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A fast clustering algorithm for modularization of
large-scale software systems

Navid Teymourian, Habib Izadkhah, Ayaz Isazadeh

Abstract—A software system evolves over time in order to meet the needs of users. Understanding a program is the most important
step to apply new requirements. Clustering techniques through dividing a program into small and meaningful parts make it possible to
understand the program. In general, clustering algorithms are classified into two categories: hierarchical and non-hierarchical algorithms
(such as search-based approaches). While clustering problems generally tend to be NP-hard, search-based algorithms produce
acceptable clustering and have time and space constraints and hence they are inefficient in large-scale software systems. Most
algorithms which currently used in software clustering fields do not scale well when applied to large and very large applications. In this
paper, we present a new and fast clustering algorithm, FCA, that can overcome space and time constraints of existing algorithms by
performing operations on the dependency matrix and extracting other matrices based on a set of features. The experimental results on
ten small-sized applications, ten folders with different functionalities from Mozilla Firefox, a large-sized application (namely ITK), and a
very large-sized application (namely Chromium) demonstrate that the proposed algorithm achieves higher quality modularization
compared with hierarchical algorithms. It can also compete with search-based algorithms and a clustering algorithm based on
subsystem patterns. But the running time of the proposed algorithm is much shorter than that of the hierarchical and non-hierarchical
algorithms. The source code of the proposed algorithm can be accessed at https://github.com/SoftwareMaintenanceLab.

Index Terms—Software clustering, Software modularization, Software maintenance, Software comprehension, Architecture recovery.

F

1 INTRODUCTION

SOFTWARE plays a key role in government agencies and
organizations and as an interface, it has an important

role in communications. Over the time, the requirements of
an organization will change according to the environmental
conditions and software engineers need to make changes in
the software system to meet the needs of the organization.
To make changes to the software, developers require to
understand the software structure (software architecture).
During software maintenance, software engineers spend a
considerable amount of time on program comprehension
activities [1]. Because of the complex structure and rela-
tionships, understanding the structure of a large software
system and applying new changes is not an easy task. Recov-
ering software architecture to understand software systems
is therefore particularly important because it facilitates the
maintenance and evolution of software systems [2], [3].

The software architecture recovery aims to use techniques
to partition a software system into meaningful subsystems
(modules) [4], [5]. For this reason, numerous attempts have
been done to develop techniques for extracting software
architecture automatically. One of these techniques is clus-
tering [5]. “The objective of software clustering is to reduce
the complexity of a large software system by replacing a set
of artifacts with a cluster, a representative abstraction of all
artifacts grouped within it. Thus, the obtained decomposition
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is easier to understand” [6]. The purpose of clustering is to
divide a software system into clusters (modules) so that the
relationships between artifacts in a cluster are maximized
(i.e., cohesion) and the relationships between clusters (i.e.,
coupling) are minimized. Figure 1 illustrates the clustering
process of a software system. The input of a clustering
algorithm is an Artifact Dependency Graph (ADG) which
is constructed from source code [6]. The nodes of this graph
indicate the artifacts (e.g., class, method, file, function, etc.),
and the links indicate the relationships between artifacts
(e.g., calling dependency, inheritance dependency, semantic
dependency, etc.).
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Fig. 1. Software Clustering Process

In general, clustering algorithms are classified into hierar-
chical and non-hierarchical categories (such as search-based
and graph-based) [7]. In the hierarchical algorithms, artifacts
are first considered as separate clusters and are then merged
in a repeating process. These algorithms require a data table
representing relationships between artifacts and a table that
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shows similarities between artifacts. These tables should be
updated at each step of the clustering process. In very large
software systems, these tables will be very big and it will
also be time consuming to calculate the similarities between
the artifacts. For example, the LIMBO algorithm [6], at the
first step of the clustering process, requires about 15 × 1011

operations for a graph with 10,000 artifacts. Given all the
clustering steps, the number of operations will be much
higher than this number. This algorithm requires a large
amount of time for large graphs, which reduces its efficiency.

In the literature, because of the NP-Hardness of clustering
problem, search-based methods (such as genetic algorithm)
have been widely used [8], [9]. Search-based algorithms are
an effective way to solve the clustering problem [9]. The
search-based algorithms may take a long time to execute,
if computing the fitness function in each iteration takes a
long time to perform. Therefore, the main drawback of these
methods is that they work very slowly when faced with
large-sized graphs. Due to the problems of the existing algo-
rithms, in this paper, we designed a new clustering algorithm
that operates on artifact dependency matrix constructed from
source code.

The main problem addressed in this paper is scalability
in terms of running time. We aim to provide a deterministic
clustering algorithm that its running time grows slowly as
the input size increases. We claim that by performing a series
of simple operations on the dependency matrix and extract-
ing other matrices based on a set of features, a developer can
quickly cluster a software system while the clustering quality
is acceptable. The proposed algorithm was tested on ten
small-sized software systems, ten folders of Mozilla Firefox,
and two large and very large software systems. The results
showed that the algorithm achieves acceptable clustering
quality according to evaluation criteria (internal and external
criteria), in less run time, compared to the tested algorithms.

This paper is structured as follows. In Section 2, we
discuss related work on software clustering. Section 3 intro-
duces the proposed algorithm, and we present the experi-
mental setup in Section 4. The result of research and threats
to validity are discussed in Sections 5 and 6, respectively.
Finally, section 7 is the conclusions of this research and future
work.

2 RELATED WORK

So far many algorithms have been developed for clustering,
but given the NP-Hardness of clustering problem, design-
ing a proper clustering algorithm is a difficult work. In
this section, first, a description of the clustering algorithms
classification is presented, and then some state-of-the-art
clustering algorithms are described.

Most software clustering algorithms fall into two ma-
jor categories: agglomerative hierarchical and search-based
algorithms, and there also are a few algorithms that are
graph-based [8] and pattern-based. Hierarchical algorithms
are greedy and phased and at each stage, the most simi-
lar artifacts are merged. Single linkage, complete linkage,
average linkage, weighted average link are some of the

classical hierarchical algorithms [10]. Maqbool and Babri
presented two hierarchical clustering algorithms for software
architecture recovery, namely combined Algorithm (CA)
and Weighted combined Algorithm (WCA) [11]. Weighted
combined Algorithm is a popular hierarchical clustering
technique. Considering the ways to compute the similarity
between artifacts, Unbiased Ellenberg (UE) and Unbiased
Ellenberg-NM (UENM), WCA has two versions WCA-UE
and WCA-UENM. Another popular hierarchical clustering
algorithm is scaLable InforMation BOttleneck (LIMBO) [6].
This algorithm employs information theory and entropy
concepts for software clustering. In [10], the cooperative
clustering technique (CCT) as a consensus-based technique is
utilized for the software clustering problem. In this technique
more than one similarity measure cooperates during the
hierarchical clustering process.

In search-based algorithms, the clustering process is con-
sidered as an optimization problem [5]. Then, heuristic or
meta-heuristic search methods are used to find the near-
optimal solution. The search process is guided and evaluated
by a quality function (objective function) that shows how
appropriate the solution is. The searching process in these
algorithms is performed in two global and local ways. In
the global search-based systems algorithm, the entire search
space is considered the solution space. In these algorithms,
an operator is intended to discover new areas in the search
space. Local search algorithms start from a selective solution
and then gradually move from the current solution to the
neighboring solution using search changes. However, these
algorithms inherently have the problem of being trapped
in local optima solution [8]. It is also possible to combine
global and local search algorithms. Graph-based clustering
algorithms can be applied to various areas such as social
networking, image segmentation, and software clustering.
Mohammadi and Izadkhah in [7] use a neighboring tree
generated from the ADG to cluster a software system. The
clustering quality obtained by this algorithm is better than
hierarchical methods and worse than evolutionary methods.
Spectral methods [12] use algebraic properties of the graph,
such as eigenvalues and eigenvectors in the corresponding
Laplacian matrix to perform clustering. ACDC [13] is a
pattern-based algorithm that was introduced by Tzerpos and
Holt. It uses several patterns to cluster code artifacts. Several
previous studies, such as [14], [15], [16], have shown that
ACDC performed well on the tested applications.

Depending on the features used for clustering, clustering
techniques can be categorized in terms of structural and non-
structural (or semantic). Some algorithms only use structural
properties and some others use non-structural properties
such as comments and name of artifacts. Some algorithms
combine both of them. Table 1 shows some clustering algo-
rithms with different categories. Here, we briefly describe
some clustering algorithms.

Bunch: the Bunch toolset was proposed by Mitchell for
the software clustering problem [5], [17]. Two search-based
algorithms with different searching strategy namely genetic
algorithm (GA) and Hill-climbing were employed in this
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TABLE 1
Some search-based software clustering algorithms

Name Type of algorithm Type of objective function Structural/Semantic Features
Bunch-NAHC and Bunch-SAHC [17] Local Search Single Objective Structural

E-CDGM [18] Local Search Single Objective Structural
Large neighborhood search [19] Local Search Single Objective Structural

HC-SMCP [20] Local Search Single Objective Structural
SHC [21] Local Search Single Objective Semantic

Bunch-GA [5] Global Search Single Objective Structural
DAGC [22] Global Search Single Objective Structural

A multi-agent evolutionary algorithm [23] Global Search Single Objective Structural
Harmony search [24] Global Search Multi-Objective Structural

GA-SMCP [20] Global Search Single Objective Structural
Hyper-heuristic approach [25] Global Search Multi-Objective Structural

ECA and MCA [9] Global Search Multi-Objective Structural
Estimation of distribution approach [26] Global Search Single Objective Structural

EoD, CGH, CGoH [8] Global Search Multi-Objective Structural and Semantic
Search based multiobjective software remodularization [27] Global Search Multi-Objective Structural

Multiple relationship factors [28] Global Search Multi-Objective Structural
Interactive evolutionary optimization [29] Global Search Multi-Objective Structural

GAKH [30] Global Search Single Objective Structural
MaABC [31] Global Search Multi-objective Structural

ILOF [32] Global Search Support multi-objective Structural

toolset for the software clustering problem. Next Ascent
Hill climbing (NAHC) and Steepest Ascent Hill climbing
(SAHC) are two versions of the Hill-climbing algorithm
which are presented in the Bunch. The algorithms presented
in the Bunch use a real-valued encoding to represent the
solutions. The search space produced by this encoding equals
nn, where n is the number of artifacts. Bunch input is a
call dependency graph (CDG) made from source code. The
output of the Bunch is clustering with minimum coupling
and maximum cohesion among clusters.

DAGC: similar to Bunch, this algorithm [22] employs ge-
netic algorithm to perform clustering. But, each chromosome
is encoded by a permutation of graph’s nodes. The search
space in this algorithm equals n!. It can be said that it has less
search space than Bunch, in contrast to it uses a sophisticated
encoding method.

Maximizing Cluster Approach (MCA) and Equal-size
Cluster Approach (ECA) [9]: both algorithms are multi-
objective and use two-archive Pareto optimal genetic algo-
rithm to optimize the objectives. The objectives used for
clustering in MCA are “maximize the number of edges inside
the clusters”, “minimize the number of edges between all
the clusters”, “maximize the number of clusters”, “maximize
the TurboMQ”, and “minimize the number of single-member
clusters”; and the objectives used in the ECA are similar to
the MCA with one difference. ECA replaced the fifth objec-
tive of the MCA with “minimizing the difference between the
maximum and minimum number of modules in a cluster.”

In semantic-based algorithms, how words are selected
and which semantic analysis method employed is the main
reason for the differences between these algorithms. Garcia et
al. [33] proposed a hierarchical clustering algorithm- named
Architecture Recovery using Concerns (ARC)- that uses con-
cerns to perform an architecture recovery. ARC considers tex-
tual information (identifiers and comments) extracted from

source code and extracts concerns based on Latent Dirichlet
Allocation (LDA) model. Some studies, e.g., [16], have shown
that this algorithm has acceptable accuracy.

Corazza et al. [34] proposed a natural language process-
ing based clustering approach that partitions textual infor-
mation (identifiers and comments) into different zones. The
zones are weighted based on the Expectation-Maximization
algorithm and then clustered by hierarchical agglomera-
tive technique. Using the Hill-climbing algorithm, in [21], a
semantic-based clustering algorithm, namely SHC, was pre-
sented which uses artifact names and comments for semantic
analysis. Taking into account syntactic features such as call
dependency and inheritance dependency and semantic fea-
tures such as code comment and identifier name, Misra et al.
[35] proposed an algorithm for clustering.

Most software clustering algorithms use static dependen-
cies between artifacts. Xiao and Tzerpos [36] presented an
approach for investigating the dynamic dependencies. The
results of their experiments on some applications showed
that dynamic clusters have significant competencies.

To sum up, the main limitations of the existing algorithms
are:

• Search-based algorithms, such as genetic algorithms,
are usually used to cluster software systems [8], [9].
Because of their exploration and exploitation ability,
they can produce good quality answers. But on large
applications, they are very time-consuming. Normally
it takes more than a month for graphs with more
than 10,000 nodes without parallelization to find a
proper clustering. It should be noted, however, that
parallelization cannot greatly reduce time. This is
because the software systems selected for clustering
in these methods are small- or medium-sized, e.g., see
[8], [9], [17], [20], [24], [37]. Also, because evolutionary
algorithms are stochastic, they need to be executed
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many times, which for large graphs is practically
impossible because they are time-consuming.

• Hierarchical algorithms require a data table that rep-
resents relationships between artifacts and a table
that shows similarities between artifacts. In very large
software systems, these tables will be very big and it
will also be very time consuming to calculate sim-
ilarities between artifacts. For example, the LIMBO
algorithm for a software system with 10,000 artifacts
requires about 15×1011 computations, at the first step
of the clustering process.

3 PROPOSED CLUSTERING ALGORITHM

The dependency graph is a mathematical way to model
the relationships between artifacts. Let x and y denote two
artifacts (two nodes in the graph) so that an edge between
the two artifacts x and y indicate the existing dependency
between them. In the dependency matrix corresponding to
the dependency graph, the intersection of two nodes is
placed one if there exists an edge between them, and zero
if the two nodes are not connected.

In this paper, we cluster software systems by defining a
series of operations on the dependence matrix and extracting
several features from it. We derive additional matrices from
the dependence matrix, based on a set of features, as well
as applying mathematical operations on the matrices to
perform the clustering. In this algorithm, the dependency
graph is the input of the algorithm and a modularized ADG
is the output of the algorithm. Because the input of the pro-
posed algorithm is the dependency graph, so the algorithm
is independent of the programming language used. Tools
such as Understand (https://scitools.com/) or NDepend
(https://ndepend.com) can be used to extract the depen-
dency graph from the source code of most programming
languages. The proposed algorithm aims to maximize intra-
connectivity within the clusters (i.e., cohesion) and minimize
inter-dependencies between the clusters (i.e., coupling).

Algorithm steps (FCA)

1) Input: dependency matrix constructed from the arti-
fact dependency graph,

2) The neighborhood degree matrix is created from the
dependency matrix. This matrix shows degree infor-
mation. Each node has several neighbors, and this
matrix shows the degree of neighbor nodes for each
node. The steps to build this matrix are as follows:

a) The number of rows and columns in this
matrix is equal to the number of nodes in the
artifact dependency graph.

b) Let x and y denote the row number (node
number) and column number in the matrix,
respectively. For each node x in the depen-
dency graph connected to node y, the degree
of node y is placed at the intersection from x
to y in the neighborhood degree matrix.

We use this matrix to select nodes for clustering.
High-degree nodes and nodes that are connected
to high-degree nodes are not good options to start
the clustering process. To perform clustering, the
algorithm starts with nodes that have a small degree
and are not connected to high-degree nodes. We call
these nodes “border” nodes. Larger-degree nodes
tend to absorb the rest of the nodes and create larger
clusters. In steps 3 and 4, the nodes are ranked and
used as primary nodes in the clustering process.

3) To rank the nodes, the numbers in each row of the
neighborhood matrix are summed up and placed in
an n × 1 matrix named Sum matrix, where n is the
number of nodes. The entries of this matrix are S1,
S2, ..., Sn.
The Sum matrix is not enough to prioritize nodes.
Because, in large graphs, the number of nodes in
which the sum of their rows is equal is large. There-
fore, in order to prioritize the nodes, it is necessary to
normalize this matrix. Step 4 is used for this purpose.

4) To normalize the Sum matrix, for each node x (row x),
the following equation is calculated and the results
are saved in an n× 1 matrix named Effect matrix. Let
NDM denotes the neighborhood degree matrix, the
entries of Effect matrix, E1, E2, . . . , En, are calculated
as follows:

Ex =
Sx∑n

i=1 (ki × Si)
(1)

where

ki =

{
0, NDMx,i = 0;

1, NDMx,i 6= 0.

The numbers in the Effect matrix are sorted in de-
scending order. Node x having the largest Ex is used
as the first node for clustering. It is important to
note that the largest Ex is for a border node and the
clustering process starts with this node.

5) The clustering steps start from the first node in the
Effect matrix as follows:

a) For node x, the algorithm finds node y which
has the lowest numeric value in the row asso-
ciated with x in the neighborhood matrix. The
reverse of this rule must hold: for the node
y found by the algorithm, the node x must
also have the lowest numeric value in the row
associated with y in the neighborhood matrix.
In such a case, the node x is co-clustered with
the node y. Otherwise, the node x is added to
an array named Incompatible.

b) Repeat step 5(a) for all nodes in Effect matrix.
If the addressed node has already been clus-
tered, it will be ignored.

6) Clustering all nodes in array Incompatible. For node x,
the algorithm finds node y that has the first or second
smallest numerical value in the row associated with

Authorized licensed use limited to: University of New South Wales. Downloaded on September 26,2020 at 14:04:31 UTC from IEEE Xplore.  Restrictions apply. 



0098-5589 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2020.3022212, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 5

x in the neighborhood matrix. The reverse of this rule
must hold: for the node y found by the algorithm, the
node x must also have the first or second smallest
numerical value in the row associated with y in the
neighborhood matrix. In such a case, the node x is
co-clustered with the node y. Otherwise, the node x
is added to an array named Closed.
The intuition behind steps 5 and 6 is to cluster
nodes that are related to each other and also have a
lower degree. This will reduce coupling. These steps
prevent the formation of very large clusters.

7) The clusters obtained in steps 5 and 6 are merged if
they have at least one node in common. The number
of clusters obtained in steps 5 and 6 is high. This step
reduces the number of clusters by merging some of
them and increases cohesion.

8) Clustering all nodes in array Closed. Up to this step,
there may be nodes that have not been clustered. All
these nodes are in the array Closed. Using one of the
following steps, we determine the cluster of these
nodes.

a) There are nodes in array Closed that are only
connected to one cluster. These nodes merge
with the related clusters. The next condition
is considered for the remaining nodes.

b) For node x in array Closed, all nodes, y, which
have an edge to node x are extracted in the
dependency matrix. The node x goes to the
cluster that has the least amount of inter-
connectivity. Intuitively, inter-connectivity mea-
sures a cluster coupling. The lower the value
of this relationship, the lower the coupling of
a cluster, which is desirable.
Let X, Y, and Z denote the sum of the outer
edges of the cluster containing the node y,
the sum of Ex values of nodes in the cluster
containing the node y, and the number of
nodes in the cluster containing the node y,
respectively. We have:

inter − connectivity =
X + Y

Z
(2)

The value of X
Z may be the same for clus-

ters with different sizes and may not show
the value of the coupling well. While one is
superior to the other. That’s why Y is used. If
the inter-connectivity value for the clusters is
equal, the next condition is investigated.

c) The nodes go to a cluster that has the most
relationship with the members of that cluster.
If the number of relationships is the same, the
node go to a cluster that has fewer members.

Using an example, we illustrate the steps of the proposed
algorithm. Artifact dependency graph (ADG) of a sample
software is shown in Fig. 2.
Step 1- Table 2 shows the dependency matrix constructed
from the ADG shown in Fig. 2.

A1

A3 A2

A4

A6

A7A5

A8

Fig. 2. A sample of an artifact dependency graph

TABLE 2
Dependency matrix constructed from Fig. 2

1 2 3 4 5 6 7 8
1 0 1 1 1 0 0 0 0
2 1 0 1 1 1 0 0 0
3 1 1 0 1 0 0 0 0
4 1 1 1 0 0 0 0 0
5 0 1 0 0 0 1 0 0
6 0 0 0 0 1 0 0 0
7 0 0 0 0 0 0 0 1
8 0 0 0 0 0 0 1 0

Step 2- The neighborhood degree matrix is constructed for
all nodes, as shown in Table 3. This matrix shows the degree
of neighbor nodes for each node. For example, row 1 shows
the neighbors of node 1, while row 3 shows the neighbors of
node 3.
Step 3- The Sum matrix is shown in Table 4. This matrix
represents the sum of the rows in Table 3.
Step 4- According to Eq. 1, the Effect matrix is created, as
shown in Table 5. For example:

E1 = S1/(S2 + S3 + S4) = 10/(11 + 11 + 10) = 0.32

TABLE 3
The neighborhood degree matrix

1 2 3 4 5 6 7 8
1 0 4 3 3 0 0 0 0
2 3 0 3 3 2 0 0 0
3 3 4 0 3 0 0 0 0
4 3 4 3 0 0 0 0 0
5 0 4 0 0 0 1 0 0
6 0 0 0 0 2 0 0 0
7 3 0 0 0 0 0 0 1
8 3 0 0 0 0 0 1 0

TABLE 4
The Sum matrix

Sum
S1 10
S2 11
S3 10
S4 10
S5 5
S6 2
S7 1
S8 1

TABLE 5
The Effect matrix

Effect
E1 0.32
E2 0.31
E3 0.32
E4 0.32
E5 0.38
E6 0.40
E7 1
E8 1
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The calculated Effect matrix is sorted in descending order as:

Effect name = [E7, E8, E6, E5, E1, E3, E4, E2]

Step 5- The clustering process starts from the first node in the
Effect matrix.

1) Node 7 can be co-clustered with a node that has the
lowest numerical value in the row of Table 3, i.e.,
node 8. The important point is that node 8 must also
have the lowest number in its corresponding row
with node 7. This condition is true.

a) First cluster {7, 8}
b) Since node 8 is in the first cluster, then it is

not checked in Effect matrix.

2) Node 6 can be co-clustered with a node that has the
lowest numerical value in the row of Table 3, i.e.,
node 5. Node 5 also has the lowest number in its
corresponding row with node 6. Thus

a) Second cluster {5, 6}
b) Since node 5 is in the first cluster, then it is

not checked in Effect matrix.

After addressing the condition above for node 1,
third cluster is {1, 3, 4}

3) Node 2 can be co-clustered with a node that has the
lowest numerical value in its corresponding row of
Table 3, which is node 5.

a) since the lowest number in row 5 is equal to
1, which corresponds to node 6, so node 2
doesn’t cluster with node 3.

b) the condition is not fulfilled and node 2 is
added to array Incompatible.

Step 6- Clustering array Incompatible starts from its first node
i.e., node 2. In the neighborhood matrix, the first and second
small numbers in row 2 are related with nodes 1, 3, 4 and
5. That is, node 2 can be clustered with these nodes if the
inverse of these relationships are also true.

1) The first and second small numbers in row 1 (i.e.,
node 1) are related to nodes 2, 3 and 4; so the
condition is true, and node 2 can be clustered with
node 1.

2) This step is also applied on nodes 3, 4 and 5.
3) Fourth cluster {2, 1, 3, 4, 5}

Step 7- The second, third and fourth clusters are merged
due to having common nodes, and the final clustering is as
follows.

First cluster = {1, 2, 3, 4, 5, 6}, Second cluster = {7, 8}

Step 8- Due to the small size of the dependency graph used,
array Closed is empty, and thus step 8 is not checked.

4 EXPERIMENTAL SETUP

To evaluate the proposed algorithm, it is necessary to men-
tion the following.

TABLE 6
The description of tested software systems

Name Description #Files #Links

compiler “ A small compiler developed
at the University of Toronto ” 13 32

nos “ A file system” 16 52
boxer “ Graph drawing tool” 18 29
spdb “ A tool to analyze several proteins at the same time” 21 33
ispell “ Spelling and typographical error correction software” 24 103
ciald “ Program dependency analysis tool” 26 64
rcs “ System used to manages multiple revisions of files” 29 163
star “ A program understanding tool” 36 89

bison “ Parser generator” 37 179
cia “ Program dependency graph generator for C programs” 38 87

4.1 Software system
Software systems play an important role in the evaluation
and comparison of clustering algorithms. We selected ten
real-world small-sized applications, as shown in Table 6.
In this table, the number of links indicates the number of
relationships between the artifacts within the dependency
graph, as described in the Introduction. Mozilla Firefox1 is
an open-source software system. Based on the Open hub site
report, more than 13000 developers work on this application.
This application has 55 folders (clusters), so we selected ten
of them with different functionalities and sizes. The names
and specifications of these folders are presented in Table 7.

In addition to the above applications, two large and
very large applications, namely ITK, Chromium, are se-
lected. In place of those large-sized projects, we included
ITK (including 7,310 files). We also included a very large
project, Chromium (including 18,698 files). Detailed informa-
tion about these projects can be found in Table 8.

4.2 Expert decompositions
Expert decomposition (other names: ground-truth architec-
ture or authoritative decomposition) is employed to evaluate
the accuracy of the clustering algorithms [7], [10], [14], [15],
[38]. An algorithm is reliable if its modularization result
is close to decomposition provided by an expert [10]. In
large projects, the directory structure of the project originally
usually reflects the architecture of the project [39].

In this paper, the developer preview version of the
Mozilla Firefox has been selected, because there is a credible
(human) expert decomposition (the directory structure) of
that. It is important to note that this version is a stable
version. For example, folder DB has 97 files organized by the
developers of this software in four sub-folders. Our method
considers all of 97 files as flat and the aim is to determine
how much the algorithm can achieve a clustering similar to
the decomposition of Mozilla Firefox’s developers.

We also used the ground-truth architectures created by
Lutellier et al. [15] for ITK and Chromium applications to
evaluate the accuracy of the clustering algorithms2.

1https://ftp.mozilla.org/pub/firefox/releases/devpreview
/1.9.3a4/source/

2The ground-truth architecture for ITK and Chromium are available
at http://asset.uwaterloo.ca/ArchRecovery
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TABLE 7
Properties of the selected folders

Folder Name #Files #Links #Modules Some Folder Functionalities

Accessible 179 293 8 “ enabling as many people as possible to use Web sites, even when those people’s abilities are limited in some way.”
“ Files for accessibility (i.e., MSAA (Microsoft Active Accessibility), ATK (Accessibility Toolkit, used by GTK+ 2) support files).”

Browser 45 45 4
“ Contains the front end code (in XUL, Javascript, XBL, and C++) for the Firefox browser”

“ Contains the front end code for the DevTools (Scratchpad, Style Editor, etc.)”.
“ Contains images and CSS files to skin the browser for each OS (Linux, Mac and Windows)”

Build 21 4 2 “ Miscellaneous files used by the build process.”

Content 881 2948 13

“ The data structures that represent the structure of Web pages (HTML, SVG, XML documents, elements, text nodes, etc.)”
“ containing the implementation of many DOM interfaces”

“ and also implement some behaviors associated with those objects, such as link handling, form control behavior, and form submission.”
“ This directory also contains the code for XUL, XBL, XTF as well as the code implementing XSLT and event handling.”

Db 97 494 4 “ Container for database-accessing modules.”

Dom 163 324 5
“ IDL definitions of the interfaces defined by the DOM specifications”

“ The parts of the connection between JavaScript and the implementations of DOM objects”
“ Implementations of a few of the core “DOM Level 0” objects, such as window, window.navigator, window.location, etc.”

Extensions 179 206 13

“ Contains several extensions to mozilla, which can be enabled at compile-time”
“ Implementation of the negotiate auth method for HTTP and other protocols. Has code for SSPI, GSSAPI, etc.”

“ Permissions backend for cookies, images, etc., as well as the user interface to these permissions and other cookie features.”
“ Support for the datetime protocol; Support for the finger protocol.”

“ A two-way bridge between the CLR/.NET/Mono/C#/etc. world and XPCOM”
“ Implementation of W3C’s Platform for Privacy Preferences standard. Support for implementing XPCOM components in python.”

“ Support for accessing SQL databases from XUL applications; Support for Webservices.”

Gfx 342 644 7
“ Contains interfaces that abstract the capabilities of platform specific graphics toolkits, along with implementations on various platforms”

“ These interfaces provide methods for things like drawing images, text, and basic shapes”
“ It also contains basic data structures such as points and rectangles used here and in other parts of Mozilla.”

Intl 573 957 7

“ Internationalization and localization support; Code for “sniffing” the character encoding of Web pages”
“ Code for dealing with Complex Text Layout, related to shaping of south Asian languages”

“ Code related to determination of locale information from the operating environment”
“ Code that converts (both ways: encoders and decoders) between UTF-16 and many other character encodings”

“ Code related to implementation of various algorithms for Unicode text, such as case conversion.”
Ipc 391 59 4 “ Container for implementations of IPC (Inter-Process Communication).”

TABLE 8
Data sets specifications for two large and very large software systems

Project Version Description SLOC #File
ITK 4.5.2 Image Segmentation Toolkit 1M 7,310

Chromium svn-171054 Web Browser 10M 18,698

4.3 Assessment of results

In the literature, there are many software clustering algo-
rithms and thus to determine the appropriate algorithm,
some metrics were presented for determining the quality
of clustering. There exist generally two types of metrics for
determining the quality of clustering: internal metrics, and
external metrics. Internal metrics are independent of any
ground-truth architecture, which calculate the quality of the
recovered architectures.

TurboMQ presented in [5] is one of the internal metrics
which is used in many research papers to evaluate the quality
of the recovered architectures e.g., [9], [15], [40]. This metric
is defined as follows:

TurboMQ =
k∑

i=1

2Ai

2Ai +
k∑

j=1
(Ei,j + Ej,i)

(3)

where Ai represents the internal communication into cluster
i, Eij represents the external communication between two
clusters i and j. The higher TurboMQ value indicates better
clustering.

The MoJoFM metric is also used to evaluate clustering
techniques [41]. This metric is a well-known and widely
used external assessment (e.g., see [7], [8], [10], [15], [37]). In

external assessment, the automatically prepared clustering,
A, is compared with the decompositions prepared by human
experts, B [10]. The value of MoJoFM is between 0 and 100,
and the higher value means the more proximity between
clustering generated by an algorithm and decomposition cre-
ated by an expert and hence better results [10]. The MoJoFM
is calculated by Eq. 4:

MoJoFM(A,B)(%) = 1− mno(A,B)

max(mno (∀A,B))
(4)

where mno(A,B) denotes the minimum operations required
for converting clustering A to clustering B.

Cluster-to-cluster coverage (C2C) [14], [15], [16] is an
external metric to assess component-level accuracy that mea-
sures the degree of overlap between the two architecture’s
clusters. Before calculating C2C between two recovered ar-
chitecture, it is necessary to calculate the following equation.

c2c(ci, cj) =
|entities(ci) ∩ entities(cj)|

max(|entities(ci)|, |entities(cj)|)

where ci is an automatically prepared clustering; cj is a
ground-truth cluster; and entities(c) is the set of entities in
cluster c. C2C is computed as following.

C2C(A1, A2)(%) =
|simC(A1, A2)|
|A1.C|

(5)

simC(A1, A2) = {ci|(ci ∈ A1,∃cj ∈ A2)∧c2c(ci, cj) > thcvg)}

A1 is the recovered architecture; A2 is a ground-truth
architecture; and A1.C are the clusters of A1. simC(A1, A2)
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TABLE 9
The parameter setting for experiments

Parameter Value
Population size 10N

Maximum number of
generations 200N

Crossover Rate 0.8
Mutation Rate 0.004log2(N)

Termination condition There has been no improvement
in the population for 50 iterations

returns A′1s clusters for which the c2c value is above a
threshold thcvg .

To compare the overall results of FCA against other tested
algorithms in terms of TurboMQ, MoJoFM, C2C, and run-
ning time, we utilized a non-parametric effect size statistic
namely Cliff’s δ which is used to quantify the amount of
difference between two algorithms.

4.4 Algorithmic Parameters
The setting of parameters is necessary for search-based algo-
rithms. For genetic-based algorithms, for our comparisons,
we followed the algorithmic parameters setting used in [9],
[20]. Algorithmic parameters are dependent on the number
of artifacts (N). For the rest of the algorithms (i.e., Hill-
climbing algorithm and Estimation of Distribution algo-
rithm), we used the same parameters as those used by the
authors of these algorithms. We obtained the implementation
of the ACDC from its official web sites.

As references [8], [9], [37], to reduce randomness the
results of the search-based algorithms used in comparisons,
we collect the best of 30 independent runs. For MoJoFM,
TurboMQ, and C2C, we report the best values rounded to
the closest integer. Let N denote the number of artifacts, the
parameter setting for experiments is shown in Table 9.

4.5 Research questions
The following questions are answered to evaluate the effec-
tiveness of the proposed algorithm.
RQ1. Does the proposed algorithm perform better than the
hierarchical and non-hierarchical clustering algorithms in
terms of TurboMQ, MoJoFM, and C2C?
RQ2. Is the proposed algorithm scalable?
RQ3. Is there a statistically significant improvement between
the FCA and the algorithms compared?

We ran the algorithms on a Laptop with Intel core i7
processor 2.60GHz and 16GB of memory.

5 EXPERIMENTAL RESULTS

This section presents the results of the empirical study. The
aim is to compare the proposed algorithm, FCA, against
some hierarchical and non-hierarchical algorithms in terms
of TurboMQ, MoJoFM, C2C, and running time. To this end,
eight search-based algorithms with different characteristics
are chosen. The algorithms selected vary from each other

in some different ways including single-objective, multi-
objective, global search, local search, structured-based meth-
ods, and semantic-based methods. The software clustering
approaches to which we compared FCA are Bunch-GA,
DAGC, ECA, MCA, Bunch-NAHC, SHC, GA-SMCP, and
EoD. The characteristics of these algorithms are described
in Table 10. K-means, a basic machine learning algorithm,
and ACDC, a clustering algorithm based on subsystem pat-
terns are also used for comparison. Several previous studies
[14], [15], [16] have shown that ACDC performed well on
the tested applications. Besides, we selected agglomerative
clustering algorithms such as Complete, Single, Average
(Weighted), WCA-UE, WCA-UENM, and LIMBO for com-
parison.

To compare and evaluate the proposed algorithm, several
software systems with different domains and sizes have
been selected. Tables 6-8 show the specifications of these
software systems. Note that the dependency used in the
software systems shown in Table 6 are call and include
dependencies. The dependency used in the software systems
shown in Table 7 are call and include dependencies, that we
are obtained from their source code using Understand toolset
(https://scitools.com/).

Lutellier et al. [15] have extracted various dependencies
for ITK and Chromium applications such as include, symbol,
Function call, etc. These dependencies alone do not cover the
entire program. For example, in Chromium, the function call
dependency only covers 12,627 artifacts of 18,698 artifacts.
So, to cover the whole program, we merged these dependen-
cies and removed duplicate dependencies.

The size of projects used for the experiments are 13 to
18,698 source files. Table 11 shows the size of projects used
for experiments in some existing clustering algorithms.

To answer the research question RQ1, we compared the
proposed algorithm against some hierarchical algorithms, k-
means and ACDC in terms of TurboMQ on ten small-sized
applications shown in Table 6. Table 12 shows the compar-
ison results. The results demonstrate that in all cases the
proposed algorithm has been able to obtain higher quality
clustering than the algorithms tested.

We have also selected the Mozilla Firefox application. The
reason for this choice is that there is an expert decomposition
for it. Ten folders with different functionalities have been se-
lected from this application. We have clustered these folders
with eight evolutionary algorithms with different features,
k-means and ACDC. Because the clustering problem is an
NP-hard problem, evolutionary algorithms usually produce
plausible solutions [8], [9]. In terms of MoJoFM, Table 13
shows that the proposed algorithm performs better in six
out of ten cases. In the Build folder, there is a significant
difference between the FCA and the other algorithms in
the value of MoJoFM, and the FCA did not work well. The
reason for this improper performance is that the dependency
graph of this folder is disconnected and also has several
isolated vertices. Note that, the FCA works better in large
folders than other algorithms. In terms of C2C (thcvg > 33%),
the FCA can compete with other algorithms. In terms of
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TABLE 10
Features of selected search-based algorithms for comparison with the proposed algorithm

Algorithm Algorithm type #objective used Search type Structural based/
Semantic-based Encoding type

Bunch-GA [5] Genetic algorithm Single-objective Global Structural real-valued

DAGC [22] Genetic algorithm Single-objective Global Structural permutation-
based

ECA [9] two-Archive genetic algorithm Multi-objective Global Structural real-valued
MCA [9] two-Archive genetic algorithm Multi-objective Global Structural real-valued

Bunch-SAHC [17] Hill-climbing algorithm Single-objective Local Structural real-valued
SHC [21] Hill-climbing algorithm Single-objective Local Semantic real-valued

GA-SMCP [20] Genetic algorithm Single-objective Global Structural real-valued

EoD [8] Estimation of Distribution algorithm Multi-objective Global Semantic &
Structural real-valued

TABLE 11
Projects size used for experiments in some clustering algorithms

Reference Projects size (#modules or #files)
[9], [20] 20 to 198
[5], [17] 13 to 413

[31] 13 to 124
[8] 21 to 97

[32] 63 to 401
[24] 4 to 93
[21] 21 to 881
[20] 20 to 198
[40] 41 to 97

in this paper 13 to 18698

TABLE 12
Comparison of proposed algorithm with some Hierarchical algorithms,

k-means and ACDC in terms of TurboMQ

Software
systems WCA-UE Average

Linkage
Complete
Linkage

Single
Linkage ACDC k-means FCA

Compiler 0.836 0.527 0.527 0.933 1 0.85 1.22
Boxer 1.343 0.964 0.983 0.964 2.82 0.79 3.020
Ispel 1.489 1.739 1.639 0.995 1.75 1.2 1.97
Bison 0.994 0.994 0.994 0.994 1 1 2.25
Cia 0.997 0.997 0.997 0.997 1.86 1.78 2.049

Ciald 0.984 0.487 1.093 0.984 1.70 0.78 1.72
Nos 0.969 0.990 0.990 0.990 1 0.98 1.08
Rcs 0.977 0.990 1.018 1.018 1 1.26 1.81

Spdb 0.933 0.933 0.933 0.933 5 1.15 5
Star 1.388 0.989 0.805 0.989 2.09 0.81 3.048

TurboQ, Table 14 shows that the FCA has comparable results.
The important point is that the running time of the algo-

rithm is much shorter than the algorithms compared. Table
15 shows the running times of the algorithms. In the folders
where there are many artifacts, the difference in running time
is considerable. In terms of time, the FCA has significant
superiority over evolutionary algorithms. For example, the
well-known MCA algorithm took about 260 hours to cluster
the content folder, while the proposed algorithm took about
3 seconds. With the increase in the size of software systems,
the performance of evolutionary algorithms slows down due
to the size of their solutions, the time-consuming operators,
and in some cases, memory problems. But the proposed
solution only works on the matrix, which makes it less time
consuming than the others.

To answer the research question RQ2, to further inves-
tigate the performance of the proposed algorithm, we have

selected two large (ITK including 7,310 files) and very large
software systems (Chromium including 18,698 files).

For future comparison, we selected four state-of-the-art
algorithms, which all are published in IEEE Transactions
on Software Engineering Journal. The algorithms selected
are Bunch-SAHC, WCA-UE, WCA-UENM, and LIMBO. The
Bunch-SAHC is a search-based algorithm and others are hier-
archical algorithms. We also selected two famous algorithms
k-means and ACDC. Due to time and memory problems,
we were unable to select other algorithms from search-based
methods. Table 16 shows the results in terms of TurboMQ,
MoJoFM, C2C, and run time. The results show that the pro-
posed algorithm performs better than hierarchical algorithms
and can also compete with the Bunch-SAHC algorithm and
ACDC. But the running time of the proposed algorithm is
much shorter, which is discussed below.

For ITK and Chromium, the techniques compared take
several hours to days to run. Considering the existing tested
algorithms, running all experiments for Chromium would
take more than a week of CPU time on a single machine or
time out (TO), and the ACDC takes 10 hours for clustering.
Bunch-SAHC, and LIMBO timed out after 24 and 8 days, re-
spectively. For Bunch-SAHC, we report here the intermediate
architecture recovered at that time. K-means can take varying
numbers of clusters as input. For k-means, the algorithm
has been executed with different values of k in steps of 5
increment, up to a specified runtime. It is important to note
that it is not possible to terminate hierarchical methods in
the clustering process and these algorithms must be executed
until the last step. But it is possible to terminate search-based
algorithms in the clustering process and report the interme-
diate results. The results obtained from this research question
demonstrate that the proposed algorithm is scalable, and can
cluster large applications in less time.

To answer the research question RQ3, Cliff’s δ effect size
metric is utilized. This test is a non-parametric effect size
metric that quantifies the difference among two groups of
observations (here FCA against other tested algorithms). The
result of this metric is in range −1 to 1 and higher value
shows that results of the first group (here, FCA) generally
are better than the second group (other algorithms). To inter-
pret, as [15], the following magnitudes are used: negligible
(|δ|< 0.147), small (|δ|< 0.33), medium (|δ|< 0.474), and
large (0.474 ≥ |δ|). The results (Table 17) indicate that, in
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TABLE 13
Comparison of proposed algorithm with some state-of-the-art search-based algorithms in terms of MoJoFM (M)(%) and C2C (C)(%)

Folder name Bunch-GA DAGC ECA MCA Bunch-NAHC SHC GA-SMCP EoD ACDC k-means FCA
M C M C M C M C M C M C M C M C M C M C M C

Accessible 42 40 27 0 37 45 39 49 28 20 27 0 38 28 42 45 40 31 35 10 42 40
Browser 70 55 45 12 60 49 72 55 50 38 52 19 70 58 48 58 65 33 57 60 87 60

Build 84 69 47 29 78 61 78 61 84 61 84 61 84 61 94 77 66 33 83 50 67 55
Content 31 12 10 2 27 15 35 18 21 11 22 12 18 9 31 25 57 43 48 10 60 30

Db 94 60 50 43 96 72 96 72 94 71 94 65 91 69 91 81 96 72 95 50 95 50
Dom 58 33 25 0 52 21 53 23 40 19 38 20 58 31 58 42 82 67 47 33 83 67

Extensions 49 30 22 2 58 35 53 31 24 12 28 19 48 25 51 40 76 71 45 26 79 71
Gfx 54 38 29 11 60 49 67 53 42 28 42 22 54 21 60 31 71 36 65 20 64 26
Intl 79 69 40 15 74 65 83 68 75 68 75 61 71 65 75 62 91 79 79 59 81 73
Ipc 81 65 39 15 80 65 80 65 81 65 81 68 80 63 80 58 60 30 68 50 82 70

TABLE 14
Comparison of proposed algorithm with some state-of-the-art search-based algorithms, k-means and ACDC in terms of TurboMQ

Folder name Bunch-GA DAGC ECA MCA Bunch-NAHC SHC GA-SMCP EoD ACDC k-means FCA
Accessible 6.26 0.93 22.17 28.98 4.80 10.01 14 29.21 12.26 0.82 17.92
Browser 3.72 0.92 4 28.5 5.85 9 6.5 9 11.45 0.98 7.57

Build 3 0.5 3 3 1 0.92 1.23 2.9 3 0.85 3
Content 6.76 0.19 46.09 39.40 5.41 16.97 12.01 10.11 28.05 2.69 36.66

Db 2.34 0.86 5.5 6.9 2.60 2.34 1.90 2.51 3.12 0.70 2.7
Dom 6.16 0.92 23.51 79.38 4.30 12.87 5.11 8 6.93 0.67 7.44

Extensions 11.80 0.91 24.92 32.85 6.66 8.90 10.99 13 7 1.8 26.62
Gfx 6.50 0.82 29.14 70.43 4.32 3.01 6.86 12.22 10.58 1.63 19.83
Intl 5.46 0.90 60.04 116.63 2.54 7.90 4.11 12.90 12.16 0.86 31.19
Ipc 5.64 0.84 17.7 18.29 3.92 4.50 5.64 10.90 19.68 1.63 11.41

TABLE 15
Comparison of proposed algorithm with some state-of-the-art search-based algorithms in terms of time (second)

Folder name Bunch-GA DAGC ECA MCA Bunch-NAHC SHC GA-SMCP EoD ACDC k-means FCA
Accessible 4535 7471 4521 4437 101.5 869 5921 3990 0.86 4.03 0.30
Browser 708 609.5 733.5 796.5 4.95 12.25 901 541 0.86 0.72 0.18

Build 512 383.805 421.5 425 3 3.2 540 431 0.26 0.05 0.03
Content 950337.5 4794247.5 943040 943021 698441.5 6531479 5224315 890021 3.31 2007.9 3.30

Db 494.5 1834.495 1363.5 1470.5 47.4 1350.5 2301 481 1.25 0.32 0.26
Dom 3110 6139 3082.5 3153 110.5 101.4 6341 2208 0.79 0.95 0.25

Extensions 6264 7653 6461 6730 266.5 4032 6421 6259 0.36 3.24 0.28
Gfx 15563 28173 14781 14966 1131 2036 21540 13238 0.70 19.05 0.51
Intl 222888 1333765.5 223645 222884 238100.5 419513.5 1034921 22198 1.24 40 0.82
Ipc 62770.5 424153.5 62642.5 62683.5 1196 899.5 99101 61211 0.15 0.48 0.11

TABLE 16
Comparison of the proposed algorithm with other algorithms on ITK and
Chromium in terms of TurboMQ (T)(%), MoJoFM (M)(%), C2C (C)(%),

Time (d: day, h: hour, s: second). † Scores denote results for
intermediate architectures recovered at that time.

ITK Chromium
Algorithm T M C Time T M C Time

Bunch-SAHC 14 42 1 24† d 14 53 10 24† d
WCA-UE 1 33 0 16 h 1 21 0 31 h

WCA-UENM 2 31 0 18 h 1 23 0 38 h
LIMBO 10 28 0 8 d TO TO TO TO
ACDC 15 55 0 565 s 18 58 41 10 h

k-means 14 26 0 24† h 6 33 7 36† h
FCA 28 44 6 272 s 16 36 45 8 h

terms of time, the FCA is better than the other algorithms.
Also, the values of MoJoFM, TurboMQ, and C2C in FCA are
better than the other algorithms in general.

From the short review above, the main achievements,

TABLE 17
Cliff’s δ Effect Size Test. A positive value indicates that the effect size
favor of the FCA. The interpretation of the effect size is indicated in

parenthesis. neg. stands for negligible and med. for medium.

Algorithm TurboMQ MoJoFM C2C Time
Bunch-GA .59 (large) .31 (small) .24 (small) 1 (large)

ECA -.19 (small) .5 (large) .23 (small) 1 (large)
MCA -.48 (large) .28 (small) .15 (small) 1 (large)

Bunch-NAHC .87 (large) .44 (med.) .39 (med.) 1 (large)
Bunch-SAHC 1 (large) -.5 (large) .5 (large) 1 (large)

SHC .68 (large) .44 (med.) .48 (large) 1 (large)
GA-SMCP .7 (large) .34 (med.) .31 (small) 1 (large)

EoD .24(small) .36 (med.) .05 (neg.) 1 (large)
ACDC .19 (small) .05 (neg.) .1 (neg.) .37 (med.)

k-means .80 (large) .26 (small) .45 (large) .48 (large)
WCA-UE .91 (large) 1 (large) 1 (large) 1 (large)

WCA-UENM 1 (large) 1 (large) 1 (large) 1 (large)
LIMBO 1 (large) 1 (large) 1 (large) 1 (large)
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including contributions to the field can be summarized as
follows:

1) Compared with hierarchical algorithms, the FCA
results in a modularization of higher quality and is
also comparable with search-based algorithms and
ACDC, a state-of-the-art algorithm, in terms of the
internal and external metrics.

2) Because the FCA has fewer and simpler operations
than the other algorithms, it can cluster large graphs
in less time and therefore it is scalable. Compared
to the state-of-the-art algorithms, the proposed algo-
rithm is the fastest software clustering algorithm.

6 THREATS TO VALIDITY

In this section, we discuss the threats that could affect the
validity of the results obtained from the evaluation. Despite
our efforts to avoid/reduce as many threats to validity as
possible, some are inevitable. In the following, we address
the threats to validity from two aspects of external and
internal validity.

Threats to External Validity. Several factors may restrict
the generality and limit the interpretation of our results.
The main external threat arises from the possibility that the
selected application is not representative of software systems
in general, with the result that the findings of the exper-
iments do not apply to ‘typical’ software systems. To ad-
dress these concerns, a variety of applications with different
functionalities and sizes are considered. There is, therefore,
reasonable cause for confidence in the results obtained and
the conclusions drawn from them.

Threats to Internal Validity. The external metrics used to
the evaluation can affect the validity of the results. As [10],
[15], we utilized two well-known and widely used metrics,
namely MoJoFM, C2C, for the evaluation. Different metrics,
such as architecture-to-architecture [15], and EdgeSim [4],
may produce different results for the same software system.

Another important factor that affects the experiment
results is the accuracy of the authoritative decomposition
achieved from a software system. We used the package
structure (directory structure) of the Mozilla Firefox as an
authoritative decomposition. The expert decompositions that
we selected have been used earlier in software modular-
ization experiments in [7], [8]. We know that there is a
big threat as the directory structure of a project is often
different from the actual “ground-truth decomposition.” In
well-structured projects, the directory structure of the project
originally usually reflects the architecture of the project [39].
To handle this threat, we selected the developer preview
version of the Mozilla Firefox, because there is a credible
(human) expert decomposition (the directory structure) of
that. It is worth mentioning that the selected version is a
stable version, as small changes have been made to it and its
directory structure has not changed.

Isolated vertices (single vertices). These nodes have no
connection to other nodes. Thus, it is not possible to assign
them into specific clusters. These single vertices are one of

the reasons for the discrepancy between the results of the
algorithms and the expert clustering.

7 CONCLUSION

Given the importance of clustering in understanding and
maintaining software as well as its importance for extracting
software architecture, in this paper, we proposed a new
style of software system clustering based on the artifact
dependency graph. To this end, we proposed a clustering
algorithm that works on the dependency matrix. Compara-
tive results indicated that it performs better than hierarchical
algorithms and competes with search-based algorithms in
terms of TurboMQ (an internal metric) and two external
metrics namely MoJoFM and C2C. The main feature of
the FCA is its scalability. It can cluster very large software
systems within a reasonable amount of time.

Future research should be devoted to the development of:

1) Using the non-structural features. The algorithm
will be developed to consider some nonstructural
features such as artifacts name and comments, along
with structural features, in the process of software
clustering.

2) Preprocessing for determining libraries and util-
ities. Some algorithms try to delete libraries and
utilities before the clustering process.

REFERENCES

[1] X. Xia, L. Bao, D. Lo, Z. Xing, A. E. Hassan, and S. Li, “Measuring
program comprehension: A large-scale field study with profession-
als,” IEEE Transactions on Software Engineering, vol. 44, no. 10, pp.
951–976, 2017.

[2] S. Ducasse and D. Pollet, “Software architecture reconstruction: A
process-oriented taxonomy,” IEEE Transactions on Software Engineer-
ing, vol. 35, no. 4, pp. 573–591, 2009.

[3] M. Shtern and V. Tzerpos, “Clustering methodologies for software
engineering,” Advances in Software Engineering, vol. 2012, 2012.

[4] A. Isazadeh, H. Izadkhah, and I. Elgedawy, Source code modulariza-
tion: theory and techniques. Springer, 2017.

[5] B. S. Mitchell and S. Mancoridis, A heuristic search approach to solving
the software clustering problem. Drexel University Philadelphia, PA,
USA, 2002.

[6] P. Andritsos and V. Tzerpos, “Information-theoretic software clus-
tering,” IEEE Transactions on Software Engineering, vol. 31, no. 2, pp.
150–165, 2005.

[7] S. Mohammadi and H. Izadkhah, “A new algorithm for software
clustering considering the knowledge of dependency between ar-
tifacts in the source code,” Information and Software Technology, vol.
105, pp. 252–256, 2019.

[8] N. S. Jalali, H. Izadkhah, and S. Lotfi, “Multi-objective search-based
software modularization: structural and non-structural features,”
Soft Computing, pp. 1–25, 2018.

[9] K. Praditwong, M. Harman, and X. Yao, “Software module clus-
tering as a multi-objective search problem,” IEEE Transactions on
Software Engineering, vol. 37, no. 2, pp. 264–282, 2011.

[10] R. Naseem, O. Maqbool, and S. Muhammad, “Cooperative cluster-
ing for software modularization,” Journal of Systems and Software,
vol. 86, no. 8, pp. 2045–2062, 2013.

[11] O. Maqbool and H. Babri, “Hierarchical clustering for software
architecture recovery,” IEEE Transactions on Software Engineering,
vol. 33, no. 11, pp. 759–780, 2007.

[12] A. Shokoufandeh, S. Mancoridis, and M. Maycock, “Applying spec-
tral methods to software clustering,” in Ninth Working Conference on
Reverse Engineering, 2002. Proceedings. IEEE, 2002, pp. 3–10.

Authorized licensed use limited to: University of New South Wales. Downloaded on September 26,2020 at 14:04:31 UTC from IEEE Xplore.  Restrictions apply. 



0098-5589 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2020.3022212, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 12

[13] V. Tzerpos and R. C. Holt, “Acdc: an algorithm for comprehension-
driven clustering,” in Proceedings Seventh Working Conference on
Reverse Engineering. IEEE, 2000, pp. 258–267.

[14] T. Lutellier, D. Chollak, J. Garcia, L. Tan, D. Rayside, N. Medvi-
dovic, and R. Kroeger, “Comparing software architecture recovery
techniques using accurate dependencies,” in 2015 IEEE/ACM 37th
IEEE International Conference on Software Engineering, vol. 2. IEEE,
2015, pp. 69–78.

[15] T. Lutellier, D. Chollak, J. Garcia, L. Tan, D. Rayside, N. Medvi-
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