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Power of Deep Learning for Channel Estimation
and Signal Detection in OFDM Systems

Hao Ye , Geoffrey Ye Li, Fellow, IEEE, and Biing-Hwang Juang, Fellow, IEEE

Abstract—This letter presents our initial results in deep learn-
ing for channel estimation and signal detection in orthogonal
frequency-division multiplexing (OFDM) systems. In this letter,
we exploit deep learning to handle wireless OFDM channels in an
end-to-end manner. Different from existing OFDM receivers that
first estimate channel state information (CSI) explicitly and then
detect/recover the transmitted symbols using the estimated CSI,
the proposed deep learning-based approach estimates CSI implic-
itly and recovers the transmitted symbols directly. To address
channel distortion, a deep learning model is first trained offline
using the data generated from simulation based on channel statis-
tics and then used for recovering the online transmitted data
directly. From our simulation results, the deep learning based
approach can address channel distortion and detect the trans-
mitted symbols with performance comparable to the minimum
mean-square error estimator. Furthermore, the deep learning-
based approach is more robust than conventional methods when
fewer training pilots are used, the cyclic prefix is omitted, and
nonlinear clipping noise exists. In summary, deep learning is
a promising tool for channel estimation and signal detection in
wireless communications with complicated channel distortion and
interference.

Index Terms—Deep learning, channel estimation, OFDM.

I. INTRODUCTION

ORTHOGONAL frequency-division multiplexing
(OFDM) is a popular modulation scheme that has

been widely adopted in wireless broadband systems to
combat frequency-selective fading in wireless channels.
Channel state information (CSI) is vital to coherent detection
and decoding in OFDM systems. Usually, the CSI can be
estimated by means of pilots prior to the detection of the
transmitted data. With the estimated CSI, transmitted symbols
can be recovered at the receiver.

Historically, channel estimation in OFDM systems has been
thoroughly studied. The traditional estimation methods, i.e.,
least squares (LS) and minimum mean-square error (MMSE),
have been utilized and optimized in various conditions [2]. The
method of LS estimation requires no prior channel statistics,
but its performance may be inadequate. The MMSE estimation
in general leads to much better detection performance by
utilizing the second order statistics of channels.

Manuscript received August 26, 2017; accepted September 18, 2017. Date
of publication September 28, 2017; date of current version February 16, 2018.
The associate editor coordinating the review of this paper and approving it
for publication was C. Huang. (Corresponding author: Hao Ye.)

The authors are with the Department of Electrical and Computer
Engineering, Georgia Institute of Technology, Atlanta, GA 30332 USA
(e-mail: yehao@gatech.edu; liye@ece.gatech.edu; juang@ece.gatech.edu).

Digital Object Identifier 10.1109/LWC.2017.2757490

In this letter, we introduce a deep learning approach to
channel estimation and symbol detection in an OFDM sys-
tem. Deep learning and artificial neural networks (ANNs) have
numerous applications. In particular, it has been successfully
applied in localization based on CSI [3], channel equaliza-
tion [5], and channel decoding [4] in communication systems.
With the improving computational resources on devices and
the availability of data in large quantity, we expect deep
learning to find more applications in communication systems.

ANNs have been demonstrated for channel equalization
with online training, which is to adjust the parameters accord-
ing to the online pilot data. However, such methods can not be
applied directly since, with deep neural networks (DNNs), the
number of parameters increased a lot, which requires a large
number of training data together with the burden of a long
training period. To address the issue, we train a DNN model
that predicts the transmitted data in diverse channel conditions.
Then the model is used in online deployment to recover the
transmitted data.

This letter presents our initial results in deep learning
for channel estimation and symbol detection in an end-to-
end manner. It demonstrates that DNNs have the ability to
learn and analyze the characteristics of wireless channels
that may suffer from nonlinear distortion and interference in
addition to frequency selectivity. To the best of our knowl-
edge, this is the first attempt to use learning methods to
deal with wireless channels without online training. The
simulation results show that deep learning models achieve
performance comparable to traditional methods if there are
enough pilots in OFDM systems, and it can work better with
limited pilots, CP removal, and nonlinear noise. Our initial
research results indicate that deep learning can be poten-
tially applied in many directions in signal processing and
communications.

II. DEEP LEARNING BASED ESTIMATION

AND DETECTION

A. Deep Learning Methods

Deep learning has been successfully applied in a wide
range of areas with significant performance improvement,
including computer vision [6], natural language process-
ing [7], speech recognition [8], and so on. A comprehensive
introduction to deep learning and machine learning can be
found in [1].

The structure of a DNN model is shown in Fig. 1. Generally
speaking, DNNs are deeper versions of ANNs by increasing
the number of hidden layers in order to improve the ability
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Fig. 1. An example of deep learning models.

Fig. 2. System model.

in representation or recognition. Each layer of the network
consists of multiple neurons, each of which has an output
that is a nonlinear function of a weighted sum of neurons
of its preceding layer, as shown in Fig. 1. The nonlinear
function may be the Sigmoid function, or the Relu function,
defined as fS(a) = 1

1+e−a , and fR(a) = max(0, a), respectively.
Hence, the output of the network z is a cascade of nonlinear
transformation of input data I, mathematically expressed as

z = f (I, θ) = f (L−1)(f (L−2)(· · · f (1)(I))), (1)

where L stands for the number of layers and θ denotes the
weights of the neural network. The parameters of the model
are the weights for the neurons, which need to be optimized
before the online deployment. The optimal weights are usually
learned on a training set, with known desired outputs.

B. System Architecture

The architecture of the OFDM system with deep learning
based channel estimation and signal detection is illustrated in
Fig. 2. The baseband OFDM system is the same as the conven-
tional ones. On the transmitter side, the transmitted symbols
inserted with pilots are first converted to a paralleled data
stream, then the inverse discrete Fourier transform (IDFT) is
used to convert the signal from the frequency domain to the
time domain. After that, a cyclic prefix (CP) is inserted to
mitigate the inter-symbol interference (ISI). The length of the
CP should be no shorter than the maximum delay spread of
the channel.

We consider a sample-spaced multi-path channel described
by complex random variables {h(n)}N−1

n=0 . The received signal
can be expressed as

y(n) = x(n) ⊗ h(n) + w(n), (2)

where ⊗ denotes the circular convolution while x(n) and
w(n) represent the transmitted signal and the additive white
Gaussian noise (AWGN), respectively. After removing the CP
and performing DFT, the received frequency domain signal is

Y(k) = X(k)H(k) + W(k), (3)

where Y(k), X(k), H(k), and W(k) are the DFT of y(n), x(n),
h(n) and w(n), respectively.

We assume that the pilot symbols are in the first OFDM
block while the following OFDM blocks consist of the trans-
mitted data. Together they form a frame. The channel can
be treated as constant spanning over the pilot block and the
data blocks, but change from one frame to another. The DNN
model takes as input the received data consisting of one pilot
block and one data block in our initial study, and recovers the
transmitted data in an end-to-end manner.

As shown in Fig. 2, to obtain an effective DNN model for
joint channel estimation and symbol detection, two stages are
included. In the offline training stage, the model is trained with
the received OFDM samples that are generated with various
information sequences and under diverse channel conditions
with certain statistical properties, such as typical urban or hilly
terrain delay profile. In the online deployment stage, the DNN
model generates the output that recovers the transmitted data
without explicitly estimating the wireless channel.

C. Model Training

The models are trained by viewing OFDM modulation and
the wireless channels as black boxes. Historically, researchers
have developed many channel models that well describe the
real channels in terms of channel statistics. With these chan-
nel models, the training data can be obtained by simulation.
In each simulation, a random data sequence is first gener-
ated as the transmitted symbols and the corresponding OFDM
frame is formed with a sequence of pilot symbols and the pilot
symbols need to be fixed during the training and deployment
stages. The current random channel is simulated based on the
channel models. The received OFDM signal is obtained based
on the OFDM frames undergoing the current channel distor-
tion, including the channel noise. The received signal and the
original transmitted data are collected as the training data. The
input of deep learning model is the received data of the pilot
block and one data block. The model is trained to minimize
the difference between the output of the neural network and
the transmitted data. The difference can be portrayed in several
ways.

In our experiment settings, we choose the L2 loss,

L2 = 1

N

∑

k

(X̂(k) − X(k))2, (4)

where X̂(k) is the prediction and X(k) is the supervision
message, which is the transmitted symbols in this situation.
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Fig. 3. BER curves of deep learning based approach and traditional methods.

The DNN model we use consists of five layers, three of
which are hidden layers. The numbers of neurons in each lay-
ers are 256, 500, 250, 120, 16, respectively. The input number
corresponds to the number of real parts and imaginary parts
of 2 OFDM blocks that contain the pilots and transmitted
symbols. Every 16 bits of the transmitted data are grouped
and predicted based on a single model trained independently,
which is then concatenated for the final output. The Relu func-
tion is used as the activation function in most layers except in
the last layer where the Sigmoid function is applied to map
the output to the interval [0, 1].

III. SIMULATION RESULTS

We have conducted several experiments to demonstrate the
performance of the deep learning methods for joint channel
estimation and symbol detection in OFDM wireless communi-
cation systems. A DNN model is trained based on simulation
data, and is compared with the traditional methods in term
of bit-error rates (BERs) under different signal-to-noise ratios
(SNRs). In the following experiments, the deep learning based
approach is proved to be more robust than LS and MMSE
under scenarios where fewer training pilots are used, the CP
is omitted, or there is nonlinear clipping noise. In our experi-
ments, an OFDM system with 64 sub-carriers and the CP of
length 16 is considered. The wireless channel follows the wire-
less world initiative for new radio model (WINNER II) [9],
where the carrier frequency is 2.6 GHz, the number of paths
is 24, and typical urban channels with maximum delay 16
sampling period are used. QPSK is used as the modulation
method.

A. Impact of Pilot Numbers

The proposed method is first compared with the LS and
MMSE methods for channel estimation and detection, when
64 pilots are used for channel estimation in each frame. From
Fig. 3, the LS method has the worst performance since no
prior statistics of the channel has been utilized in the detection.
On the contrary, the MMSE method has the best performance
because the second-order statistics of the channels are assumed
to be known and used for symbol detection. The deep learn-
ing based approach has much better performance than the LS
method and is comparable to the MMSE method.

Fig. 4. BER curves without CP.

Since the channel model has a maximum delay of 16 sam-
pling period, it can be estimated with much fewer pilots,
leading to better spectrum utilization. When only 8 pilots are
used, the first OFDM block consists of 8 pilots and transmitted
data. The input and output of DNN remain unchanged. From
Fig. 3, when only 8 pilots are used, the BER curves of the
LS and MMSE methods saturate when SNR is above 10 dB
while the deep learning based method still has the ability to
reduce its BER with increasing SNR, which demonstrates that
the DNN is robust to the number of pilots used for chan-
nel estimation. The reason for the superior performance of the
DNN is that the characteristics of the wireless channels can be
learned based on the training data generated from the model.

B. Impact of CP

As indicated before, the CP is necessary to convert the linear
convolution of the physical channel into circular convolution
and mitigate ISI. But it costs time and energy for transmission.
In this experiment, we investigate the performance with CP
removal.

Fig. 4 illustrates the BER curves for an OFDM system with-
out CP. From the figure, neither MMSE nor LS can effectively
estimate channel. The accuracy tends to be saturated when
SNR is over 15 dB. However, the deep learning method still
works well. This result shows again that the characteristics of
the wireless channel have been revealed and can be learned in
the training stage by the DNNs.

C. Impact of Clipping and Filtering Distortion

As indicated in [10], a notable drawback of OFDM is the
high peak-to-average power ratio (PAPR). To reduce PAPR,
the clipping and filtering approach serves as a simple and
effective approach [10]. However, after clipping, nonlinear
noise is introduced that degrade the estimation and detection
performance. The clipped signal becomes

x̂(n) =
{

x(n), if |x(n)| ≤ A,

Aejφ(n), otherwise,
(5)

where A is the threshold and φ(n) is the phase of x(n).
Fig. 5 depicts the detection performance of the MMSE

method and deep learning method when the OFDM system
is contaminated with clipping noise. From the figure, when
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Fig. 5. BER curves with clipping noise.

Fig. 6. BER curves when combining all adversities.

clipping ratio (CR = A/σ , where σ is the root mean square
of signal) is 1, the deep learning method is better than the
MMSE method when SNR is over 15 dB, proving that deep
learning method is more robust to the nonlinear clipping noise.

Fig. 6 compares DNN with the MMSE method when all
above adversities are combined together, i.e., only 8 pilots are
used, the CP is omitted, and there is clipping noise. From the
figure, DNN is much better than the MMSE method but has a
gap with detection performance under ideal circumstance, as
we have seen before.

D. Robustness Analysis

In the simulation above, the channels in the online deploy-
ment stage are generated with the same statistics that are
used in the offline training stage. However, in real-world
applications, mismatches may occur between the two stages.
Therefore, it is essential for the trained models to be relatively
robust to these mismatches. In this simulation, the impact of
variation in statistics of channel models used during training
and deployment stages is analyzed. Fig. 7 shows the BER
curves when the maximum delay and the number of paths
in the test stage vary from the parameters used in the train-
ing stage described in the beginning of this section. From the
figure, variations on statistics of channel models do not have
significant damage on the performance of symbol detection.

IV. CONCLUSION

In this letter, we have demonstrated our initial efforts to
employ DNNs for channel estimation and symbol detection in

Fig. 7. BER curves with mismatches between training and deployment stages.

an OFDM system. The model is trained offline based on the
simulated data that view OFDM and the wireless channels as
black boxes. The simulation results show that the deep learning
method has advantages when wireless channels are compli-
cated by serious distortion and interference, which proves that
DNNs have the ability to remember and analyze the compli-
cated characteristics of the wireless channels. For real-world
applications, it is important for the DNN model to have a
good generalization ability so that it can still work effectively
when the conditions of online deployment do not exactly agree
with the channel models used in the training stage. An initial
experiment has been conducted in this letter to illustrate the
generalization ability of DNN model with respect to some
parameters of the channel model. More rigorous analysis and
more comprehensive experiments are left for the future work.
In addition, for practical use, samples generated from the real
wireless channels could be collected to retrain or fine-tune the
model for better performance.
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