0 and Ṡi = 0, leading to

ẋi (t) = x̃i(t) = −m1

N∑
j=1

aijsig (xi(t)− xj(t))
c1 .

Based on Assumption 1 and Definition 1, we can get

− 1

N

N∑
j=1

ẋj(t) =
m1

N

N∑
i=1

N∑
j=1

aijsig (xi(t)− xj(t))
c1

= 0. (9)

Based on Equation (9), the average consensus e1xi(t) =
xi(t)− 1

N

∑N
j=1 xj(t) is defined to calculate the sliding mode

dynamics as

ė1xi (t) = −m1

N∑
j=1

aijsig
(
e1xi(t)− e1xj(t)

)c1
. (10)

Theorem 2: When the states of the MAS in (1) reach the
pre-designed switching surface in (4) in finite time, the states
of the sliding mode dynamics in (10) will reach the average
consensus under the fully distributed event-triggered SMC law
in (3), i.e., the closed-loop continuous-time MAS in (1) can
achieve average consensus.

Proof: The candidate Lyapunov function is constructed as

V2 (t) =
1

2

N∑
i=1

(e1xi (t))
2. (11)

The time-derivative of V2 (t) in (11) is calculated as

V̇2 (t) =
N∑
i=1

e1xi (t) ė
1
xi (t)

= −m1

2

N∑
i=1

N∑
j=1

aij(e
1
xi(t)− e1xj(t))

× sig
(
e1xi(t)− e1xj(t)

)c1
.

According to Definition 1, one has

(e1xi(t)− e1xj(t))sig
(
e1xi(t)− e1xj(t)

)c1
= (e1xi(t)− e1xj(t))|e1xi(t)− e1xj(t)|c1

× sign
(
e1xi(t)− e1xj(t)

)
= |e1xi(t)− e1xj(t)|1+c1 ,

which leads to V̇2 (t) < 0. As a result, according to Lemma 1,
the disturbed continuous-time MAS in (1) can achieve average
consensus performance. The proof is completed. �
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C. Feasibility of static triggering function

The activated instants are represented by a monotonically
increasing sequence that is denoted as ti0, ti1, . . ., tik, . . . with
ti0 = 0, where tik+1−tik = θik for positive integer k. Therefore,
between any two consecutively activated instants, the lower
bound on the inter-event interval θik will be provided in the
following.

Theorem 3: By applying the fully distributed robust control
signal in (3) and the static triggering function in (5) to the
system in (1), there exists a positive lower bound for the inter-
event interval θik such that Zeno behavior does not occur.

Proof: From the triggering condition in (5) for t ∈[
tik, t

i
k+1

)
, according to x̃i(t) = −m1

∑N
j=1 aijsig(xi(t) −

xj(t))
c1 , we can obtain

d(|eix(t)|)
dt

≤ c1m1

N∑
j=1

aij | (xi(t)− xj(t))
c1−1 |

×
N∑
j=1

aij |ui(t) + di(t)− uj(t)− dj(t)|

+K1i|1− tanh2(σSi(t))||σṠi(t)| (12)

with σ >> 1 being a constant.
From Assumption 2 and [26, Theorem 3], the inequality in

(12) is calculated as follows:

d(|eix(t)|)
dt

≤ c1m1

N∑
j=1

aij | (xi(t)− xj(t))
c1−1 |

(
Nϖi

+
N∑
j=1

ϖj +
N∑
j=1

aij |ui(t)− uj(t)|
)
+K1iσ

(
|ui(t)|+ϖi

+ |m1

N∑
j=1

aij(xi(t)− xj(t))
c1 |

)
. (13)

It is well known that the event will not be triggered
until |eix (t) | = πi according to the criterion (5). Further
considering (13), we have

πi ≤ |eix (t) | ≤ θikc1m1

N∑
j=1

aij | (xi(t)− xj(t))
c1−1 |

× (
N∑
j=1

aij |ui(t)− uj(t)|+Nϖi +
N∑
j=1

ϖj) + θikK1iσ

× (|ui(t)|+ϖi + |m1

N∑
j=1

aij (xi(t)− xj(t))
c1 |).

(14)

Therefore, the inter-event interval θik is computed by θik ≥
πi

εi
> 0 with

εi = c1m1

N∑
j=1

aij | (xi(t)− xj(t))
c1−1 |

× (

N∑
j=1

aij |ui(t)− uj(t)|+Nϖi +

N∑
j=1

ϖj) +K1iσ

× (|ui(t)|+ϖi + |m1

N∑
j=1

aij (xi(t)− xj(t))
c1 |),

which shows that the Zeno behavior can be excluded. This
completes the proof. �

D. Dynamic triggering mechanism
Based on Equation (5), a novel distributed dynamic event-

triggering condition for the system (1) is devised with the
following form:

Πi(t) = |eix(t)| −
1

ιi
πi − ζi(t), (15)

ζ̇i(t) = −hiζi(t) + (πi − ιi|eix(t)|+ ιiζi(t))|Si(t)|, (16)

where πi > 0, ιi > 1, hi > ιi|Si(t)| and ζi(0) > 0.
Theorem 4: The state trajectories of the system in (1) are

driven into the switching surface devised in (4) within a finite
time by the fully distributed event-triggering controller in (3)
and the dynamic event-triggered communication rule in (15).

Proof: Following the dynamic triggering rule in (15), the
system state is not triggered as t ∈ [tik, t

i
k+1). Thus, we have

πi − ιi|eix(t)| ≥ −ιiζi(t), t ∈
[
tik, t

i
k+1

)
.

In such a scenario, one has ζ̇i(t) ≥ −hiζi(t), thus implying
ζi(t) ≥ exp(−hit)ζi(0) > 0.

Therefore, we construct the Lyapunov function as follows:

V3 (t) =
1

2

N∑
i=1

S2
i (t) +

N∑
i=1

ζi (t) . (17)

Via (3), (15) and (16), the time-derivative of V3(t) is
V̇3(t) ≤ −

∑N
i=1 |Si (t)| (K1i − πi −ϖi). As a result, we

can select some suitable scalars K1i, ϖi and πi to make
the constraint requirement πi + ϖi + ωi ≤ K1i hold, so
V̇3(t) ≤ −ω

∑N
i=1 |Si(t)| establishes with ω = min

i
{ωi} > 0.

Afterwards, the states of (1) can reach the switching surface
in finite time. The proof is completed. �

Theorem 5: Under the fully distributed robust controller in
(3), the dynamic event-triggering rule in (15) and the internal
dynamic variable in (16), the inter-event interval θ̄ik has a
positive lower bound to eliminate Zeno behavior in the closed-
loop system.

Proof: In light of the dynamic event-triggering rule in (15)
for t ∈

[
tik, t

i
k+1

)
, we can obtain

d
(
|eix (t) |

)
dt

≤ c1m1

N∑
j=1

aij | (xi(t)− xj(t))
c1−1 |

×
N∑
j=1

aij |ui(t) + di(t)− uj(t)− dj(t)|

+K1i|1− tanh2(σ̄Si(t))||σ̄Ṡi(t)| (18)

with σ̄ >> 1 representing a constant.
According to Theorem 4 and ζi(t) ≥ exp(−hit)ζi(0) >

0, for each agent, for ∀t ∈
[
tik, t

i
k+1

)
, defining tik+1 −

tik = θ̄ik for positive integer k, we can achieve the inter-

event interval θ̄ik ≥
1
ιi
πi+ζi(0) exp(−hit

i
k+1)

ψi
with the vari-

able ψi being defined as ψi = c1m1

∑N
j=1 aij |(xi(t) −

This article has been accepted for publication in IEEE Transactions on Automatic Control. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TAC.2023.3317505

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.



IEEE TRANSACTIONS ON AUTOMATIC CONTROL 5

xj(t))
c1−1|(

∑N
j=1 aij |ui(t) − uj(t)| + Nϖi +

∑N
j=1ϖj) +

K1iσ̄(|ui(t)| + ϖi + |m1

∑N
j=1 aij(xi(t) − xj(t))

c1 |), Zeno
behavior is thus excluded. The proof is completed. �

Remark 3: It should be especially pointed out that the time-
derivative of the Lyapunov function V3(t) is negative in line
with Theorem 4, so the time-derivative of the internal dynamic
variable ζi(t) is also negative. Therefore, the trajectory of the
variable ζi(t) is asymptotically stable.

IV. DISTURBED DOUBLE-INTEGRATOR
CONTINUOUS-TIME MASS

A. Static event-triggered control law design

This section studies the MAS consisting of agents with
double-integrator dynamics modeled by{

ẋi(t) = υi(t),

υ̇i(t) = di(xi(t), υi(t), t) + ui(t),
(19)

for i = 1, 2, . . . , N , where the position, velocity, control
input and external disturbance are independently expressed by
xi(t), υi(t) ∈ R, ui(t) ∈ R and di(xi(t), υi(t), t) ∈ R.

Then, the distributed sliding mode surface is designed by

Si (t) = ẋi (t) + ξi (t) (20)

with

ξ̇i (t) = α1

N∑
j=1

aijsig (xi (t)− xj (t))
β1

+ α2

N∑
j=1

aijsig (υi (t)− υj (t))
β2 , (21)

in which the designed parameters α1 > 0, α2 > 0, and odd
integers β1 > 1 and β2 > 1.

Based on (21), we define a relative measurable state
variable as z̃i(t) = −α1

∑N
j=1 aijsig(xi(t) − xj(t))

β1 −
α2

∑N
j=1 aijsig(υi(t)−υj(t))β2 for agent i. For t ∈ [tik, t

i
k+1),

the fully distributed event-triggered SMC protocol and sliding
manifold are then devised by

ui (t) = z̃i
(
tik
)
−K2isign(Si(tik)), (22)

Si(t
i
k) = υi(t

i
k)−

∫ t

tik

z̃i
(
tik
)
dt (23)

with K2i > 0 being a designed constant for each agent i. As
the triggering condition in (24) is satisfied, z̃i

(
tik
)

and υi
(
tik
)

are propagated to update the sliding mode surface Si(tik) and
the control law ui (t) in (22).

In order to achieve the average consensus of the disturbed
double-integrator continuous-time MAS in (19), we define the
following error variable:

ei(t) = z̃i (t)−K2isign(Si(t))− z̃i
(
tik
)
+K2isign(Si(tik)).

According to the definition of the error variable ei(t), a
distributed static trigger mechanism is built with the following
form:

tik+1 = inf{t > tik||ei(t)| ≥ ϱi} (24)

with ϱi > 0 representing the trigger threshold for each agent.
For constant ρi > 0, it satisfies the condition ρi +ϖi + ϱi ≤
K2i.

Theorem 6: The trajectories of the closed-loop double-
integrator continuous-time MAS in (19) are driven to the
preconstructed sliding mode surface in (23) in finite time based
on the fully distributed robust control protocol in (22) and the
static triggering rule in (24).

Proof: Construct the Lyapunov function as

V4 (t) =
1

2

N∑
i=1

S2
i (t) . (25)

Here, on account of Assumption 2, the robust controller in
(22) and the triggering mechanism in (24), the time-derivative
of the Lyapunov function V4(t) is then derived as

V̇4(t) =
N∑
i=1

Si (t)
(
ei (t)−K2isign(Si(t)) + di (t)

)
≤

N∑
i=1

|Si (t)|
(∣∣ei(t)∣∣−K2i +ϖi

)
≤ −

N∑
i=1

|Si (t)| (K2i − ϱi −ϖi) , (26)

by utilizing the condition ρi +ϖi + ϱi ≤ K2i, the inequality
in (26) is then converted into V̇4(t) ≤ −

∑N
i=1 ρ |Si(t)| with

ρ = min
i
{ρi} > 0. In this situation, the position and velocity

trajectories of the double-integrator MAS in (19) can be forced
to the sliding mode surface within a limited period of time,

which is calculated as t⋆i ≤
√

2V4(0)

ρ . The proof is thus
completed. �

B. Stability analysis of sliding mode dynamics

When the designed distributed control law forces the system
state to move on the sliding manifold in (23), one has

ẋi(t) = υi(t),

υ̇i(t) = −α1

∑N
j=1 aijsig (xi(t)− xj(t))

β1

−α2

∑N
j=1 aijsig (υi(t)− υj(t))

β2 .

Since the multi-agent network under consideration is undi-
rected, β1 and β2 are odd integers, and sig (·) is an odd
function, it is therefore obtained that − 1

N

∑N
j=1 υ̇j(t) = 0.

Let exi(t) = xi(t) − 1
N

∑N
j=1 xj(t) and eυi(t) = υi(t) −

1
N

∑N
j=1 υj(t), and then we have
ėxi(t) = eυi(t),

ėυi(t) = −α1

∑N
j=1 aijsig (exi(t)− exj(t))

β1

−α2

∑N
j=1 aijsig (eυi(t)− eυj(t))

β2 ,

(27)

which stands for the sliding mode dynamics of the closed-loop
system in (19).

Based on the Lyapunov stability theory, the stability analysis
of the sliding mode dynamics is given in the following.

Theorem 7: The states of the resulting dynamic system in
(27) will achieve the average consensus utilizing the fully
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distributed event-triggered control law in (22) when reaching
the decoupled sliding manifold in (23).

Proof: Based on Lemma 1, for the dynamic system in
(27), we select the following candidate Lyapunov functional

V5 (t) =
1

2

N∑
i=1

N∑
j=1

∫ exi(t)−exj(t)

0

α1aijsig (ϑ)β1 dϑ

+
1

2

N∑
i=1

e2υi (t) . (28)

Differentiating the Lyapunov function in (28) with respect
to time t and employing the equation (27) give rise to

V̇5 (t) =
1

2

N∑
i=1

N∑
j=1

α1aijsig (exi(t)− exj(t))
β1

× (eυi(t)− eυj(t)) +

N∑
i=1

eυi (t) ėυi (t)

= −α2

2

N∑
i=1

N∑
j=1

aij(eυi(t)− eυj(t))

× sig (eυi(t)− eυj(t))
β2 .

Because the following equation holds

(eυi(t)− eυj(t))sig (eυi(t)− eυj(t))
β2

= |eυi(t)− eυj(t)|1+β2 ,

V̇5 (t) < 0 is established. Therefore, the states of disturbed
double-integrator continuous-time MASs achieve average con-
sensus. The proof is completed. �

C. Reasonability of static triggering condition

In the same way, a monotonically increasing time sequence
0 = ti0 < ti1 < . . . < tik < tik+1 < . . . denotes the
activated instants, where tik+1− tik = χik. Then, the difference
χik between successive activated instants tik and tik+1 has an
infimum time calculated in the sequel.

Theorem 8: The state of the closed-loop system with the
fully distributed robust controller in (22) and the static event-
triggering communication rule in (24) does not produce Zeno
behavior.

Proof: Similar to the proof procedure of Theorem 3 in
Section III-A, by z̃i(t) = −α1

∑N
j=1 aijsig(xi(t)−xj(t))β1 −

α2

∑N
j=1 aijsig(υi(t) − υj(t))

β2 , the inter-event interval χik
between any two consecutive activated moments is computed
by χik ≥ ϱi

κi
> 0 with

κi = α1β1

N∑
j=1

aij | (xi(t)− xj(t))
β1−1 |

N∑
j=1

aij |υi(t)− υj(t)|

+ α2β2

N∑
j=1

aij |(υi(t)− υj(t))
β2−1|

×
( N∑
j=1

aij |ui(t)− uj(t)|+Nϖi +

N∑
j=1

ϖj

)

+K2iµ
(
α1|

N∑
j=1

aij(xi(t)− xj(t))
β1 |

+ |ui(t)|+ϖi + α2|
N∑
j=1

aij(υi(t)− υj(t))
β2 |

)
,

which can rule out Zeno phenomenon. �

D. Dynamic event-triggered control law design

In order to enhance the efficiency of the event triggering
controller, based on the static one in (24), a novel distribut-
ed dynamic event-triggering rule for disturbed second-order
MASs is designed as follows:

Ωi(t) = |ei(t)| − ϵiϱi − ηi(t), (29)

η̇i(t) = −liηi(t) + (ϱi +
1

ϵ i
ηi(t)−

1

ϵ i
|ei(t)|)|Si(t)|, (30)

where ϱi > 0, 0 < ϵi < 1, liϵi > |Si(t)| and ηi(0) > 0.
Before presenting Theorem 9, we present the convergence

results of the internal dynamic variable provided in the fol-
lowing lemma.

Lemma 2: For the dynamic event triggering condition in
(29), it always holds that ηi(t) ≥ exp(−lit)ηi(0) > 0
according to [30].

Theorem 9: The states of the system in (19) will be forced
to the sliding manifold in (23) within a finite time by employ-
ing the fully distributed protocol in (22), the dynamic event-
triggering rule in (29) and the internal dynamic variable in
(30).

Proof: Based on Lemma 2, the Lyapunov function is chosen
as follows:

V6 (t) =
1

2

N∑
i=1

S2
i (t) +

N∑
i=1

ηi (t) . (31)

By exploiting equations (22), (29) and (30), we take the
time-derivative of function V6(t) as follows:

V̇6(t) ≤ −
N∑
i=1

|Si (t)| (K2i − ϱi −ϖi)

−
N∑
i=1

(li −
1

ϵi
|Si(t)|)ηi(t). (32)

Due to the fact that liϵi > |Si(t)|, the inequality in (32) can
be deduced as V̇6(t) ≤ −

∑N
i=1 |Si(t)| (K2i−ϱi−ϖi). Thus,

it is feasible to find some proper parameters K2i, ϱi and ϖi

to guarantee that the constraint condition ϱi +ϖi + δi ≤ K2i

is established, then we have V̇6(t) ≤ −δ
∑N
i=1 |Si(t)| where

δ = min
i
{δi} > 0. Under such a case, the continuous-time

MAS states in (19) can be driven to the sliding surface in
(23) within finite time. The proof is finished. �

Remark 4: The stability analysis of the sliding mode dy-
namics is omitted here because the proof can refer to Sec-
tion IV-B, and the feasibility analysis of the dynamic event-
triggering mechanism in (29) is also omitted.

Remark 5: In this paper, the distributed dynamic event-
triggering condition constructed in (29) not only contains
state variables z̃i(t

i
k) and Si(t

i
k) in (23), but also includes
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the dynamical change parameter ηi(t) determined by (30).
Therefore, we can select some appropriate parameters li,
ϵi and ϱi to guarantee that the system state can reach the
preestablished sliding manifold in finite time and the activated
time sequence will not produce Zeno behavior.

V. SIMULATION RESULTS

In order to validate the efficacy of the proposed dynamic
event-triggered SMC algorithm in (29) in the paper, we
provide a numerical simulation and comparative study.

The Laplacian matrix of the disturbed double-integrator
continuous-time MAS in (19) under investigation in this paper
including four agents is provided as

R =


1 −1 0 0

−1 2 −1 0

0 −1 2 −1

0 0 −1 1

 .
The model of the ith agent is characterized by{

ẋi(t) = υi(t),

υ̇i(t) = di(t) + ui(t), i = 1, 2, 3, 4

where di(t) = 0.1 sin(9it) exp(−0.1t).
The coefficients α1, α2, β1, β2 and K2i in (22) are, several-

ly, given as α1 = α2 = 0.01, β1 = 3.0, β2 = 3.0, K21 = 0.3,
K22 = 0.3, K23 = 0.84 and K24 = 0.12. The corresponding
parameters in (29) are chosen as ϵ1 = ϵ2 = ϵ3 = ϵ4 = 0.72,
ϱ1 = 0.15, ϱ2 = 0.20, ϱ3 = 1.30, ϱ4 = 0.20, l1 = l2 = 4.0,
l3 = l4 = 2.0. The initial values of the internal dynamic
variable ηi(t) are set as η1(0) = 1.50, η2(0) = 2.40,
η3(0) = 3.60 and η4(0) = 1.0, respectively. The initial
conditions of the double-integrator continuous-time MAS in
(19) are given as x1(0) = 0.52, x2(0) = 0.40, x3(0) = 0.64,
x4(0) = 0.64, υ1(0) = 0.20, υ2(0) = 0.22, υ3(0) = 0.20,
υ4(0) = 0.20.
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Fig. 1. Position trajectories of the double-integrator MAS under (29).
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Fig. 2. Velocity trajectories of the double-integrator MAS under (29).
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Fig. 3. The activated time instants of each agent.
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Fig. 4. Control input signals ui(t) (i = 1, 2, 3, 4).
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Fig. 5. Curves of sliding mode surface Si(t) (i = 1, 2, 3, 4).
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Fig. 6. Trajectories of the internal dynamic variable ηi(t) (i = 1, 2, 3, 4).

Fig. 1 depicts the position trajectories of the disturbed
double-integrator continuous-time MAS. Fig. 2 shows the ve-
locity responses of the disturbed double-integrator continuous-
time MAS. The activated communication instants of each
agent are shown in Fig. 3. The time responses of the fully
distributed sliding mode controllers and distributed sliding
manifolds are, respectively, shown in Fig. 4 and Fig. 5. The
curves of the internal dynamic variable ηi(t) for each agent are
provided in Fig. 6. According to Figs. 1–6, we can infer that
the devised dynamic event-triggered sliding mode controller
in (22) can stabilize the disturbed double-integrator MAS in
(19) and economize on the limited communication resources.

To discuss the effect of the event-based SMC algorithm
proposed in our work and the event-triggered PD control
algorithm presented in [10] on the control performance for
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each agent, the comparative study is provided. The choice of
Laplacian matrix R is the same as the above example. Under
the same initial conditions, employing the event-triggered PD
control law in [10], the position and velocity trajectories of
disturbed double-integrator MASs are depicted, as shown in
Fig. 7. It is inferred that the position and velocity trajectories
fail to reach the average consensus in Fig. 7 due to the
fluctuation of external disturbances, meaning that the control
effect of the present event-based SMC algorithm in Fig. 1 and
Fig. 2 is better than [10].
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0
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0.4
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Fig. 7. Position and velocity trajectories of double-integrator MASs in [10].

VI. CONCLUSION

The distributed average consensus issue for disturbed single-
and double-integrator MASs encountering limited network
bandwidth has been investigated by proposing the fully dis-
tributed static and dynamic event-triggered SMC laws. The
distributed switching surface with odd function has been
devised to ensure that the states of agents can reach the
specified switching surface within a limited time, and then
move to the equilibrium point. The average consensus in
disturbed single- and double-integrator continuous-time MASs
has been achieved by integrating SMC into static/dynamic
event-triggered control. The effectiveness of the proposed
SMC-based event-triggered schemes for disturbed first- and
second-order continuous-time MASs has been claimed by a
numerical simulation and comparison experiment. Future work
will focus on the application of the proposed dynamic event-
triggered SMC protocol for multiple nonlinear Euler-Lagrange
systems with stochastic noises and uncertainties.
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