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Research has shown that applying the T2 control chart by using a variable parameters (VP) scheme
yields rapid detection of out-of-control states. In this paper, the problem of economic statistical design
of the VP T2control chart is considered as a double-objective minimization problem with the statistical
objective being the adjusted average time to signal and the economic objective being expected cost per
hour. We then find the Pareto-optimal designs in which the two objectives are met simultaneously by using
a multi-objective genetic algorithm. Through an illustrative example, we show that relatively large benefits
can be achieved by applying the VP scheme when compared with usual schemes, and in addition, the
multi-objective approach provides the user with designs that are flexible and adaptive.

Keywords: Hotelling’s T2 control chart; adjusted average time to signal; variable parameters; economic
statistical design; Wald’s identity; multi-objective genetic algorithm

1. Introduction

Many processes yield products or services with multiple quality characteristics. A common sta-
tistical method to monitor multivariate processes is to use the Hotelling T 2 control chart. The
Hotelling T 2 control chart, an extension of the univariate Shewhart control chart, was developed
by Hotelling [1]. More details of this type of chart are discussed by Fuchs and Kenett [2] and
Mason andYoung [3]. As mentioned by Lowry and Montgomery [4], the strong industrial interest
in multivariate control charting methodology has led several developers to produce software for
the Hotelling T 2 control chart, one of the most widely used tools in multivariate statistical process
control. Furthermore, as stated by Woodall et al. [5], the Hotelling T 2control chart is also useful
for monitoring quality profiles.

When implementing control charts, users must design the chart, which is to determine chart
parameters such as the sample size n, the sampling interval h and the control limit k. The traditional
implementation of T 2 control charts is to apply a fixed ratio sampling (FRS) scheme in which
samples of fixed size n0 are obtained at constant intervals h0 to monitor a process. The control
limit k0 is designed to give a specified Type I error rate. The Hotelling T 2 control chart has the
advantage of simplicity but, similar to the univariate Shewhart X̄ chart, it is slow to detect small to
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moderate process mean shifts. Hence, like the univariate case, several improvements were made
to increase the power of the T 2 chart. In particular, variable ratio sampling (VRS) policies such
as variable sampling intervals (VSI), variable sample sizes (VSS) and variable sample sizes and
sampling intervals (VSSI) have been shown to yield quicker detection for most process mean
shifts.

For both univariate and multivariate studies on the VSS scheme, readers are referred to [6–9].
For theVSI scheme, see, for example, [10–13] and Reynolds [14].Yet, a third method of increasing
efficiency is the VSSI scheme (see, e.g. [15–22]). All these studies have shown that using the VRS
scheme substantially improves the power of the charts in detecting small to moderate process
mean shifts relative to the traditional (FRS) scheme. Tagaras [23] presents a general survey of
different types of VRS schemes and provides additional references to papers in this area. Costa
[24] developed a new scheme called a variable parameter (VP) scheme and showed that the VP
scheme outperforms the above-mentioned VRS schemes, and even the cumulative sum (CUSUM)
control chart in detecting changes in the process mean and hence it is called an adaptive sampling
policy. Chen [25] extended that work to the T 2 control chart.

As control charts became the standard tool in process improvement, concern arose over the
economic consequences of the design and operation of control charts. That is, analysts were
interested in finding designs that minimize cost; these designs were called economic designs (EDs).
Duncan’s [26] pioneering paper introduced the importance of the EDs by noting that the different
selections of chart parameters impose different costs. Apart from EDs’ merits, they also have
weaknesses. Woodall [27] criticized these designs because their high Type I error rates make them
impractical. Three years later Saniga [28] developed a new approach named economic statistical
design (ESD) by adding statistical constraints on an economic model to combine the benefits of
both pure statistical design and ED. This approach optimizes cost while meeting the constraints of
the required statistical performance of the control charts. One interesting counterintuitive result of
using ESDs is that one can sometimes use tighter statistical constraints and still reduce cost. The
ESD approach is very popular in the academic literature; in fact, Montgomery and Woodall [29]
mentioned that the trend in economic modelling and design for control charts is to incorporate
statistical constraints.

The ED of the VSI and VSSI T 2 control schemes were studied by Chen [30,31]. Despite
numerous papers on statistically designed VSS schemes, relatively little work has been done on
the ESD of the VSS schemes. One exception is Faraz et al. [32], who presented an algorithm that
allowed the study of the ESD of the VSS T 2 chart and showed the economic advantages of this
design while not sacrificing the statistical strengths of pure statistical design. Recently, Faraz and
Saniga [33] developed the ESD of theVSSI T 2 control chart with double warning lines. Simulation
results indicate a relatively small cost advantage of using two warning lines when compared to the
VSSI schemes. The VSSI scheme also compares quite favourably to the ESD of the multivariate
exponentially-weighted moving average scheme without any increase in complexity. The results
are the same as obtained by Saniga et al. [34]. Using a large experiment they investigated the
cost advantages of the CUSUM chart versus a Shewhart X̄ control chart. The results indicated
that the average run length (ARL) dominance of the CUSUM chart does not translate to cost
dominance unless the fixed cost of sampling is very large and some other configurations of the
input parameters are met. Additionally, because of the simplicity of the Shewart chart in terms of
user training, ease of design and ease of use, they recommended it to a CUSUM chart in these
situations.

De Magalhaes et al. [35] considered the ED of the VP X̄ charts and showed that considerable
benefits can be achieved over other VRS X̄ control charts. Recently, Celano et al. [36] studied the
ESD of the VP X̄ control chart with a comparison to the other possible adaptive control charts.
The economic model has extra constraints for considering the labour resource and the process
stage configuration which allows practitioners to locally optimize the adaptive control charts.
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These studies motivated us to develop an ESD for the VP T 2, which is of course the multivatiate
counterpart to the X̄ chart. We note also that as a practical matter, it is not an easy task to ask
users to set levels of control chart error rates (Type I and II error probabilities) that would meet
the temporal imperatives of the particular process being controlled. One can easily defend an
argument that the Type I error rate should always be constrained to some small value because
of the risk of process over adjustment and therefore increase in process variability at worst or a
loss of confidence in the control mechanism at best. But the choice of the appropriate Type II
error constraint is not quite so easy because small decreases in the adjusted average time to signal
(AATS) can lead to large increases in cost. It is easily argued then that a user would benefit from
being made aware of the tradeoffs between this Type II error constraint and the cost at optimality,
and this can best be accomplished by considering the problem to be one of double-objective
minimization to find Pareto-optimal designs. This will be illustrated with an example later in
Section 5.

Thus, our contribution is not only in terms of optimal ESD approaches to the VP T 2 chart but
also one of considering the problem as a double-objective minimization problem in which both
expected cost function and the statistical objectives (Type II error rate or equivalently AATS) can
be traded off in some way thereby yielding a design with the added advantage of flexibility and
adaptability in the sense that the solution can be tailored to the user’s desires. [37,38]

This paper is organized as follows: in Section 2, the VP T 2 control scheme is briefly reviewed.
The statistical objective AATS and the cost function are then derived based on Wald’s identity
approach. Section 3 is devoted to the double-objective optimization problem of the ESDs, and
Section 4 contains a brief description of the optimization method for solving the double-objective
ESD model. In Section 5, we illustrate the advantages of the proposed method through an industrial
application. Some concluding remarks are provided in Section 6.

2. The Hotelling T2 control chart with VPs

We make the usual assumption that process quality is characterized with p correlated variables
which follow a p-variate normal distribution with in-control mean vector μ′

0 = (μ01, . . . , μ0p)

and constant variance–covariance matrix
∑

. The T 2 control chart signals as soon as subgroup
statistic T 2 = n(x̄ − μ0)

′ ∑−1
(x̄ − μ0) > k. If μ0 and

∑
are known, k is given by the upper α

percentage point of a chi-square variable with p degrees of freedom, that is, k = χ2
α(p). In practice,

μ0 and
∑

are usually unknown, and it is necessary to have them estimated from m initial samples,
each of size n. In this case, the exact control limit is given by the upper α percentage of Fisher
distribution. Lowry and Montgomery [4] have shown that when μ0 and

∑
are estimated from

a large number of preliminary samples, the chi-square control limit can adequately estimate the
Fisher control limit. They also presented tables in which the minimum value of m is indicated.
The recommended values are always greater than 20 and often more than 50. Throughout this
paper, for the sake of simplicity, it is assumed that the μ0 and

∑
are known or are estimated from

the recommended minimum value of m by Lowry and Montgomery [4].
The VP sampling scheme varies all chart parameters (control limits, warning limits, sample

sizes and sampling intervals) simultaneously to detect process mean shifts quickly. [24] Let k1 and
k2 be maximum and minimum control limits, n1 and n2 be maximum and minimum sample size
and h1 and h2 be maximum and minimum sampling intervals, respectively, such that 0 < k2 < k1,
0 < h2 < h1 and n1 < n2. Here we refer to the set (k1, n1, h1) as a minimum sampling plan and
the set (k2, n2, h2) as a maximum sampling plan. The decision to switch between maximum and
minimum sampling plans depends on the position of the prior sample point on the control chart.
If the prior sample point (i − 1) falls in the relaxation zone, we use the minimum sampling plan
and if the prior sample point (i − 1) falls in the caution zone, we use the maximum sampling plan
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for the current sample. Finally, if a sample point falls in the action region, then the process is
considered out of control. Here, the relaxation, caution and action zones are given by the warning
limits wj and the control limits ki. The relaxation zone is given by [0, wj), the caution zone is given
by [wj, ki) and the action zone is given by [ki, ∞) (Figure 1).

2.1. The statistical measures of performance

In this paper, the statistical objective of interest, as in much of the published research on statistical
design, is the AATS or the average time from the process mean shifts until the chart produces
a signal. This statistical performance measure determines the speed with which a control chart
detects a process mean shift, while ATS (the average time to signal) is the average time from the
first sample after the occurrence of the shift until the chart produces a true signal. Figure 2 shows
these two measures.

With the VP scheme, we define the following three transient states:

State 1: The T 2 statistic falls in relaxation zone and the process is out of control.
State 2: The T 2 statistic falls in caution zone and the process is out of control.
State 3: The T 2 statistic falls in action zone and the process is out of control.

Figure 1. A schematic VP T2 control chart.

Figure 2. A quality cycle.
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State 3 is the absorbing state. In what follows pij denotes the transition probability from the prior
state i (=1, 2, 3) to the current state j (=1, 2, 3) and are given in the appendix.

Let M1 be the number of points in State 1 until the chart signals. The random variable M1

is geometrically distributed with parameter (1 − p1), where p1 is the conditional probability of
meeting another point in the state 1 given that we are currently in State 1. In order to calculate the
total time spent in State 1 until the chart signals, we define the random variables vi as the length
of time between successive points in State 1 or 3. The random variables vi are independent and
identically distributed. As a result, the total time spent in State 1 is calculated as

T 1
S =

M1∑
j=1

vi. (1)

Hence, applying Wald’s identity [39], the expected time spent in State 1 until the chart signals is
calculated as follows (detailed expressions and formulas are given in the appendix):

E(T 1
S ) = E(M1)E(V). (2)

Similarly, we define M2 as the number of points in State 2 until the chart signals and by considering
that currently the process is in State 2, we define the random variable wi as the interval of meeting
the next point either in State 2 or 3. Then, the average total time spent in State 2 is calculated as
(see the appendix)

E(T 2
S ) = E(M2)E(W). (3)

The value of ATS can be now calculated using Equations (2) and (3) as follows:

ATS = E(T 1
S ) Pr(S1) + E(T 2

S ) Pr(S2), (4)

where S1 and S2 are the probability of having State 1 and State 2, respectively (see the appendix).
Now suppose that the assignable cause has occurred between the jth and the (j + 1)th samples.

We define the random variable H as the length of the interval between these two samples and τ

as the expected time of occurrence within this interval. The relationship between AATS and ATS
which is shown in Figure 2 is as follows:

AATS = ATS + E(H − τ). (5)

Another statistical objective is the Type I error rate (α) or the average number of false (ANF)
alarms in each quality cycle, calculated as follows:

ANF = sα, (6)

where s is the expected number of samples taken while the process is in-control (see the appendix).

2.2. The cost model

To build the economic objective for the VP T 2 control chart, we employ the general and popular
cost model proposed by Lorenzen and Vance [40]. The following usual assumptions are made:

(1) The process quality is controlled by a VP T 2 control scheme that monitors p-related quality
characteristics mean.

(2) The p quality characteristics follow a multivariate normal distribution with mean vector μ

and covariance matrix �.
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(3) The process is characterized by an in-control state μ = μ0. There is only one assignable cause
which causes a ‘step change’ in the process mean from μ = μ0 to a known μ = μ1. This
results in a known value of the Mahalanobis distance.

(4) ‘Drifting processes’ are not a subject of this research, that is, assignable causes that affect
process variability are not addressed; hence, it is assumed that the covariance matrix � is
constant over time.

(5) We assume that the samples are independent and the assignable cause occurs according to
a Poisson process with intensity λ occurrences per hour. That is, assuming that the process
begins in the in-control state, the time interval that the process remains in control is an
exponential random variable with mean 1/λ.

(6) The process is not self-correcting. That is, once a transition to an out-of-control state has
occurred, the process can be returned to the in-control condition only by management
intervention upon appropriate corrective actions.

(7) The quality cycle starts with the in-control state and continues until the process is repaired
after an out-of-control signal (Figure 2). It is assumed that the quality cycle follows a renewal
reward process.

As stated by Lorenzen and Vance [40], a quality cycle (as shown in Figure 2) consists of four
periods, one period when the process is in control and three periods during which it is out of
control. The expected length of the in-control is 1/λ hours plus the interruptions due to false
alarms, that is,

In-control period = 1

λ
+ (1 − γ1)T0ANF (7)

where γ1 = 1 if the process is not shut down during false alarms and 0 otherwise and T0 measures
the expected time spent in investigating a false alarm.

The out-of-control portion consists of three periods (Figure 2):

(a) The expected time from the process mean shifts until an out-of-control signal is detected.
This period is captured by AATS (Equation (5)).

(b) The time to test and interpret the results. This time is equal to a constant E times the sample
size. Therefore, the total time to take and interpret a sample is given by n̄E, where n̄ is the
expected sample size of the out-of-control period, that is,

n̄ = n1pd + (1 − pd)n2 = n1p11

p11 + p12
+ n2p22

p21 + p22
, (8)

where

pd = F(w1, p, η1)

F(k1, p, η1)
= F(w2, p, η2)

F(k2, p, η2)
.

(c) The time to find and remove the assignable cause, which is the sum of T1, the expected time
to locate the assignable cause, and T2, the expected time to repair the process.

Thus, the expected cycle time is

E(T) = 1

λ
+ (1 − γ1)T0ANF + AATS + n̄E + T1 + T2. (9)

The cost per cycle is incurred for non-conformities produced while in control as well as out of
control, for false alarms, for location and repair of the assignable cause, and for sampling and
inspection. Each individual cost element is derived as follows.
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(a) The expected cost per cycle due to non-conformities produced equals

C0

λ
+ C1[AATS + n̄E + γ1T1 + γ2T2], (10)

where C0 and C1 are the expected cost of producing non-conformities while the process is in
control and out of control, respectively.

(b) Let a′
3 be the cost of investigating false alarms and a3 be the cost of locating and repairing an

assignable cause when one exists. Then, the expected cost for false alarms and locating and
repairing the true assignable cause is given by

a′
3ANF + a3. (11)

(c) Let a1 and a2 be the fixed and variable cost components of sampling and testing, respectively.
Then, the expected cost of sampling per quality cycle is defined as

(a1ANS + a2ANI) + (a1 + a2n̄)(n̄E + γ1T1 + γ2T2)

h̄
, (12)

where γ2 is an indicator function for if production continues during the repair of the process,
h̄ is the expected sampling interval of the out-of-control period and ANS (ANI) is the average
number of samples (items) from the start of the process till the chart truly signals, calculated
as follows:

h̄ = h1p11

p11 + p12
+ h2p22

p21 + p22
, (13)

ANS = s + AATS

h̄
, (14)

ANI = ns + n̄AATS

h̄
, (15)

where s is the expected number of samples taken while the process is in-control
(Equation (20)), AATS/h̄ determines the expected number of samples taken from the pro-
cess shift till the out-of-control signal and n is the expected sample size while the process is
in-control.

n = p0n1 + (1 − p0)n2, (16)

where p0 = pd=0.

Thus, the total expected cost per cycle is

E(C) = C0

λ
+ C1[AATS + n̄E + γ1T1 + γ2T2] + a′

3ANF + a3

+ (a1ANS + a2ANI) + (a1 + a2n̄)(n̄E + γ1T1 + γ2T2)

h̄
(17)

and the expected cost (loss) per hour incurred by the process can be obtained as

E(A) = E(C)

E(T)
. (18)
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3. Double-objective ESD of the VP T2 chart

Let D = (k1, k2, w1, w2, n1, n2, h1, h2) be the VP design vector comprising control limits k1 and
k2, warning lines w1 and w2, sample sizes n1 and n2 and sampling frequencies h1 and h2. The
most plausible approach to determine the optimal values of the design vector D is that proposed
by Saniga [28], called the ESD approach. This approach considers the design problem as an
economic single-objective problem with several statistical constraints which has a major focus on
reducing the cost of applying control charts. However, in designing control charts, there are three
objectives: the expected cost per hour E(A) and the two statistical objectives Type II and Type I
error rates, or equivalently AATS and ANF, which should be traded off in some way. Usually the
Type I error rate is somewhat fixed by the practitioners but there is no clear relative preference
of the other two objectives. Hence, in this paper, we consider two objectives E(A) and AATS
which are of the minimization type and tackle the Type I error issue in constraints. The goal of
the double-objective ESD of the VP T 2 scheme is to find D to simultaneously minimize both
E(A) and AATS objectives subject to some constraints. Therefore, the double-objective problem
is defined as follows:

min(E(A); AATS)

s.t. :

α ≤ α0

k2 < k1

w1 < k1

1 ≤ n1 < n2

hmin ≤ h2 < h1 ≤ hmax

w2 = F−1(p0F(k2, p, 0), p, 0)

n1, n2 ∈ Z+.

(19)

In the above double-objective model, the constraint α ≤ α0 is added to form the best protection
against false alarms; in this paper, without loss of generality, the value of α0 = 0.005 shall be used.
The parameters hmin and hmax are added to keep the chart more practical; in particular, we use the
values of hmin = 0.1 h and hmax = 8 h to eliminate other solutions that may prove problematic in
a work shift. Moreover, the parameter w2 takes the value upon the value of the three parameters
k1, k2 and w1 to keep satisfy the equation p0 = F(w1, p, 0)/F(k1, p, 0) = F(w2, p, 0)/F(k2, p, 0).

4. The multi-objective genetic algorithm

A reasonable solution to the optimization problem (19) is to investigate a set of solutions, each of
which satisfies the two objectives without being dominated by any other solution. These optimal
solutions are called Pareto optimal. A Pareto-optimal solution cannot be improved with respect
to any objective without worsening at least one other objective. In fact, there is no solution that
produces a lower expected cost per hour and at the same time a lower value of AATS. The main
advantage of Pareto-optimal solutions is that they provide the decision-maker with a set of optimal
solutions in which the final user can decide which of the Pareto-optimal solutions is the best to
employ for a given industrial process. Of course, the choice depends on the maximum sample
sizes that can be employed to monitor the process, the sampling intervals and the optimal power
and cost.
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Given the nine process parameters (p, λ, d, T0, T1, T2, γ1, γ2, E) and the six cost parameters
(C0, C1, a1, a2, a3, a′

3), we strive to determine the Pareto-optimal solutions D∗ using a genetic
algorithm (GA). In the GA terminology, every solution D to optimization problem (19) is called
a chromosome which is made of design parameters or genes.

The MATLAB GA toolbox provides users with a function named ‘gamultiobj’ that we apply
here to solve Equation (19). Using the gamultiobj procedure requires one to determine the most
significant parameters, that is, the selection procedure, the crossover method and its rate (rC), the
initial population size (Npop) and Pareto fraction (Pf).

The selection function chooses parents for the next generation based on their scaled values
from the fitness functions. In this paper, the Tournament method shall be used – this selects each
parent by choosing individuals at random and then choosing the best individual out of that set to
be a parent. The strong parents have a greater chance to be selected. The crossover operator is set
to the scattered method which creates a random binary vector and then selects the genes where
the vector is a 1 from the first parent and the genes where the vector is a 0 from the second parent
and combines the genes to form the child. The role of mutation operator is to make stochastic
changes in genes to avoid trapping in local optimums. In this paper, the adaptive feasible function
shall be used.

The Npop determines the size of each generation. The rC specifies the fraction of the next
generation that crossover produces, and mutation produces the remaining individuals in the next
generation. Finally, Pf determines elites or the best-known Pareto solutions in each generation.
Faraz and Saniga [33] concluded that large population sizes and lower crossover rates than are
typically used yields better performance in designing the ESD of control charts. Hence, the values
Npop = 100, rC = 0.3 and Pf = 0.2 shall be used here.

5. Numerical analysis

Consider Lorenzen and Vance’s [40] example in which the casting operation of General Motors
Company is studied economically. Now, assume that the process has three quality characteristics,
and we wish to design an adoptive VP T 2 scheme for the purpose of process monitoring. Table 1
presents the necessary model parameters to solve the optimization problem (19).

Figure 3 illustrates the proposed approach and also gives a visual indication of how the two
objectives AATS and E(A) trade off. This easily allows users to consider the costs of improved
quality monitoring and select the appropriate one considering the process conditions. The line
in Figure 3 determines the Pareto-optimal designs which are good candidates to focus on. Other
Pareto-optimal designs lead to increase the cost dramatically without any significant improvements
on the AATS objective. In fact, as it is clear, the VP T 2 control scheme is not able to detect the
shift d = 1 sooner than 30 min (AATS = 0.5) with costs more than 600 dollars per hour. These
visual descriptions are of value to practitioners.

In Table 2, we list 23 designs on the Pareto-optimal contour or Pareto front. Note that the
first design is the least costly and we see a consistent increase in cost as the AATS becomes
smaller, an expected result because Pareto-optimal designs, unlike pure statistical designs, are
cost optimal for these prescribed constraints on AATS and α. The first four highlighted designs in

Table 1. Data adapted from general motors with the assumption of three quality
characteristics.

p = 3 λ = 0.05 E = 0.0833 γ1 = 1 γ2 = 0

T0=0.0833 T1=0.0833 T2 = 0.75 C0 = 114.24 C1 = 949.2
a1 = 5 a2 = 4.22 a3 = 977.4 a′

3 = 977.4 d = 1
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Figure 3. The Pareto-front graph.

Table 2. The optimal parameters of the ESD of the VP scheme for d = 1.

Pareto-optimal VP schemes

k1 k2 w1 w2 n1 n2 h1 h2 α E(A) AATS

17.46 7.04 7.04 5.54 10 11 1.39 0.10 0.005 266.40 1.30
17.46 7.04 7.04 5.54 10 11 1.36 0.10 0.005 266.42 1.27
14.63 7.49 7.39 5.98 10 11 1.45 0.10 0.005 266.97 1.27
17.49 7.05 7.04 5.55 10 11 1.27 0.10 0.005 266.80 1.19
17.49 7.07 7.04 5.56 10 11 1.26 0.10 0.005 267.00 1.18
17.49 7.11 7.04 5.58 10 11 1.20 0.11 0.005 267.55 1.13
14.90 7.39 7.29 5.87 11 12 1.38 0.10 0.005 268.37 1.08
14.74 7.72 7.10 5.92 12 13 1.40 0.12 0.005 272.02 1.04
17.18 7.45 7.01 5.73 10 12 1.11 0.16 0.005 272.90 1.02
17.19 7.44 7.01 5.72 10 12 1.10 0.16 0.005 273.24 1.00
17.69 7.25 6.92 5.59 10 13 1.09 0.10 0.005 274.18 0.95
17.41 9.41 6.01 5.61 10 12 1.03 0.15 0.003 283.03 0.90
17.42 9.42 6.04 5.63 10 12 1.00 0.16 0.003 283.74 0.89
17.06 10.65 4.81 4.68 10 13 1.15 0.18 0.003 292.26 0.88
17.05 10.61 4.85 4.71 10 13 1.14 0.15 0.003 293.37 0.85
17.20 10.15 4.77 4.61 10 13 1.07 0.16 0.004 294.46 0.81
17.18 10.17 4.64 4.49 10 13 1.04 0.15 0.004 298.23 0.77
17.75 11.67 3.76 3.71 10 12 1.04 0.13 0.003 304.90 0.73
17.75 11.68 3.79 3.75 10 12 1.01 0.13 0.003 305.73 0.72
17.78 10.36 4.28 4.16 10 15 1.02 0.14 0.004 315.84 0.71
17.84 11.07 4.23 4.15 10 15 1.01 0.14 0.003 317.25 0.70
17.13 10.52 3.52 3.45 10 13 1.04 0.11 0.005 318.19 0.67
17.54 11.44 2.71 2.68 10 14 1.02 0.16 0.005 328.37 0.66

Table 2 impose almost the same cost. The second four highlighted designs in Table 2 are optimal
designs with AATS almost equal to one. This allows the practitioner to be provided with a set
of optimal designs rather than a single solution, and they can select the locally optimal solution
according to the desired long sampling intervals and the AATS value. As is seen, the advantage
of the proposed approach is apparent in this example; by providing a set of designs, including
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Table 3. The performance measures E(c)/AATS(d) of the investigated adaptive T2 charts: p = 2, 3, 5 and 10;
ATS0 = 200 and λ = 0.05 for Table 1.

p D 0 0.5 1.0 1.5 2.0 2.5 3.0

2 VP (the top 4
candidates)

200 368.16a/2.89 260.38a/1.19 230.33a/0.80 216.33a/0.76 208.95a/0.66 204.91a/0.62

200 369.61/2.54 263.76/1.05 232.93/0.70 218.23/0.70 209.67/0.63 205.97/0.57
200 369.97/2.31 267.78/0.98 235.71/0.65 220.31/0.61 210.30/0.61 211.98/0.55
200 375.25/2.17 272.04/0.94 259.76/0.60 221.75/0.60 211.42/0.59 213.04/0.54

VSS 200 372.96/3.08 275.11/1.51 243.94/1.01 227.22/0.80 217.20/0.67 209.85/0.60
VSSI 200 374.97/3.29 277.84/1.76 245.44/1.12 229.09/0.94 218.93/0.77 213.99/0.63
VSI 200 426.07/3.51 286.69/1.40 243.77/0.90 224.36/0.74 213.55/0.66 207.49/0.68
FRS 200 448.78/4.55 312.33/2.06 269.16/1.42 247.92/1.15 235.63/0.99 227.09/0.87

3 VP (the top 4
candidates)

200 381.00a/3.08 266.40a/1.30 234.57a/0.88 219.42a/0.70 210.42a/0.70 205.43a/0.63

200 381.04/3.05 266.42/1.27 234.58/0.78 221.76/0.63 212.36/0.61 206.56/0.60
200 381.98/2.84 266.97/1.27 236.80/0.71 222.67/0.62 214.66/0.58 209.08/0.57
200 382.29/2.74 266.80/1.19 245.02/0.68 224.04/0.60 216.72/0.52 218.17/0.55

VSS 200 386.71/3.34 281.34/1.60 245.66/1.05 228.07/0.82 217.42/0.68 210.56/0.62
VSSI 200 388.56/3.52 282.15/1.67 246.67/1.24 229.41/0.87 219.12/0.86 213.08/0.71
VSI 200 447.01/3.89 295.03/1.46 248.74/1.05 227.62/0.83 215.86/0.70 208.84/0.57
FRS 200 469.29/4.93 321.32/2.19 273.92/1.50 251.85/1.21 238.91/1.00 228.99/0.89

5 VP (the top 4
candidates)

200 404.60a/3.4 275.94a/1.37 242.60a/0.70 223.38a/0.67 213.22a/0.67 207.14a/0.64

200 405.04/3.27 276.27/1.32 243.60/0.71 226.71/0.62 217.32/0.58 210.02/0.58
200 405.35/3.24 277.70/1.18 243.91/0.69 229.23/0.59 219.15/0.56 216.62/0.57
200 405.81/3.07 278.92/1.08 244.33/0.68 231.75/0.58 228.36/0.55 218.91/0.56

VSS 200 407.01/3.70 290.50/1.70 250.22/1.08 230.70/0.81 218.97/0.71 211.52/0.58
VSSI 200 407.75/3.84 291.46/1.72 250.22/1.08 230.65/0.81 219.68/0.69 211.89/0.62
VSI 200 477.73/4.19 307.72/1.45 255.34/1.05 231.75/0.75 219.13/0.64 210.68/0.61
FRS 200 496.21/5.63 334.41/2.37 281.68/1.59 256.95/1.25 242.20/1.05 232.41/0.95

10 VP (the top 4
candidates)

200 436.78a/4.07 291.95a/1.53 248.80a/0.87 228.84a/0.70 219.85a/0.61 210.35a/0.62

200 436.00/4.00 293.80/1.35 251.23/0.77 234.39/0.61 223.05/0.58 210.28/0.60
200 437.41/3.85 294.19/1.33 252.24/0.75 252.39/0.59 230.80/0.56 210.23/0.59
200 438.53/3.78 297.28/1.20 252.79/0.74 257.96/0.58 243.77/0.54 211.19/0.57

VSS 200 440.05/4.37 305.74/1.91 260.11/1.24 236.95/0.94 223.23/0.74 214.45/0.63
VSSI 200 440.18/4.39 306.81/1.93 260.11/1.22 237.22/0.81 223.29/0.77 216.50/0.59
VSI 200 529.19/4.98 329.02/1.73 267.35/1.00 239.51/0.74 224.37/0.74 215.12/0.70
FRS 200 539.68/6.84 356.47/2.66 294.74/1.78 266.02/1.36 249.45/1.17 238.28/0.99

aMinimum cost scheme.

graphical representations, each with its own cost, AATS and α, the user can tailor the design to
the temporal imperative of the industrial process thereby having the advantage of flexibility and
adaptability. The first four designs have almost the same expected cost per hour and also show
good statistical properties. These designs shall be used to provide a comparison between the other
fixed and variable sampling schemes in Table 3. For example, approximately 18% more savings
per hour can be achieved by applying the VP scheme than the FRS scheme for Table 1, and better
statistical properties are also obtained. Consider the process working 8 h a day, 5 days a week and
22 days a month; here, the VP scheme results in more than $500,000 savings annually. The VP
scheme is also able to detect the process shift d = 1 after 72–78 min, but if someone is interested
in detecting that shift sooner (around 60 min, say) the highlighted designs with AATS close to 1
are the good choices, costing 4–8 dollars per hour more than the economic ones.

In the following, we compare the economic and statistical performance of the first four
competitors of the VP T 2 chart to the following charts. The chart parameters are indicated in
parenthesis:

• FRS T 2 chart (k, n, h > 0);
• VSSI T 2 chart (k, w > 0; 0 < h2 < h1; 0 < n1 < n2);
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Figure 4. The Pareto-front graph for the VP, VSSI, VSS, VSI and FRS schemes.

• VSS T 2 chart (k, w, h > 0; 0 < n1 < n2);
• VSI T 2 chart (k, w, n > 0; 0 < h2 < h1).

Table 3 shows the comparison result of the five T 2 charts for d = {0.50, 1.00, 1.50, 2.00, 2.50, 3.00},
p = {2, 3, 5, 10} and λ = 0.05 failures/h. The results demonstrate that, generally, the VP chart
always outperforms the other charts from small to large mean shifts both economically and statis-
tically especially for small to moderate shifts. Furthermore, the multi-objective solution has the
added advantage of demonstrating the tradeoffs between the statistical and economic objectives.

Additionally, The VSS scheme dominates the VSSI and FRS schemes in almost all mean shifts,
while the VSI scheme shows better performance in detecting medium to large mean shifts (d > 1)
with respect to the VSSI, FRS and VSS schemes. As the number of the quality characteristics
increases (p ≥ 5), the VSS scheme almost dominates the other VSSI, VSI and FRS schemes.
These findings are valid for every investigated value of p and λ, and the results are available from
the authors. [33] Finally, as an example Figure 4 illustrates the comparison for the case p = 3 and
d = 1 (Table 1).

6. Concluding remarks

The Hotelling T 2 control chart is a widely applied multivariate scheme for detecting shifts in
process mean. Using the VP scheme has been shown to give substantially faster detection of
most process shifts than the conventional FRS scheme. In the present paper, the ESD of the VP
T 2 control chart is modelled as a double-objective optimization problem. Using Lorenzen and
Vance’s [40] economic model, the economic and statistical objectives (expected cost per hour and
AATS) are developed by applying Wald’s identity. Then, we find optimal designs in which the two
objectives are met simultaneously using a multi-objective GA. These solutions define a Pareto-
optimal set of solutions which greatly increase the flexibility and adaptability of control chart
design in practical applications. Through an illustrative example we also showed that relatively
large cost and statistical advantages can be achieved by applying a VP scheme when compared
with FRS, VSS, VSSI and VSI schemes.
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Appendix

In this section, the detailed expressions of Section 2.1 are given. In this paper, we assume that the assignable cause occurs
according to an exponential distribution with parameter λ; thus, the expected time interval during which the process
remains in control is 1/λ. First, the transition probabilities pij shall be calculated. In what follows, F(x, p, η) will denote
the cumulative probability distribution function of a non-central chi-square distribution with p degrees of freedom and
non-centrality parameter ηi = nid2, i = 1, 2, where d = (μ1 − μ0)

′�−1(μ1 − μ0) and μ1 is the out-of-control process
mean vector. The in-control state can be identified by d = 0:

p11 = Pr(T2 < w1 | d > 0) = F(w1, p, η1),

p12 = Pr(w1 ≤ T2 < k1 | d > 0) = F(k1, p, η1) − F(w1, p, η1),

p13 = Pr(T2 ≥ k1 | d > 0) = 1 − F(k1, p, η1),

p21 = Pr(T2 < w2 | d > 0) = F(w2, p, η2),

p22 = Pr(w2 ≤ T2 < k2 | d > 0) = F(k2, p, η2) − F(w2, p, η2),

p23 = Pr(T2 ≥ k2 | d > 0) = 1 − F(k2, p, η2).

Now, suppose that the process is in State 1. The conditional probability p1 is calculated as follows:

p1 = p11 + p12

∞∑
j=1

p(j−1)

22 p21. (A1)

Therefore, the expected number of points in State 1 until the chart signals (M1) is given by

E(M1) = 1

(1 − p1)
. (A2)

Similarly for State 2 we have

p2 = p22 + p21

∞∑
j=1

p(j−1)

11 p12, (A3)

E(M2) = 1

(1 − p2)
. (A4)

Now, suppose again that the process is in State 1. Let random variable vi be the length of time to meet the next point either
in State 1 or 3. The vi’s are independent and identically distributed as follows:

pr(V = h1) = p11 + p13 = 1 − p12,

pr(V = h1 + jh2) = p12p(j−1)

22 (p23 + p21) = p12p(j−1)

22 (1 − p22); j = 1, 2, . . . , ∞.
(A5)

The expected value of V is obtained by

E(V) = h1 + h2
p12

1 − p22
. (A6)

As a result, the total time spent in State 1 is calculated as

T1
S =

M1∑
j=1

vi. (A7)

Hence, applying Wald’s identity, we have

E(T1
S ) = E(M1)E(V) = (1 − p22)h1 + p12h2

1 − p11 − p22 + p11p22 − p12p21
. (A8)

Similarly, by considering currently the process in State 2 and defining the random variable wi as the interval of meeting
the next point either in State 2 or 3, we have

pr(W = h2) = 1 − p21,

pr(W = h2 + jh1) = p21p(j−1)

11 (1 − p11); j = 1, 2, . . . , ∞.
(A9)
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The expected value of W is obtained by

E(W) = h2 + h1
p21

1 − p11
. (A10)

As a result, the total time spent in State 2 is calculated as

T2
S =

M2∑
j=1

wi. (A11)

Hence, applying Wald’s identity, we have

E(T2
S ) = E(M2)E(W) = (1 − p11)h2 + p21h1

1 − p11 − p22 + p11p22 − p12p21
. (A12)

To calculate the statistical objectiveAATS, suppose that the assignable cause has occurred between the jth and the (j + 1)th
samples. Let H be a random variable representing the length of the interval between these two samples. It is easy to show
that the expected time of occurrence within this interval is given by

τ = 1 − (1 + λhi)qi

λ(1 − qi)
; given H = hi; i = 1, 2, (A13)

where qi = exp(−λhi); i = 1, 2. Therefore, we have

AATS = ATS + E(H − τ). (A14)

Following Costa, [24] it is assumed that

Pr(H = h1) = p0h1

p0h1 + (1 − p0)h2
,

Pr(H = h2) = (1 − p0)h2

p0h1 + (1 − p0)h2
,

(A15)

where

p0 = F(w1, p, 0)

F(k1, p, 0)
= F(w2, p, 0)

F(k2, p, 0)
.

Therefore,

AATS = ATS + E(H − τ | H = h1) Pr(H = h1) + E(H − τ | H = h2) Pr(H = h2)

= ATS +
(

λh1 − (1 − q1)

λ(1 − q1)

)
Pr(H = h1) +

(
λh2 − (1 − q2)

λ(1 − q2)

)
Pr(H = h2), (A16)

where the value of ATS measure is calculated using Equations (A8), (A12) and the first state of the process after the shift.
Besides, the probability of having State 1(S1) or State 2(S2) depends on the length of the random variable H. This leads
to

ATS = E(T1
S ) Pr(S1) + E(T2

S ) Pr(S2), (A17)

where

Pr(S1) = Pr(S1 | H = h1) Pr(H = h1) + Pr(S1 | H = h2) Pr(H = h2)

= p11 Pr(H = h1) + p21 Pr(H = h2),

Pr(S2) = Pr(S2 | H = h1) Pr(H = h1) + Pr(S2 | H = h2) Pr(H = h2)

= p12 Pr(H = h1) + p22 Pr(H = h2).

(A18)

Another statistical objective is the Type I error rate (α) or the ANF alarms in each quality cycle, calculated as follows:

ANF = sα, (A19)

where s is the expected number of samples taken while the process is in-control, and we have

s = q

1 − q
, (A20)

q = p0q1 + (1 − p0)q2, (A21)

α = p0α1 + (1 − p0)α2. (A22)
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