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a b s t r a c t

Cardiovascular disease has become a major global health care problem in the present decade.

To tackle this problem, the use of cardiovascular stents has been considered a promising and

effective approach. Numerical simulations to evaluate the in vivo behavior of stents are

becoming more and more important to assess potential failures. As the material failure of a

stent device has been often associated with fatigue issues, as a result of the high number of

cyclic loads these devices are subjected to in vivo, numerical approaches for fatigue life

assessment of stents has gained special interest in the engineering community. Numerical

fatigue predictions can be used to modify the design and prevent failure, without making and

testing numerous physical devices, thus preventing from undesired fatigue failures. This work

presents a fatigue life numerical method for the analysis of cardiovascular balloon-expand-

able stainless steel stents. The method is based on a two-scale continuum damage mechanics

model in which both plasticity and damage mechanisms are assumed to take place at a scale

smaller than the scale of the representative volume element. The fatigue failure criterion

is based on the Soderberg relation. The method is applied to the fatigue life assessment of

both PalmazShatz and Cypher stent designs. Validation of the method is performed through

comparison of the obtained numerical results with some experimental results available for

the PalmazShatz stent design. The present study gives also possible directions for future

research developments in the framework of the numerical fatigue life assessment of real

balloon-expandable stents.

& 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Stents are small tube-like medical devices used to restore

patency of blood vessels where the lumen area is reduced due

to atherosclerosis, a degenerative disease of the vessel wall.

The stent acts as a mechanical scaffold for the vessel and its

implant is performed by a minimally invasive procedure insert-

ing a catheter through a small incision in the femoral artery.
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Stenting is nowadays a common clinical practice especially for

the treatment of coronary stenosis, which has a high econom-

ical and social impact in the Western countries (AHA, 2010). The

majority of coronary stents are manufactured laser-cutting the

stent pattern from a thin tube of medical grade 316L austenitic

stainless steel. After annealing and electro-polishing treat-

ments, the stent is mounted on an angioplasty balloon. The

balloon expansion drives the stent expansion leading to plastic

deformation providing a permanently expanded state. Clearly, a

certain level of elastic recoil occurs on deflation and removal of

the balloon (Aziz et al., 2007).

As the heart beats, and hence the arteries pulse, at typically

70 times per minute (around 40 million times per year), stents

are subjected to long-term cyclic loading conditions.

The US regulatory authority over these devices (FDA)

recommends that stents must withstand 10–15 years of

pulsatile loading in vivo, the equivalent to 400–600 million

loading cycles. Therefore, the long-term structural integrity

of a stent, in particular its mechanical fatigue behavior, must

be one of the major design considerations.

The fatigue behavior of a stent results from a complex

interaction of two stress states. The first of these is the state

to which the device is statically loaded and deformed as a

result from the positioning of the stent within the vessel. This

state is typically characterized by high plastic strain levels in

some parts of the stent and, therefore, by high residual stresses.

A second state is then imposed, which corresponds to the cyclic

(alternating) component of the loading as a consequence of the

pulsatile blood-pressure variations in the vessel. The first state

will be hereafter termed the mean stress state, whereas the

second will be referred to as the alternating stress state.

For stents made of standard metallic materials, the fatigue

damage induced by the alternating stress state can be divided

into three main stages: crack initiation, stable crack growth

and final failure (Suresh, 1998; Schijve, 2009). Approaches

to fatigue life prediction traditionally focus on one of the

two first stages of the fatigue damage process. Total-life

approaches, often also referred to as safe-life approaches,

define failure as the initiation of a crack and, accordingly, the

number of loading cycles before crack initiation is assumed

as the total fatigue life. These approaches are based either on

S�N or e�N experiments, both giving the number of loading

cycles N until a plain specimen fails (fatigue life), the former

considering the specimen under constant cyclic stress ampli-

tude (with zero mean stress), whereas the latter considering

the specimen under a constant strain amplitude. While S�N

curves are suited for materials in the high-cycle fatigue

regime, i.e., where typically more than 105 cycles at low

stresses are required to failure and where deformation is

primarily elastic, e�N curves are employed typically for

materials in the low-cycle regime, i.e., where less than 105

cycles characterized by stresses that are high enough for

plastic deformations to occur are required to failure. Damage-

tolerant approaches, on the other hand, define life in terms of

time or number of loading cycles to propagate the largest pre-

existing flaw to catastrophic failure, typically resorting to

linear elastic fracture mechanics tools.

Stents are typically designed to work in the so-called high-

cycle fatigue regime. Under this regime, the equivalent von

Mises stresses are above the fatigue limit (usually defined as

the stress amplitude requiring 106 load cycles up to rupture),

but considerably below the yield stress (Suresh, 1998). This

leads very often to a number of loading cycles to failure

greater than 105. In this regime damage can be considered

as a microscale process of progressive deterioration of the

material with no influence on the mesoscopic behavior

where, up to crack initiation, the material deforms primarily

elastically at the scale of the representative volume element

(mesoscale), and coupling between plasticity and damage

may be neglected everywhere but at the microscale (Lemaitre

and Desmorat, 2005).

Crack initiation modeling using the classical linear elastic

fracture mechanics theory is difficult in the high-cycle fatigue

regime, since the scale where the mechanisms operate is not the

mesoscale. In fact, although the linear elastic fracture mechanics

theory has proved its capability to reflect the main trends of

crack propagation or the advanced part of damage, when dealing

with small cracks (microcracks), fracture mechanics tools are

inadequate. For stents, this inadequacy was confirmed by (James

and Sire, 2010).

The material behavior in the high-cycle fatigue regime may

be well characterized by resorting to the continuum damage

mechanics theory, first introduced by (Kachanov, 1958) and

(Rabotnov, 1969). This theory, based on irreversible thermo-

dynamics, has been widely applied to study the behavior of

rocks and concrete as well as ductile fracture, creep rupture

and fatigue failure of metals. The material degradation

caused by the initiation, growth and coalescence of micro-

cracks in a material element due to cyclic loading is well

suited for characterization by the theory of continuum

damage mechanics, e.g. (Chaboche, 1988a, 1988b; Lemaitre

and Chaboche, 1990; Lemaitre, 1992). Centered on microcrack

development, the continuum damage mechanics theory pro-

vides a good understanding of the mechanisms of fatigue

failure by means of damage variables, taken as internal

variables within the framework of the thermodynamics of

irreversible processes, which represent the deterioration of a

material element. Different continuum damage mechanics

based models have been proposed in the literature for the

high-cycle fatigue analysis of metallic structures. Among

others, models based on two-scale approaches in which

micro and mesoscales are linked by means of a localization

law (Lemaitre and Doghri, 1994; Lemaitre et al., 1999;

Desmorat and Lemaitre, 2001; Lemaitre and Desmorat, 2005;

Desmorat, 2006; Desmorat et al., 2007; Flaceliere et al., 2007a,

2007b), and models relying on a single macroscopic (engi-

neering) scale (Oller et al., 2005; Ottosen et al., 2008) can be

found in the fatigue of metals literature. However, due to its

inherent multi-scale manifestation, the high-cycle fatigue

damage can only be properly captured by resorting to models

which are capable of dealing with plasticity and damage on a

scale smaller than the macroscopic scale, as for instance the

two-scale models cited above.

Furthermore, as the experiments for such small devices are

challenging, see e.g. (Weiss et al., 2009), the assessment of

fatigue life of a coronary stent is not a trivial task. Computa-

tional tools, as finite element analysis, have already proved

extensively their usefulness to analyze both the design of the

coronary stents and their interaction with the vessel wall,

see e.g. the works by (Auricchio et al., 2001; Migliavacca et al.,
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2002; Lally et al., 2005; Wang et al., 2006; De Beule et al., 2008;

Ju et al., 2008; Mortier et al., 2010). None of these works have

however addressed the fatigue life assessment of stents. In

fact, only a few works dealing with the numerical assessment

of the fatigue life of stents can be found in the literature, see

e.g. the works by (Perry et al., 2002; Marrey et al., 2006; Pelton

et al., 2008; Li et al., 2010; Arakere et al., 2012). In particular,

Marrey et al. (2006) introduced a damage-tolerant approach

for the analysis of cardiovascular stents, where the design life

is evaluated using a fracture mechanics methodology. The

approach can be used to quantify the effect of flaws in terms

of their potential effect on device failure. Li et al. (2010)

proposed a new methodology based on both computational

and experimental techniques to analyze the stress distribu-

tion of different phases and evaluate the fatigue life accord-

ing to Goodman (1899) criteria. The obtained results indicate

that the maximum and alternating stresses were always

located at the curvature areas of the rings. The common

drawback of these methodologies is the use of continuum-

based material models, which are incapable of explicitly captur-

ing microstructural effects. Furthermore, as underlined by

Wiersma et al. (2006), data from conventional macroscopic

specimens cannot be used to realistically predict the behavior

of microscopic components, like stent struts, with a size

comparable to the characteristic scale of its microstructure,

e.g., the grain size. In these situations, continuum approaches

relying on macroscopic material properties to model material

behavior may be regarded as somewhat questionable, and

alternative numerical analyses, based on crystal plasticity,

providing a means of explicitly modeling microstructural grains

in a polycrystalline material, may be needed (Savage et al., 2004;

You et al., 2006; Harewood and McHugh, 2007; McGarry et al.,

2004, 2007). This methodology requires, however, an accurate

representation of the microstructure, based on high-resolution

measures and images.

It is the purpose of this work to present a numerical fatigue

life approach for the analysis of cardiovascular balloon-

expandable (stainless steel) stents that can provide useful

information either to be used for product improvement or for

clinicians to make life-saving decisions. This approach incor-

porates the two-scale plasticity–damage model proposed by

(Lemaitre et al., 1999; Desmorat and Lemaitre, 2001), modified

by means of the so-called Soderberg (1939) fatigue relation

in order to take into account the high mean stress effects

inherent to cardiovascular stents.

The outline of the paper is as follows: the thermodynamics

framework of the two-scale plasticity–damage model of

Lemaitre, along with its corresponding plasticity and damage

evolution laws, damage and microcrack initiation criteria and

numerical implementation scheme are introduced in Section

2. The application of this model to the fatigue life prediction

of two different cardiovascular balloon-expandable stainless

steel stent designs is considered in Section 3, which has in

turn been subdivided into two main parts: the first part

presents the finite element analysis set-up, resembling both

stent deployment within the cardiovascular artery and the

subsequently pulsatile loading, whereas the second part

addresses the fatigue life assessment methodology, in particular,

the material parameters identification issue, the Soderberg

fatigue limit criterion, and the application of the method to

the analysis of the two stent designs under investigation. Some

directions for the improvement of the proposed numerical

fatigue life approach are indicated in Section 4 and, finally, the

conclusions are given in Section 5.

We use the following notation. Bold face lower-case letters

are used to denote vectors, and bold face upper-case letters to

denote matrices. The components of vectors and matrices

are denoted by light-face letters, as well as the ordinary

scalars. Finally, we define the double dot product of two

tensors using a double dot: e.g., A : B¼ c, with A and B two

tensors and c a real scalar.

2. The two-scale plasticity–damage model of
Lemaitre

Several typical material failure problems have been success-

fully modeled by resorting to the continuum damage

mechanics theory. Its suitability to capture both crack initia-

tion and crack propagation under arbitrary loading conditions

makes it one of the most important tools for material failure

modeling. Damage mechanics models require accurate material

constitutive equations and damage evolution equations obtained

from precise phenomenological (mesoscale) descriptions of the

material behavior.

However, in the high-cycle fatigue regime, mesoscopic

plasticity is, for the most part, negligible, and crack initiation

occurs in localized plasticity spots surrounded by a material

in the elastic range. Hence, damage is localized on a micro-

scopic scale with negligible influence on the mesoscopic scale.

In other words, the coupling between damage and plasticity

may be neglected everywhere in the structure except in the

microscale where the damage develops.

One of the first attempts presented in the literature to

extend the framework of continuum damage mechanics to

the fatigue field including its multi-scale aspect is the model

proposed by Lemaitre (1985), further extended and improved in

Lemaitre and Doghri (1994), Lemaitre et al. (1999), Desmorat and

Lemaitre (2001), and Lemaitre and Desmorat (2005). This model

considers two phases, see Fig. 1. One represents a microscopic

spherical inclusion with an elasto-plastic coupled with isotropic

damage behavior, and the other represents a mesoscopic elastic

(possibly elasto-plastic) matrix, represented through the repre-

sentative volume element (RVE), in which the inclusion is

embedded. The microscale variables are denoted with a super-

script m. The two phases are assumed to have the same elastic

behavior, characterized by Young’s modulus E and Poisson’s

coefficient n. In addition, the matrix behavior is characterized

by its yield stress sy, its ultimate stress su and its asymptotic

fatigue limit sf , obviously lower than sy, viewed as the asymp-

tote of a S�N curve. As for the inclusion, different elasto-plastic

material behaviors have been considered. In Lemaitre (1985),

the behavior of the inclusion was assumed as elasto-plastic

perfect coupled with damage. The extension to stepwise perfect

plasticity was considered in Lemaitre and Doghri (1994). Further

extensions were given by Lemaitre et al. (1999) and Lemaitre

and Desmorat (2005), who proposed a new model incorporating

also strain hardening effects. According to Lemaitre et al. (1999)

and Lemaitre and Desmorat (2005), this new model produces

results which are coherent with most of the experimental
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results obtained in the high-cycle fatigue regime of metals,

namely, results which are not dependent on the mean shear

stresses, results which capture the nonlinear damage accumu-

lation effect and also results which reflect the beneficial effect

of some non-proportional loadings. A weakness of the inclusion

is considered by assuming that its corresponding yield stress is

identical to the asymptotic fatigue limit of the matrix material,

i.e., smy ¼ sf . Note that, on the basis of this assumption, neither

plasticity nor damage can develop and, therefore, no fatigue

cracks can initiate below the fatigue limit.

2.1. Thermodynamics framework

The model is developed assuming the existence of a free

energy rfm. Damage is represented by an internal scalar

variable D, assumed to range between 0 and a critical

material parameter corresponding to microcrack initiation,

Dc, with Dcr1. Note that, as damage is only considered at

the microscale, the superscript m has been omitted from the

microscopic damage variable D. The coupling between elas-

ticity and damage at the microscale is considered within the

framework of the thermodynamics of (isothermal) irreversi-

ble processes by means of the effective stress concept first

proposed by Kachanov (1958). Hence, microscopic actual

stresses rm and microscopic effective stresses ~rm are assumed

to obey the following relation:

~rm ¼
rm

ð1�DÞ

The microscopic total strain is assumed to be partitioned

into elastic and plastic parts as follows:

em ¼ eme þ emp

The free energy is taken as the sum of an elastic energy and

a plastic energy as follows:

rfm
¼ rfm

e þ rfm
p

with r the mass density of the material. The elastic energy is

considered as

rfm
e ðe

m�empDÞ ¼ 1
2ðe

m�empÞEð1�DÞðem�empÞ

with E the standard elasticity tensor, which is indeed valid

under the assumption of small deformations. Its expression

is affected by the damage variable through the effective stress

concept introduced above in conjunction with the principle of

strain equivalence (Lemaitre and Chaboche, 1990). The plastic

energy is assumed as

rfm
pða

mÞ ¼ 1
3Cam : am

with am the kinematic hardening variable and C the plastic

modulus measured on the mesoscale. Note that, accounting

for the kinematic hardening, allows to capture the so-called

Bauschinger effect, an important phenomenon in fatigue of

metals.

As it can be seen, the damage of the material is taken into

account via degradation of the elasticity tensor at the micro-

scale. In other words, only the elastic part of the specific free

energy at the microscale is affected by the damage variable,

thus implying no coupling between hardening and damage.

The thermodynamic (conjugate) forces defined at the

microscale are obtained through the following state laws:

rm ¼ r
@fm

@eme
¼ Eð1�DÞ : eme ð1aÞ

Xm ¼ r
@fm

@am
¼

2
3

Cam ð1bÞ

Ym
¼�r

@fm

@D
¼

1
2

eme : E : eme ð1cÞ

where Xm represents the back stress tensor, which is related

to the state of internal microstress concentration. Eq. (1b)

shows that the hardening is considered by means of a linear

(Prager) kinematic hardening rule. The variable Ym represents

the energy density release rate, which can be rewritten as

follows (Lemaitre, 1992):

Ym
¼

sm2
eqRm

n

2Eð1�DÞ2

with

Rm
n ¼

2
3
ð1þ nÞ þ 3ð1�2nÞ

smH
smeq

� �2

ð2aÞ

smeq ¼ ð
3
2r

mD : rmDÞ
1=2

ð2bÞ

smH ¼
1
3 trðrmÞ ð2cÞ

rmD ¼ rm�smHI ð2dÞ

where Rm
n is a triaxiality function, smeq is the von Mises

equivalent stress, smH is the hydrostatic stress and rmD is the

stress deviator. Note that, the role of Ym in the continuum

damage mechanics framework is identical to that repre-

sented by the elastic energy release rate for crack growth,

usually denoted by G, in the framework of the classical

fracture mechanics.

It has been experimentally observed that microdefects

increase in tension and close in compression. Due to this

asymmetric behavior, which leads to the so-called crack

Fig. 1 – Two-scale damage model.
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closure effect, the energy density release rate Ym must assume a

different form. According to Ladevéze and Lemaitre (1984),

Lemaitre et al. (1999), and Lemaitre and Desmorat (2005), this

form should include an additional parameter h, ranging

between 0 and 1, as follows:

Ym
¼

1þ n
2E

trð/rlSþÞ2

ð1�DÞ2
þ h

trð/rmS�Þ2

ð1�hDÞ2

" #

�
n

2E
/trðrmÞS2

ð1�DÞ2
þ

h/�trðrmÞS2

ð1�hDÞ2

" #

where /rlSþ and /rmS� stand for the positive and negative

parts of the stress tensor rl, respectively, which are defined as

follows:

/rlSþij ¼/smkSqk
i qk

j and /rlS�ij ¼ smij�/rlSþij

with k¼ 1;2;3, where smk represents the eigenvalue k of the

stress tensor rl and qk its corresponding normalized eigenvec-

tor. /ð�ÞS stands for the positive part of ð�Þ, i.e., /xS¼ x if x40

and /xS¼ 0 if xr0.

Taking into account this effect is especially important

when dealing with compressive cyclic loadings as they lead

to a damage rate which is much smaller in compression than

in tension. Considering this effect also allows to model the

mean stress effect in fatigue problems. However, only low

mean stress effects can be accounted for by means of the

crack closure parameter h (Barbier et al., 2008). As it will be

seen later on, as cardiovascular stents are subjected to a very

high level of mean stresses, further improvements should be

carried out over the present model in this aspect.

2.2. Complementary state laws

The model relies on the existence of a plastic–damage

dissipation potential given by (see Lemaitre, 1992)

Fm
¼ fm þ Fm

x þ Fm
D

with

fm ¼
rm

1�D
�Xm

� �
eq

�sf

Fm
x ¼ 0

Fm
D ¼

S
ðsþ 1Þð1�DÞ

�Ym

S

� �sþ1

where fm is the yield function, Fm
x is the potential associated to

the kinematic hardening and Fm
D represents the damage

potential. S and s are material parameters, referred to as

the damage strength and the damage exponent, respectively.

As it can be seen, the distinction between plasticity and

damage mechanisms is considered by assuming the exis-

tence of two different dissipation potentials, one for each

mechanism. Note that, although considering strain harden-

ing, the present model assumes no dissipation due to such

effect. It is also worth mentioning that, the asymptotic

fatigue limit sf is assumed in this model as a constant,

regardless of the mean stress at the mesoscale. For low levels

of mean stresses it suffices to consider the mean stress effect

by means of the crack closure parameter h. However, for high

mean stresses, this is not sufficient.

The complementary state laws (also known as evolution

laws) for the plastic internal variables are obtained by means

of an associated rule as follows:

_emp ¼ _l
m @Fm

@rm ¼
3
2

~rmD�Xm

ð ~rm�Xm
Þeq

_l
m

ð1�DÞ
ð4aÞ

_am ¼� _l
m @Fm

@Xm ¼ _e
mpð1�DÞ ð4bÞ

Noting that the rate form of the cumulated plastic strain is

given by

_pm
¼ ð_emp : _empÞ

1=2

the following relation can be obtained by means of Eq. (4a):

_pm
¼

_l
m

ð1�DÞ
ð5Þ

Also the damage evolution law is obtained by means of an

associated rule as follows:

_D ¼�
@Fm

@Ym
_l
m
¼
�Ym

S

� �s _l
m

ð1�DÞ
¼
�Ym

S

� �s

_pm if pm4pD ð6Þ

with pD a damage threshold. As it can be seen from this

evolution law, damage is governed by plasticity. Once damage

is active, only one multiplier is used to take into account both

plasticity and damage evolutions. Damage increases only if

there is plastic flow. Likewise, for pm4pD, there cannot exist

plastic flow without evolution of damage.

To link matrix and inclusion scales, two different localiza-

tion laws have been employed. One is based on Lin–Taylor’s

strain compatibility hypothesis (Taylor, 1938), whereas the

other follows the analysis of Eshelby (1957). The former has

been employed in Lemaitre (1985), Lemaitre and Chaboche

(1990), and Lemaitre and Doghri (1994) and states that

em ¼ e

rm ¼ r

whereas the latter has been considered in Lemaitre et al.

(1999) and Lemaitre and Desmorat (2005) and states that

em ¼ eþ bðemp�epÞ ð8aÞ

rm ¼ r�2Gð1�bÞðemp�epÞ ð8bÞ

with G the shear modulus and b a material parameter related

to Poisson’s ratio as follows:

b¼
2
15

4�5n
1�n

It is worth recalling that, e and r represent the strain and

stress mesoscopic tensors, respectively. We will only make

use of the latter law, since, according to Lemaitre and Doghri

(1994), it is more appropriate to modeling the triaxiality

effects than the former.

Introducing a new variable mm defined as

mm ¼
3
2

~rmD�XmD

ð ~rm�Xm
Þeq
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making use of Eq. (5), and after differentiating the localization

law (8a), the constitutive equations (4a), (4b) and (6) can be

rewritten, respectively, as

_eme þ ð1�bÞ _pmmm ¼ _e�b_ep ð9aÞ

_am ¼ _pm
ð1�DÞmm ð9bÞ

_D ¼
Ym

S

� �s

_pm if pm4pD ð9cÞ

2.3. Damage and microcrack initiation

As noted above, during the material degradation process due

to fatigue, the accumulated plastic strain variable pm and the

damage variable D are regarded as evolving quantities. In the

framework of the present two-scale plasticity–damage model,

while the accumulation of plasticity is viewed as the phenom-

enon which is responsible for the initiation of damage, the

accumulation of damage is regarded as to ultimately lead to

the formation of microcracks. Therefore, two distinct criteria

need to be specified, one to define the initiation of the damage

process, whereas the other to define the microcrack initiation.

According to Lemaitre (1992), the criteria for damage and

microcrack initiations can be stated, respectively, as follows:

pm ¼ pD

D¼Dc

where pD represents the damage threshold and Dc stands for

the critical damage parameter.

According to Lemaitre et al. (2000), Lemaitre and Desmorat

(2005), and Desmorat (2006), a good estimate of the damage

threshold for three-dimensional cyclic loadings is given by

pD ¼ ep
D

su�sf

seqmax�sf

 !m

with su the ultimate stress, ep
D the damage threshold in pure

tension, and m a correction parameter.

The damage parameter corresponding to microcrack initia-

tion Dc is related to a certain amount of energy dissipated in

the damaging process (Lemaitre, 1992; Lemaitre and Doghri,

1994). Assuming a proportional loading (in which Rm
n is

constant), the energy dissipated due to damage is given by

Z Dc

0
YmdD¼

Z Dc

0

s2
f Rm

n

2E
dD¼

s2
f Rm

n

2E
Dc

Equating this energy to the energy dissipated in a uniaxial

tension test gives

s2
f Rm

n

2E
Dc ¼

s2
u

2E
Dc1

where Dc1 represents the uniaxial critical damage parameter

given by

Dc1 ¼ 1�
sR

su
ð11Þ

with sR the rupture stress. Hence, the critical damage para-

meter can be estimated by means of the following expression:

Dc ¼
s2

u

s2
f Rm

n
Dc1r1 ð12Þ

2.4. Locally coupled analysis—numerical scheme

As noted above, in the high-cycle fatigue regime, material

damage is highly localized on a scale which is smaller than

either the macro or mesoscales of the material. The two-scale

plasticity–damage model presented above, based on the

hypothesis of a weak and damageable inclusion embedded in

a RVE, has been conceived to capture this phenomenon by

means of a locally coupled strain-driven analysis (Lemaitre and

Doghri, 1994), which basically consists in performing first a

global elastic structural analysis, using for instance the finite

element method, to compute the stress and strain variables

defined at the mesoscale, followed by a time integration of the

elasto-plastic–damage constitutive equations to compute the

microscopic stress, strain, hardening and damage variables.

The time integration is only performed at critical points, as a

post-processing scheme using the history of mesoscopic stres-

ses and strains as inputs, i.e., there is no boundary-value

problem to be solved at this stage. This corresponds indeed to

a separated multi-scale model, as micro and mesocalculations

are performed independently. The time integration is per-

formed step by step until a stabilized cycle is reached, after

which a jump in cycles is considered to avoid too many steps,

see the following section. This post-processing procedure is

repeated until the critical damage value Dc is reached at the

critical point, indicating microcrack initiation.

Following Lemaitre and Doghri (1994), the critical point

is assumed as the point featuring the maximum damage

equivalent mesoscopic stress, defined as sn ¼ seqR1=2
n , with Rn

the triaxiality function defined at the mesoscale. As the

stent’s material behavior is linear elastic during the cyclic

loading, this point does not change from cycle to cycle, and

thus it is usually sufficient to perform the post-processing

scheme at this single point.

The post-processing scheme introduced above can be sum-

marized as follows. Let us depart from the time instant tn,

characterized by mesoscopic data en, ep and rn, and microscopic

data e
mp
n , Xm

n and Dn. Note that, the plastic strain at the

mesoscale ep has been taken as a constant during the cyclic

loading. As note above, this is in accordance with the problem

under analysis. The microscale variables at time tnþ1 are

evaluated by means of a three step procedure consisting of:

1. Local elastic prediction gives a first estimate of em, eme and ~rm

at time tnþ1 assuming elastic behavior with constant plastic

strain emp ¼ e
mp
n , constant kinematic hardening Xm

¼Xm
n and

constant damage D¼Dn, i.e.

em ¼ eþ bðemp
n �epÞ

eme ¼ em�e
mp
n

~rm ¼ E : eme ¼ r�2Gð1�bÞðemp
n �epÞ

2. Yield condition test: fmr0: If this condition is verified, then

e
m
nþ1 ¼ em

e
me
nþ1 ¼ eme

~rm
nþ1 ¼ ~rm
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otherwise, integration of the constitutive equations should

be carried out (see the third step below).

3. Local plastic correction: the constitutive equations (9) are

integrated in time by means of an implicit Euler scheme,

assuming that the damage remains constant over a whole

cycle, which gives the following nonlinear system of

equations:

Deme þ ð1�bÞDpmmm
nþ1�De¼ 0 ð15aÞ

Dam�Dpmð1�DÞmm
nþ1 ¼ 0 ð15bÞ

fmnþ1 ¼ ð ~r
m
nþ1�Xm

nþ1Þeq�sf ¼ 0 ð15cÞ

In order to apply a Newton-like iterative scheme, the linear-

ization of this set of equations is required. To do so, let us first

rewrite Eq. (1a) as follows:

~rm ¼ E : eme ¼ l trðemeÞIþ 2meme ¼ l trðemÞIþ 2mðem�empÞ

This, in turn, gives the following relation for the time instant

tnþ1:

~rm
nþ1 ¼ l trðemnþ1ÞIþ 2mðemnþ1�e

mp
nþ1Þ ¼ l trðemnþ1ÞIþ 2mðemnþ1�e

mp
n �DempÞ

Under the localization law given by (8a), this expression can

be rewritten as

~rm
nþ1 ¼ l trðenþ1ÞIþ 2mðenþ1 þ bðemp

nþ1�epÞ�e
mp
n �DempÞ

¼ l trðenþ1ÞIþ 2mðenþ1 þ ðb�1Þðemp
n þ DempÞ�bepÞ

In addition, after integrating in time, Eq. (4a) yields

~rm
nþ1 ¼ l trðenþ1ÞIþ 2menþ1

þ2mðb�1Þðemp
n þmm

nþ1DpmÞ�2mbep ð17aÞ

~rm
nþ1 ¼ E : enþ1 þ 2mðb�1Þemp

n þ 2mðb�1Þmm
nþ1Dpm�2mbep ð17bÞ

After integration in time, Eq. (15b) can be rewritten as

a
m
nþ1�amn�ð1�DÞmm

nþ1Dpm ¼ 0

This, on insertion of Eq. (1b), and after multiplying the

previous equation by 2C=3 yields

Xm
nþ1�Xm

n�
2C
3
ð1�DÞmm

nþ1Dpm ¼ 0

Finally, subtracting this equation from (17) yields

smnþ1�E : enþ1 þ 2mð1�bÞemp
n þ 2mð1�bÞ þ

2C
3
ð1�DÞ

� �
mm

nþ1Dpm

þ2mbep þ Xm
n ¼ 0

with

smnþ1 ¼ ~rm
nþ1�Xm

nþ1

The nonlinear system of Eqs. (15) can, therefore, be

replaced by the following set of equations:

Rs ¼ smnþ1 þ
2
3qmm

nþ1Dpm�E : enþ1 þ 2Gbep þ 2Gð1�bÞemp
n þ Xm

n ¼ 0

Rp ¼ ðs
m
nþ1Þeq�sf ¼ 0

with

sm ¼ ~rm�Xm

q¼ 3Gð1�bÞ þ Cð1�DnÞ

mm ¼
3

2

smD

smeq

Note that, this is still a nonlinear system of equations. Its

linearization gives the system

Rs þ
@Rs

@sm
: Cs þ

@Rs

@pm Cp ¼ 0

Rp þ
@Rp

@sm
: Cs ¼ 0

which can be solved iteratively using for instance a Newton-

type scheme. Rs, Rp and their partial derivatives are taken at

time tnþ1 and iteration q, and Cs and Cp are the corrections to

be applied to each step of the previous iterated solution smðqÞ

and pmðqÞ. The starting solution corresponds to the elastic

predictor, i.e., smð0Þ ¼ ~rm
n�Xm

n and pmð0Þ ¼ pm
n. The solution of this

system can be obtained in closed-form as (Lemaitre and

Desmorat, 2005)

Cp ¼
Rp�mm : Rs

q

Cs ¼
2
3
ðmm : Rs�RpÞm

m�

Rss
m
eq þ

2
3
qDpmðmm : RsÞmm

smeq þ qDpm

Once the convergence is reached, updating is performed.

2.5. Jump-in-cycles procedure

As noted in the preceding section, the time integration of the

constitutive equations defined at the microscale is performed

step by step until a stabilized cycle is reached, after which a

jump in cycles is considered to avoid too many steps. In fact,

for periodic loadings of fatigue with large number of cycles,

the computation step by step in time may become prohibi-

tive. To overcome this, a jump-in-cycles procedure was

proposed by Lemaitre and Doghri (1994). It basically consists

in, departing from a cycle Ns, characterized by stabilized

damage and accumulated plastic strain rates, predict the

damage and accumulated plastic strain values after a ‘jump’

of a large numbers of cycles DN. This procedure is indeed

based on a step by step linearization of the damage over large

cycle increments.

The jump-in-cycles procedure is divided into two different

schemes. One is applied before any damage occurs, i.e., for

pmrpD, whereas the other is used after damage initiation, i.e.,

for pm4pD. In the former, once the computations reach a

stabilized cycle Ns, characterized by the accumulated plastic

strain rate dpm
s , a jump of DN cycles is considered as follows:

DN¼
Dpm

dpm
s

with Dpm a predefined value. According to Lemaitre and

Desmorat (2005), considering Dpm ¼ pD=50 is a good compro-

mise between accuracy and time cost. Finally, the accumu-

lated plastic strain is updated as

pmðNs þ DNÞ ¼ pðNsÞ þ Dpm

and used afterwards as the initial value for the computation

of the first increment of the cycle Ns þ DNþ 1. This scheme

repeats until pm ¼ pD.

For pm4pD, a different scheme is considered as follows. As

in the previous scheme, once a stabilized cycle Ns, character-

ized by the accumulated plastic strain rate dpm
s and damage
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rate dDs, is reached, a jump of DN cycles is considered as

follows:

DN¼min
Dp

m

dpm
s

DD
dDs

 !

with DD a predefined value and Dp
m
¼ ðS=YmaxÞ

sDD, with Ymax

the maximum value of Y over the cycle Ns. According to

Lemaitre and Desmorat (2005), considering DD ¼Dc=50 is a

good compromise between accuracy and time cost. The

accumulated plastic strain and damage variables are finally

updated as

pmðNs þ DNÞ ¼ pðNsÞ þ dpm
sDN

and used afterwards as the initial values for the computation

of the first increment of the cycle Ns þ DNþ 1.

3. Application of the two-scale
plasticity–damage model to the fatigue life
prediction of cardiovascular balloon-expandable
stents

Two stent models will be analyzed in this section. We first

analyze a PalmazShatz type stent, as this is the one for which

we have some available fatigue experimental results, indeed

required to validate the numerical results provided by the

proposed model. Finally, we analyze a Cypher stent, one of the

most adopted stent designs nowadays.

We note that, as the first main goal of the present study is

to propose a fatigue life numerical method for the analysis of

balloon-expandable coronary stents, and not an accurate

simulation of the stent implant, the adopted modeling

procedure does not take into account the actual stent

behavior in vivo. More realistic simulations should account

for patient-specific vessel geometry and anisotropy of the

vessel tissue (Mortier et al., 2010). Also regarding this point,

although the inclusion of the balloon can provide a more

realistic representation of the transient deformation during

the deployment (De Beule et al., 2008; Gervaso et al., 2008),

the balloon is herein modeled as an expanding cylinder.

Further developments of the present work will focus on the

impact evaluation of these aspects on the computation of the

stent stress state and the related fatigue life assessment.

3.1. Finite element stent modeling: model geometry,
material properties and analysis

In the unexpanded configuration, the PalmazShatz stent is

assumed to be a tube with rectangular slots along its length.

Its initial length, inner and outer diameters were taken as

16 mm, 1 mm and 1.2 mm, respectively (strut thickness is

200 mm). The stent has 5 slots in the longitudinal direction

and 12 slots in the circumferential direction, each slot

measuring 2.88 mm and 0.24 mm, respectively. This stent

geometry was also adopted by Auricchio et al. (2001). Fig. 2

shows the geometry and the finite element mesh adopted in

the analysis. The mesh was derived from the CAD geometry

constructed using Rhinoceros v. 4.0 Educational (McNeel &

associates, Seattle, WA, USA).

As for the Cypher stent, the length, inner diameter and

outer diameter were selected as 8.4 mm, 0.85 mm and

1.15 mm, respectively, i.e., the thickness of the struts were

taken as 300 mm. This geometry resembles the Cypher stent

geometry (Boston Scientific Co., Natick, MA, USA) with a

nominal diameter and length of 3 mm and 8 mm, respec-

tively. Fig. 3 represents the geometry and the finite element

mesh adopted in the analysis. The adopted finite element

mesh was downloaded as an ABAQUS input file from the

Fig. 2 – PalmazShatz stent geometry and finite element mesh.

X

Y

Z

Fig. 3 – Cypher stent geometry and finite element mesh.
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Ghent University website http://www.stent-ibitech.ugent.be/

downloads/downloads.htm.

For both stent designs, the coronary artery was modeled as

an idealized vessel represented by a thin-walled pipe with an

initial inner diameter of 2.5 mm, wall thickness 0.5 mm and

length 12 mm; see Fig. 4.

The PalmazShatz stent was assumed to be made of a

SS316LN stainless steel, similar to the SS316L steel used in

many commercial balloon-expandable stents, such as the

original J & J PalmazSchatz. As for the Cypher stent, it was

assumed to be made of a AISI 316L stainless steel. We

adopted an elasto-plastic perfect constitutive model for both

stent designs, characterized by Young’s modulus E¼196 GPa

and Poisson’s ratio n¼ 0:3. As for the yield stress parameter,

we adopted sy ¼ 205 MPa (see Auricchio et al., 2001) for the

PalmazShatz stent and sy ¼ 375 MPa (see Murphy et al., 2003)

for the Cypher stent.

The material of the artery wall was modeled using a

5-parameter second-order Mooney–Rivlin hyperelastic model

suitable for incompressible isotropic materials. Following

Prendergast et al. (2003), Lally et al. (2005, 2006), the strain

energy density for this material can be expressed as

W¼ a10ðI1�3Þ þ a01ðI2�3Þ þ a20ðI1�3Þ2 þ a11ðI1�3ÞðI2�3Þ

The hyperelastic constants were taken in the present case as

a10 ¼ 18:9 KPa, a01 ¼ 2:75 KPa, a20 ¼ 85:72 KPa, a11 ¼ 590:43 KPa.

The analyses of the stents under the mean stress state

were performed using the ABAQUS/Standard finite element

code (Simulia, Dassault Systems, Providence, RI, USA).

The loadings on the stents were considered in different

steps to simulate the loading conditions they experience in

service, namely balloon-inflation, recoil, and physiological

loading within the artery. For both stent designs, the stent

expansion was modeled as a displacement driven process, by

enforcing the radial displacements of a rigid cylinder (pre-

viously introduced into the stent) to expand the stent to an

inner diameter of 3 mm, see Fig. 4. The expansion of the

stents was performed into a hyperelastic thin-walled pipe.

The hyperelastic tube represents the coronary artery into

which the stent is implanted. The stent expansion step was

accomplished by modeling contact between the expansion

cylinder and the stent, as well as between the stent and the

internal surface of the tube. After the expansion step, the

stent/vessel systems were allowed to recoil by removing the

deployment boundary conditions. This step simulated the

balloon deflation and retraction of the balloon catheter. Max-

imal and minimal uniform pressure loads of 120 mmHg¼0.015

MPa and 80 mmHg¼0.010 MPa were then sequentially applied

to the inner surface of the pipes to conservatively represent

physiological systolic and diastolic blood-pressure loads within

the arteries. Appropriate boundary conditions were set.

In the PalmazShatz stent test case, the stent and the thin-

walled pipe were modeled using 10 716 and 6080 C3D8R (8-node

three-dimensional brick ‘reduced-integration’) elements,

respectively. The rigid cylinder was modeled using 408 SFM3D4

(4-node quadrilateral surface) elements.

As for the Cypher stent case, the stent and the thin-walled

pipe were modeled using 31 848 and 15 808 C3D8R (8-node

three-dimensional brick ‘reduced-integration’) elements, respec-

tively, whereas the rigid cylinder was modeled using 1909

SFM3D4 (4-node quadrilateral surface) elements.

The finite element analyses carried out showed that, for the

Cypher stent test case, although some parts of the stent were

characterized by relatively high plastic strains, which is

Fig. 4 – View cuts of the stents before and after deployment: left—PalmazShatz model and right—Cypher model.
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indeed a consequence of the expansion and subsequent

recoil of the balloon catheter, leading in turn to high residual

stresses in the material, the material response was found to

be linear elastic during the fatigue cycles. As for the Palmaz-

Shatz stent case, the material response was found to be

elasto-plastic even during the fatigue cycles.

3.2. Fatigue life assessment methodology

3.2.1. Fatigue limit criterion
Experiments have conclusively shown that, at fixed ampli-

tude the fatigue life decreases as the mean stress increases,

see e.g. Suresh (1998).

As pointed out recently by Barbier et al. (2008), the crack

closure parameter h of the two-scale plasticity–damage

model introduced in Section 2 is not sufficient to realistically

represent the material behavior at high mean stresses.

Hence, as cardiovascular stents work under high level of

mean stresses, the model must be modified in the present

case. The strategy adopted in this work consists in, rather

than using a fixed asymptotic fatigue limit within the yield

potential fm, as suggested by Lemaitre (1985), Lemaitre and

Doghri (1994), Lemaitre et al. (1999), Desmorat and Lemaitre

(2001), and Lemaitre and Desmorat (2005), taking an asymp-

totic fatigue limit which varies with respect to the mean

stress defined at the mesoscale sm. A possible and simple

methodology to accomplish this is to use the well known

Soderberg (1939) relation given by

sm
f ¼ sf 1�

sm

sy

� �
ð22Þ

where sf is the asymptotic fatigue limit for zero mean stress

and sm
f is the new asymptotic fatigue limit taking into

account the mean stress effect. In the present context, the

mesoscale mean stress can be expressed as

sm ¼
r

sys
eq þ rdia

eq

2

with r
sys
eq and rdia

eq the systolic and diastolic von Mises

equivalent stresses, respectively. It is worth noting that, the

Soderberg relation is known in the literature to lead to

conservative fatigue predictions. A Goodman relation, where

the yield stress sy would be replaced by the ultimate stress su

in Eq. (22), could alternatively be employed, see e.g. Goodman

(1899).

3.2.2. Material parameters identification
There are nine parameters to be identified: four on the

mesoscale (Young’s modulus E, Poisson’s coefficient n, yield

stress sy, asymptotic fatigue limit sf and the plastic modulus

C), four damage parameters (damage strength S, damage

exponent s, damage threshold pD and critical damage Dc),

and the microdefects closure parameter h.

The mesoscale parameters are identified on a monotonic

tensile curve. Following Lemaitre et al. (1999) and Lemaitre

and Desmorat (2005), the identification of the parameters S, s,

pD, h, Dc can be considered using some fatigue tests, more

specifically, an experimental S�N curve and some low-cycle

fatigue tests.

It has been shown recently that, the mechanical behavior

of cardiovascular stents, which are indeed very small devices

with thicknesses of the same order of magnitude as certain

microstructural features of the material (such as grains), is

size dependent, see e.g. Murphy et al. (2003), Wiersma et al.

(2006), and Harewood and McHugh (2007).

In order to take into account the size effect, some of the

mechanical parameters of the stents, namely, sy, su, sR and

ep
D, were explicitly identified from the tensile stress–strain

curve obtained by Harewood and McHugh (2007) for a stent of

100 mm of thickness, see Fig. 5. Note that, although the stents

under study are 200 mm and 300 mm of thickness, a simple

analysis of Fig. 5 indicates that the material parameters for

the fatigue model can be identified in a conservative way by

selecting the thickness case of 100 mm. Such parameters were

identified as sy ¼ 375 MPa, su ¼ 820 MPa, sR ¼ 650 MPa and

ep
D ¼ 0:28.

The asymptotic fatigue limit sf , defined as the stress at

which the fatigue life is 107 loading cycles, was identified

from the experimental (fully reversed) S�N tests conducted

by Agarwal et al. (2007) on a non-treated (NT) stainless steel

316L, see Fig. 6. The arrows indicate run-outs at 107 cycles.

The uniaxial critical damage parameter Dc1 was computed

using formula (11), which gives Dc1 ¼ 0:21. Following Lemaitre

(1992), the triaxiality factor was taken as Rm
n ¼ 1. This is in close

agreement with the numerical results obtained for the stents

during the fatigue cycles. Eq. (12) gives the critical damage

Fig. 5 – Tensile stress–strain curves (taken from Harewood and McHugh, 2007).
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parameter as Dc¼3.4. However, as the critical damage para-

meter must verify the condition Dcr1, we set Dc¼1.

Additionally, following Lemaitre and Desmorat (2005), the

plastic modulus C was obtained as

C¼
su�sy

ep
D

¼ 1520 MPa

The crack closure parameter h was set to 0.2. According to

Lemaitre (1992), this value allows to obtain numerical results

that are in close agreement with fatigue experiments.

There remain three parameters to be identified, namely,

s, S and m. These parameters were calibrated using also the

experimental S�N results obtained by Agarwal et al. (2007),

see Fig. 6. It is worth mentioning that, only the results

obtained in the high-cycle fatigue regime (i.e., corresponding

to N4105) were employed for this calibration. This led to the

following numerical values: s¼0.5, S¼0.8 and m¼1.2. The

numerical S�N curve obtained using the two-scale model is

depicted in Fig. 7. As can be seen, it fits well the experimental

results in the high-cycle fatigue regime.

The obtained material parameters required for the fatigue

analysis were summarized in Table 1.

The initial values of the accumulated plastic strain pm and

damage D variables were both set to 0.

Fig. 6 – Experimental S�N results (taken from Agarwal et al., 2007).

Fig. 7 – Fitting the two-scale model to the experimental S�N results.

Table 1 – Material parameters.

n E (MPa) sy (MPa) su (MPa) sR epD C (MPa) Dc h sf (MPa) S (MPa) s m

0.3 196 000 375 820 650 0.28 1520 1.0 0.2 200 0.8 0.5 1.2
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3.2.3. Prediction of microcrack initiation
The critical points of the stents were identified as the Gauss

points in which the damage equivalent mesoscopic stress sn

was maximum. As for the Cypher stent model, the material

behavior was found to be linear elastic during the cyclic

loading. As a result, the critical point does not change from

cycle to cycle, and thus it is sufficient to perform the post-

processing scheme at this single point. Regarding the Palmaz-

Shatz stent model, the material response was found to be

elasto-plastic during the cyclic loading. For this reason, the

post-processing scheme was applied over all the Gauss points

of the stent finite element model. The critical point was

selected as the one for which the damage variable D first

reached the critical damage parameter Dc. The location of the

critical point in the PalmazShatz stent model can be seen

in Fig. 8.

Fig. 9 shows the localization of the critical point in the

Cypher stent model. Its corresponding stresses and plastic

strains were computed for both systolic and diastolic pres-

sure states. Due to the linear elastic response of the stent

during cyclic loading, the systolic and diastolic stresses

remained unchanged from cycle to cycle, and the plastic

strains remained constant during fatigue loading.

The obtained systolic and diastolic stress states at the

critical point are

rsys ¼

�350:1 �82:9 �22:6

�82:9 19:5 �7:8

�22:6 �7:8 �39:8

2
64

3
75 ðMPaÞ

rdia ¼

�350:2 �83:3 �23:2

�83:3 19:3 �8:3

�23:2 �8:3 �41:4

2
64

3
75 ðMPaÞ

Their corresponding von-Mises equivalent stresses are given

by ssys
eq ¼ 374:9 MPa and sdia

eq ¼ 374:7 MPa. This corresponds to a

(very small indeed) stress amplitude of Dseq ¼ 0:2 Mpa. The

Fig. 8 – Location of the critical point in the PalmazShatz stent model.

X
Y

Z

Critical point

Fig. 9 – Location of the critical point in the Cypher stent model.
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plastic strains were found to be

epl ¼

�1:33 0:04 1:21

0:04 0:26 0:94

1:21 0:94 1:07

2
64

3
75� 10�3

Application of the post-processing scheme based on the

locally coupled analysis to modeling the stents under the

alternating stress states leads to a number of cycles up to

microcrack initiation of 64 millions for the PalmazShatz stent

model, and 53 millions for the Cypher stent model. This is

equivalent to approximately 22 and 18 months of the heart

pumping in an average human adult, respectively.

Although the obtained results correspond to very short

fatigue lives, our prediction for the PalmazShatz stent design

seems to be in accordance with the experiments carried out

by Glenn and Lee (1997), in which real stainless steel Palmaz-

ShatzTM stents (15 mm long stents from Johnson and Johnson

Corporation) were tested to fatigue in a saline solution at

37 1C to simulate real (in vivo) physiological conditions. In that

work, the criterion for fatigue failure was considered as the

rupture of the first strut of the stent. The results obtained by

Glenn and Lee (1997) show that, although 2 out of 2 tested

stainless steel stents have survived to 1 million cyclic load-

ings, 0 out of 2 stents have survived to 10 million cycles, only

1 out of 2 stents have survived to 40 million cycles. The

experimental results also indicate that 0 out of 4 stents have

survived to 100 million cycles.

Clearly, the stent designs under analysis would not satisfy

the requirements imposed by the US Food and Drug Admin-

istration (FDA), which recommends that a cardiovascular

stent must be able to withstand at least 400 million cardiac

cycles (equivalent of approximately 10 years) without exhi-

biting fatigue-associated failure. It is worth mentioning how-

ever that the proposed fatigue life assessment method was

designed to predict crack initiation, and not fatigue rupture.

To predict the total life of the stents up to final failure, the

analyses should also take into account the crack propagation

effects and proceed with the fatigue analysis using, for

instance, a fracture mechanics approach up to final failure.

Despite this, we remind that, in the high-cycle fatigue regime,

the crack initiation stages may cover a large percentage of the

fatigue life and, thus, we would not expect the total fatigue

lives of the stent models under analysis to be considerably

higher than the ones we obtained.

4. Limitations of the proposed method and
future research directions

Relying on a numerical model based inevitably on various

hypotheses and simplifications, the proposed method has

still certain limitations which may need to be addressed.

These limitations, as well as some possible research direc-

tions for the development of numerical approaches for the

fatigue life assessment of cardiovascular balloon-expandable

stents are briefly discussed in the following.

The stent expansion was herein modeled as a displace-

ment driven process, by enforcing the radial displacements of

a rigid cylinder. We thus neglected the impact of balloon

unfolding and inflation during the deployment. A more

realistic simulation should include the (folded) balloon to

capture the transient deformation during the deployment (De

Beule et al., 2008; Gervaso et al., 2008), and its impact in the

final stent tensional state. Further studies should also

account for patient-specific vessel geometry and anisotropy

of the vessel tissue (Mortier et al., 2010). We believe, however,

that these assumptions have a minor role in the present

study.

As for the loading conditions, future studies should con-

sider that systolic–diastolic pulsatile pressure is not the only

clinical force/deformation mode that must be addressed in

bench testing or analysis. Other cyclic deformation modes,

such as arterial bending, crushing, axial tension or compres-

sion, and torsion can occur, at various frequencies and

phases, appearing due to the different physiological forcing

functions (e.g., cardiac, respiratory, locomotion), as well as

physiological environment, in particular humidity and corro-

sion conditions, should also be accounted for.

Regarding fatigue life modeling and assessment, it is worth

noting that cyclic fatigue characteristics are known to be

different for small structures. Hence, experimental fatigue

data evaluated for real stents should be employed, rather

than well-established bulk material fatigue data. These data

are still lacking in the literature, mainly because material

forms, such as thin-walled tubing, sheets, or fine wires, are

not suitable for the traditional fully reversed strain or stress-

cyclic testing. Additionally, the use of more accurate data for

the mechanical response of the stent material behavior could

be exploited to calibrate the elasto-plastic model hardening.

Finally, at failure locations in stents there are high stress

gradients due to stress concentration effects and the small

sizes. Stress gradient effects may indeed affect fatigue life.

It is well known in the fatigue literature that small stress

concentration features or geometries with high stress gradi-

ents are less effective in fatigue than larger features or

smaller gradients with the same maximum stress (Schijve,

2009). However, it is worth mentioning that only a few fatigue

limit criteria currently available in the literature have aimed

at modeling such effects, see e.g. the work by Morel and Palin-

Luc (2002), which shows how far from being well understood

the stress gradient effect is still nowadays.

5. Conclusions

A numerical fatigue life approach was presented for the

analysis of cardiovascular balloon-expandable (stainless steel)

stents. The approach is based on a two-scale continuum

damage mechanics model in which both plasticity and damage

mechanisms are assumed to take place at a scale smaller than

the scale of the representative volume element. The so-called

Soderberg fatigue failure criterion was employed within the

framework of the two-scale model in order to take into account

the high mean stress effects inherent to cardiovascular stents.

The proposed method was applied to the fatigue life

assessment of two different stainless steel stent designs,

namely, PalmazShatz and Cypher designs. In both stent mod-

els, the obtained results indicate a limited fatigue life. In

particular, the results obtained for the PalmazShatz stent
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model were shown to be in close agreement with the experi-

mental results presented by Glenn and Lee (1997).

The limitations of the proposed method were highlighted,

and possible research directions for the development of

numerical approaches for the fatigue life assessment of

cardiovascular balloon-expandable stents were briefly dis-

cussed. We believe that the present methodology can be used

to modify the design and prevent failure without testing

numerous physical devices, thus preventing from undesired

fatigue failures.
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Weiss, S., Szymczak, H., MeiÔner, A., 2009. Fatigue and endurance
of coronary stents. Materialwissenschaft und Werkstofftechnik
40, 61–64.

Wiersma, S., Dolan, F., Taylor, D., 2006. Fatigue and fracture in
materials used for micro-scale biomedical components. Bio-
Medical Materials and Engineering 16 (2), 137–146.

You, X., Connolley, T., McHugh, P.E., Cuddy, H., Motz, C., 2006. A
combined experimental and computational study of deforma-
tion in grains of biomedical grade 316lvm stainless steel. Acta
Materialia 54, 4825–4840.

j o u r n a l o f t h e m e c h a n i c a l b e h a v i o r o f b i o m e d i c a l m a t e r i a l s 1 5 ( 2 0 1 2 ) 7 8 – 9 292


