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A High Step-Up DC–DC Converter With High
Voltage Gain and Zero-Voltage Transition

Amin Asghari and Zeynab Jalili Yegane

Abstract—This article presents a new high-step-up dc–
dc converter. The proposed converter optimally integrates
the coupled inductors, voltage multiplier cells, and series
capacitor techniques to attain high voltage gain with low
voltage stress. Moreover, in this configuration, the voltage
multiplier circuit not only participates in increasing the volt-
age gain but also absorbs the leakage energy. In addition,
zero-voltage switching and zero-current switching condi-
tions are obtained for all switches and diodes, respectively.
As a result, overall efficiency is improved. In this topology,
the leakage inductance of the coupled inductors is used
as a resonant inductor. Therefore, no additional magnetic
core is needed. Furthermore, the ripple of the input cur-
rent is reduced by using the interleaving technique. Also,
this converter features automatic uniform current-sharing
characteristics due to the charge balance of the blocking
capacitors. The experimental results obtained from a proto-
type with 12 V input and 180 V output validate the theoretical
analyses.

Index Terms—Coupled inductors, high step-up convert-
ers, interleaved operation, soft switching, zero-voltage
switching (ZVS).

I. INTRODUCTION

ENERGY is one of the most critical and primary factors
for continuing human life. In recent years, replacing fossil

fuels with renewable energies, including solar and wind energy,
has been widely welcomed [1]. For network connection appli-
cations, it is usually necessary to convert distributed resource
output voltage to a higher voltage [2].

In theory, the conventional boost converter just by having
close-to-one duty cycles can reach high output voltages. In prac-
tice, this increases the voltage stress across the semiconductors,
increases input current ripple, and reduces efficiency. Hence,
in recent decades, there has been extensive research on new
topologies to provide higher voltage conversion ratios [3], [4].

In [5], the multilevel technique is proposed to increase the out-
put voltage. This method increases the complexity and the cost.
The research works in [6] and [7] introduced two or more boost
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converters in series or cascading. Although the voltage gain is
effectively improved, the cost of the entire system increases.

Using the coupled inductors is another solution to improve the
voltage gain of the converters. In this technique, the conversion
ratio is increased by choosing a proper turn ratio for the cou-
pled windings. However, in converters with coupled inductors,
passive snubbers or active clamp circuits are required to absorb
the energy stored in the leakage inductors [8], [9], [10], [11].
As a result, the circuits are complicated, and the efficiency is
reduced.

The capacitors can work as voltage sources to obtain high
voltage output in dc–dc converters. Two boost converters using
switched-capacitor cells are provided in [12] and [13]. These
converters include n switched-capacitor cells. Each cell consists
of a capacitor, a diode, and two power switches. However, in
these circuits, the number of semiconductor devices increases.
Aggressive currents during charging and discharging capacitors,
and the formation of a capacitive loop, are other disadvantages
of these converters [14], [15].

In [16], the voltage multiplier cell (VMC) is proposed. This
cell consists of diodes and capacitors. However, several cells are
required to achieve high-voltage gains [17].

This article proposes a new high step-up converter to attain a
high voltage gain. With the most benefits mentioned above and
minimum problems, a conventional interleaved boost converter
is integrated with a VMC, coupled inductors, and a series capac-
itor. In this integration by selecting the appropriate turns ratio of
the coupled inductors, high voltage gain can be achieved without
overincreasing the duty cycle. Also, semiconductor devices have
low voltage stresses. In this topology, the voltage multiplier
circuit not only participates in increasing the voltage gain but
also absorbs the leakage energy. The zero-voltage switching
(ZVS) condition is obtained for all switches, by using leakage
inductance as a resonant inductor without any auxiliary switch
and magnetic core. It can eliminate switching losses and dimin-
ish the electromagnetic interference problem.

The rest of this article is organized as follows. Section II
analyzes the circuit configuration and operation principles. Sec-
tion III exhibits the design consideration and converter per-
formance analysis. Section IV discusses the experimental out-
comes. Finally, Section V concludes this article.

II. CIRCUIT CONFIGURATION AND OPERATION PRINCIPLES

Fig. 1(a) shows the circuit structure of the proposed con-
verter. S1 and S2 are the main switches, D0 is the output diode,
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Fig. 1. Proposed converter. (a) Circuit structure. (b) Equivalent circuit.

D1, D2, C1, and C2 make the VMC circuit, C3 is the series
capacitor, C0 is the output capacitor, and R0 is the load. Also,
there are two cores with three windings. Fig. 1(b) shows the
corresponding equivalent circuit of the proposed converter. The
primary inductors LP1 and Lp2 with Np turns, respectively, are
coupled with the secondary inductors LS1 and LS1 with Ns turns
and the tertiary inductor Lt1 and Lt1 with Nt turns.

n and n’ denote the NS/NP turns ratio and the Nt/Np turns
ratio, respectively. In this figure, the magnetizing inductances
are represented with Lm1 and Lm2. By reflecting leakage in-
ductances from the primary and secondary of each phase to
the tertiary side, LK can be considered as the sum of them.
CdS1 and CdS2 are the drain–source capacitors of S1 and
S2.

The operating principles of the proposed converter are an-
alyzed in this section. For analytical analyses, the following
conditions are assumed.

1) The voltages of capacitors C1, C2, and C3, which are
represented by VC1,VC2, and VC3, are assumed constant.

2) All converter components are ideal, except for the leakage
inductance of the coupled inductors and the parasitic
capacitors of the switches.

3) The current of the magnetizing inductor is considered
constant.

Fig. 2 illustrates the theoretical waveforms, and Fig. 3 shows
the equivalent circuits of the operating states. Operation states

Fig. 2. Key waveforms of the proposed converter.

can be divided into ten states. Before the first state, S1 and S2

are ON.
State I [t0–t1]: At the beginning of this interval, the switch S2

is turned OFF. All diodes are reverse-biased. Resonance occurs
between the leakage inductor LK and the capacitor of S2. The
current of LK decreases, and the voltage of Cds2 increases
resonantly. Therefore, ZVS turn-OFF is achieved for the switch
S2 [see Fig. 3(a)]

VLm1 = Vin (1)

VLm2 = Vin − VCds2 (2)

ILK(t) = A cos(ω(t− t0)) +B sin(ω(t− t0)) (3)

A = iLK(t0), B =
ILM√
Cds2LK

, ω =
n′ − 1√
Cds2LK

(4)

ILK(t) = iLK(t0) cos
n′ − 1√
Cds2LK

(t− t0)

+
ILM√
Cds2LK

sin
n′ − 1√
Cds2LK

(t− t0) (5)

VCds2(t) = A cos(ω(t− t0)) +B sin(ω(t− t0)) (6)

A=
ILM

Cds2
,B=−iLK(t0)

√
LK

Cds2
,ω=

n′ − 1√
Cds2LK

(7)
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Fig. 3. Equivalent circuits of the operation modes. (a) Mode I. (b) Mode II. (c) Mode III. (d) Mode IV. (e) Mode V. (f) Mode VI. (g) Mode VII.
(h) Mode VIII. (i) Mode IX. (j) Mode X.

VCds2(t) =
ILM

Cds2
cos

n′ − 1√
Cds2LK

(t− t0)

− iLK(t0)

√
LK

Cds2
sin

n′ − 1√
Cds2LK

(t− t0). (8)

State II [t1–t2]: At t1, the voltage of Cds2 reaches VC3. The
diodes D2 and D3 start to conduct. During this mode, ILK
decreases to zero linearly. The capacitors C1 and C3 charge and
C2 discharge [see Fig. 3(b)]

VLm1 = Vin (9)

VLm2 = Vin − VCds2 (10)

VCds2 = VC3 (11)

ILK(t) =
(n′ − 1)VC3

Lk
(t− t1) + ILK(t1). (12)

State III [t2–t3]: This mode starts when ILK and ID3 reach zero
and diode D3 turns OFF under the ZCS condition. In this state,
the current of LK increases linearly in the opposite direction [see
Fig. 3(c)]

ILK(t) =
(n′ − 1)VC3

Lk
(t− t2) + ILK(t2). (13)

State IV [t3–t4]: At t3, the current of D2 reaches zero, and D2

turns OFF under the ZCS condition. The capacitor CdS2 begins
to discharge by the leakage inductor. At the end of this mode, the
capacitor CdS2 is fully discharged [see Fig. 3(d)]. The related
equations are given as follows:

VLm1 = Vin (14)

VLm2 = Vin − VCds2 (15)

VCds2 = VC3 (16)

ILK(t) = A cos(ω(t− t3)) +B sin(ω(t− t3)) (17)

ILK(t) = iLK(t3) cos
n′ − 1√
Cds2LK

(t− t3)

+

(
ILM√
Cds2LK

+

√
Cds2

LK
VC3

)
sin

n′ − 1√
Cds2LK

(t− t3)

(18)

VCds2(t) =

(
ILM

Cds2
+ VC3

)
cos

n′ − 1√
Cds2LK

(t− t3)

− iLK(t3)

√
LK

Cds2
sin

n′ − 1√
Cds2LK

(t− t3). (19)

State V [t4–t5]: The antiparallel diode of S2 begins to conduct
at t4. The voltage across S2 is clamped to zero. Therefore,
switch S2 is turned ON under ZVS condition in this state. During
this mode, the current of the leakage inductor is constant [see
Fig. 3(e)].

State VI [t5–t6]: At t5, switch S1 is turned OFF. The drain–
source capacitor of S1 is charged through resonance with the
leakage inductor LK. Also, the current of LK increases reso-
nantly. As a result, switch S1 is turned OFF under ZVS conditions
[see Fig. 3(f)]. For this interval, the following equation is valid:

VLm2 = Vin (20)

VLm1 = Vin − VCds1 (21)

ILK(t) = A cos(ω(t− t0)) +B sin(ω(t− t0)) (22)

A = iLK(t5), B =
−ILM√
Cds1LK

, ω =
n′ − 1√
Cds1LK

(23)

ILK(t) = iLK(t5) cos
n′ − 1√
Cds1LK

(t− t5)

− ILM√
Cds1LK

sin
n′ − 1√
Cds1LK

(t− t5) (24)
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Vcds1(t) = A cos(ω(t− t5)) +B sin(ω(t− t5)) (25)

A =
ILM

Cds1
, B = iLK(t5)

√
LK

Cds1
, ω =

n′ − 1√
Cds1LK

(26)

Vcds1(t) =
ILM

Cds1
cos

n′ − 1√
Cds1LK

(t− t5)

+ iLK(t5)

√
LK

Cds1
sin

n′ − 1√
Cds1LK

(t− t5). (27)

State VII [t6–t7]: At t6, the voltage of S1 reaches VC2. The
diodes D0 and D1 are turned ON, and the voltage of S1 is clamped
to VC2. The current through D2 reaches zero at the end of this
state [see Fig. 3(g)]

VLm2 = Vin (28)

VLm1 = Vin − VCds1 (29)

VCds1 = VC2 (30)

V0 = VC1 + (n+ 1)VC2 + VC3 (31)

ILK (t) =
(1− n′)VC2

Lk
(t− t6) + ILK(t6). (32)

State VIII [t7–t8]: At the beginning of this state, ILK and ID1

reach zero. The diode D1 is turned OFF under ZCS conditions.
During this mode, the leakage inductor current ILK increases
[see Fig. 3(h)]

VCds1 = VC2 (33)

ILK (t) =
(1− n′)VC2

Lk
(t− t7) + ILK(t7). (34)

State IX [t8–t9]: At t8, D0 is naturally turned OFF with ZCS.
The capacitor CdS1 discharges resonantly by the leakage induc-
tor. At the end of this mode, these capacitors are fully discharged
[see Fig. 3(i)]

VLm2 = Vin (35)

VLm1 = Vin − VCds1 (36)

VCds1 = VC2 (37)

ILK(t) = A cos(ω(t− t8)) +B sin(ω(t− t8)) (38)

ILK(t) = iLK(t8) cos
n′ − 1√
Cds1LK

(t− t8)

−
(

ILM√
Cds1LK

+

√
Cds1

LK
VC2

)
sin

n′ − 1√
Cds1LK

(t− t8)

(39)

VCds1(t) =

(
ILM

Cds1
+ VC2

)
cos

n′ − 1√
Cds1LK

(t− t8)

+ iLK(t8)

√
LK

Cds1
sin

n′ − 1√
Cds1LK

(t− t8). (40)

State X [t9–t0]: This mode starts when the voltage of capacitor
Cds1 reaches zero. The antiparallel diode of switch S1 begins to
conduct. During this interval, the current of the leakage inductor
is constant, and the S1 gate signal can be applied [see Fig. 3(j)].

Fig. 4. Voltage gain versus duty cycle curves under different turns
ratios.

III. DESIGN CONSIDERATIONS AND CONVERTER

PERFORMANCE ANALYSIS

A. Voltage Gain

The voltage gain is calculated by applying the volt–second
balance principle on the magnetizing inductances Lm1 and Lm2,
which are as follows:

VinDTs = − (Vin − VC2) (1−D)Ts (41)

VinDTs = −(Vin − VC3) (1−D)Ts. (42)

Solving (41) and (42), the voltages of C2 and C3 are

VC2 =
Vin

(1−D)
=

V0

(2n+ 4)
(43)

VC3 =
Vin

(1−D)
=

V0

(2n+ 4)
. (44)

According to the Fig. 3(b), the following equation can be
written:

VC1 = (n+ 1)VC3 + VC2. (45)

Substitute (43) and (44) into (45), the voltage of C1 is derived
as

VC1 =
(n+ 2)Vin

(1−D)
=

(n+ 2)V0

(2n+ 4)
. (46)

Based on (43)–(46) and Fig. 3(g), the voltage gain will be
equal to

M =
VO

Vin
=

2n+ 4

(1−D)
. (47)

Fig. 4 shows the detailed plot of the voltage gain versus the
duty cycle curves under different turn ratios.

By considering the leakage inductance effect and using the
volt–second balance principle to magnetic inductances (Lm1 and
Lm2), the following equations are obtained:

VC3 = VC2 =
Lm + n

′2
Lk

Lm (1−D)
Vin (48)

VC1 =

⎛
⎜⎜⎜⎝
2

(
1 + n Lm(

Lm+n′2Lk

)
)

Lm(1−D)(
Lm+n′2Lk

)

+ n

(
1− Lm(

Lm + n′2Lk

)
))

Vin. (49)
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Fig. 5. Current waveform of C1.

By applying the KVL principle on interval VII, the voltage
gain is derived as

M =
VO

Vin
=

4(kn+ 1)− 2nk (D + k (1−D))

k(1−D)
(50)

where k = Lm/(Lm+n’2.Lk).

B. Voltage Stresses Across Semiconductor Devices

According to modes II and VII, the voltage stresses of the
main switches S1 and S2 are

VS2,max = VC3 =
V0

(2n+ 4)
(51)

VS1,max = VC2 =
V0

(2n+ 4)
. (52)

According to modes III and VIII, the voltage stresses on the
diodes obtained as

VD0 = VD2 =
2(n+ 1)Vin

(1−D)
=

(n+ 1)V0

(n+ 2)
(53)

VD1 = VD3 =
2Vin

(1−D)
=

V0

(n+ 2)
. (54)

C. Automatic Uniform Current Sharing

By ignoring the first, fourth, sixth, and ninth intervals, due to
their small durations, the current waveform of blocking capacitor
C1 is shown in Fig. 5. By using the ampere–second balance
principle for C1, the following equation has to be satisfied:

ILm2

2(n+ 1)
· (1−D)Ts =

ILm1

2(n+ 1)
· (1−D)Ts. (55)

According to the above equation, in equal duty cycles, ILm1

is similar to ILm2. Therefore, automatic uniform current sharing
is provided in this topology.

D. Soft-Switching Condition

This proposed converter provided ZVS soft switching perfor-
mance for both switches, which improves conversion efficiency
by reducing power losses in the switch. At the turn-OFF instant,
the drain–source capacitors of the switches Cds1 and Cds2 limit
the rate of the switch’s voltage change; thus, the ZVS turn-OFF

of the switches is achieved. The resonance between the leakage
inductance and the drain–source capacitors causes these capac-
itors to discharge resonantly, so the anti-parallel diodes conduct
and the switches are turned ON under ZVS conditions. To ensure

ZVS is turned ON for the switches, the drain–source capacitors
must be discharged entirely by leakage inductance during modes
IV and IX. Therefore, the following equation must be satisfied:

1

2
LLK .(ILK (t3))

2 ≥ 1

2
CDS .(VCDC (t3))

2 (56)

where CDS = Cds1 = Cds2 .

E. Comparison

Table I compares the introduced topology and recent high-
voltage gain topologies with coupled inductors. By substituting
the same duty cycle and the turns ratio into the voltage gain
formulas, it can be observed that the voltage gain of the pro-
posed converter is remarkably improved. This improvement will
become more evident in high turn ratios. Moreover, the ZVS
condition is provided for all switches at turn-ON and turn-OFF

instants, which reduces switching loss and improves efficiency.
In addition, the ZCS conditions are obtained for all diodes.
Unlike the converters presented in [20], the proposed topology
provides the above soft switching condition without any addi-
tional magnetic core and the additional switch. In the proposed
topology, the leakage inductance controls the current falling
rates of diodes, so the diode reverse-recovery problem is di-
minished. Furthermore, because of the uniform current-sharing
characteristic of the proposed converter, the large input current
is shared between the two interleaved phases. The maximum
theoretical efficiency for the proposed converter is given in this
table.

F. Loss Analysis

In this section, power loss is theoretically analyzed. The total
power losses mainly contain four parts given by

PLosses = PS + PD + PC + PL (57)

where PS is the switches loss, PD is the diodes loss, PL is the
coupled inductors loss, and PC is the loss of capacitor.

Switch loss is equal to the sum of switching (PS(switching))
and conduction losses (PS(ON)). In the converter proposed in this
article, due to the ZVS operation of the switches, the switching
loss is approximately zero. The switching and conduction losses
of switches are

P(Switching) = PSW1 + PSW2

=
fs
2
(Vds1IL1

tOFF1 + Vds2IL2tOFF2)

PS1
= rds1 .I

2
S1(rms)

= rds1
ILm

(1− n′)

√
(1−D)

(
1− n′

1 + n
+ 1

)
(58)

PS2 = rds2 .I
2
S2(rms)

= rds2
ILm

(1− n′)

√
(1−D)

(
1− n′

1 + n
+ 1

)
(59)

where rds is the power switch ON-state resistance and tOFF is
the time interval for the MOSFETs to be turned OFF.
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TABLE I
COMPARISON RESULTS AMONG SOME CONVERTERS, CONVENTIONAL CONVERTER, AND PROPOSED CONVERTER

Fig. 6. Theoretical analysis of power loss distribution at rated power.

Fig. 7. Picture of the prototype.

The conduction losses for diodes D1, D2, D3, and D0 can be
calculated as

PD0,1,2,3
= VF0,1,2,3

· ID0,1,2,3(avg) = VF0,1,2,3
· I0. (60)

where VF is the forward voltage drop of diodes.

Fig. 8. The control diagram.

The conduction losses in capacitors can be obtained as

PC1
= RESR1

.I2C1(rms)

= RESR1

ILm

n+ 1

√
4 (1−D)

3
+

2(1−D)2

1−D −Da
(61)

PC2
= PC3

= RESR2,3.I
2
C2(rms)

= RESR2,3ILm

√
(1−D) (1−D + 2Da)

3(n+ 1)2 (1−D −Da)
+

Da

3(1− n′)2

(62)

where Da = (1−n′)(1−D)
(1+n) , and RESR1,2,3 is the equivalent series

resistance of the capacitors.
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Fig. 9. Experimental results of the proposed converter.

Total power losses of the coupled inductors are

PL = PCond + PCore.

The core loss has been calculated according to the improved
generalized Steinmetz equation method in [24].

By assuming rLp, rLs, and rLt are the primary-side,
secondary-side, and tertiary-side windings resistance of the
inductors, respectively. The total coupled inductor loss is cal-
culated as

PL−Cond = rLp1
I

2

Lp1,rms + rLp2
I

2

Lp2,rms

+ (rLs1 + rLs2) I
2
Ls,rms + (rLt1 + rLt2) I

2
Lt,rms (63)

where

ILp1,rms = ILp2,rms = ILp,rms (64)

ILS,rms = ID2,rms =
ILm

n+ 1

√
2 (1−D)

3
+

(1−D)2

1−D −Da

(65)

ILt,rms = ILk,rms =
ILm

(1− n′)
×

√√√√2

(
(1−D)2 + 2(1−D −Da)

2

(1−D −Da)

)
+

14 (1−D)

3
+ 1.

(66)

Based on the selected components for a prototype, the losses
of each component are shown in Fig. 6.

G. Design of Capacitors and Magnetizing Inductors

Assuming that the voltage ripple of each capacitor is r% of
the maximum voltage value of the capacitor (Δ VC = r%.VC ),
their values can be determined as follows:

C0 =
I0

ΔVC0 · fS =
I0 (1−D)

r%(2n+ 4) · Vin · fS (67)

C1 =
I0

ΔVC1 · fS =
I0 (1−D)

r%(n+ 2) · Vin · fS (68)

C2 = C3 =
I0

ΔVC2 · fS =
I0 (1−D)

r% · Vin · fS (69)

where ΔVC and fS are considered as the voltage ripple of
capacitors and switching frequency, respectively.

To choose the proper magnetizing inductors, relying on
the current ripple of each magnetizing inductor (ΔILm =
x%.ILm), the minimum value of Lm could be derived

Lm = Lm1 = Lm2 =
Vin ·D

χ% · ILm · fS =
2 · Vin ·D

χ% · Iin · fS

=
Vin ·D (1−D)

χ% · (n+ 2) Io · fS . (70)

IV. EXPERIMENTAL RESULTS

To validate the theoretical results, a prototype is built based
on Table II. Fig. 7 presents a picture of the prototype, and the
control diagram is plotted in Fig. 8.

The experimental waveforms of the proposed converter are
shown in Fig. 9. As can be seen in Fig. 9(a), the gate signals
are interleaved to reduce the current ripple. The drain-to-source
voltages of the switches are shown in Fig. 9(b). As can be
observed, the voltage stresses of the switches are clamped at
30 V, which matches the calculation from (51) and (52). The
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TABLE II
CIRCUIT PARAMETERS

current and voltage waveforms of switches S1 and S2 are plotted
in Fig. 9(c) and (d), respectively. It is clear that ZVS condition
has been provided for all switches in turn-OFF mode, and also
they are turned ON under ZVS condition. Fig. 9(e) and (f)
shows the voltages and currents across the diode D0 and D2,
respectively. The blocking voltages of D0 and D2 are around
120 V, which matches the calculations from (53). Also, these
diodes are turned OFF naturally under ZCS. Fig. 9(g) and (h)
show the voltages and currents across the diode D1 and D3,
respectively. The blocking voltages of D1 and D3 are around
60 V, which matches the calculations from (54). Also, these
diodes are turned OFF naturally under ZCS, and the reverse
recovery currents of the diodes are alleviated. Fig. 9(i) shows
the input and output voltage when the turns ratio is 1. As can
be observed in Fig. 9(j), the voltages of C1 and C2 (VC1 and
VC2) are around 90 and 30 V, which are consistent with the
calculations from (46) and (43). According to calculations (43)
and (44), VC3 equals VC2. Fig. 9(j) confirms this equality.
Fig. 9(k) gives the current of the primary inductors Lp1 and Lp2.
The large input current is shared between the two interleaved
phases due to the uniform current-sharing characteristic of the
converter. The dynamic response of the proposed converter for
the load change between half load and full load is shown in
Fig. 9(l).

V. CONCLUSION

This article presented an efficient interleaved high-step-up
dc–dc converter. All semiconductor devices operated at soft-
switching conditions without utilizing any auxiliary switch and
magnetic core by employing leakage inductance as a reso-
nant inductor. Moreover, the leakage inductance controlled the
current falling rate of the diodes, which alleviated the diode
reverse recovery problem. By using coupled inductors, a high
voltage gain was achieved. VMC in the proposed converter
recycled the leakage energy and clamped the voltage stress

on the switches in addition to increasing the output voltage.
Therefore, the voltage stresses on switches were low. Uti-
lizing low-voltage-rating switches with small ON-resistances
reduced the conduction losses. In addition, this converter
showed automatic current-sharing characteristics. To verify the
validity of the theoretical analysis, a 12 V/180 V laboratory
prototype of this converter was built, and its results were
investigated.
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