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Abstract
Land subsidence is a morphological phenomenon, which causes negative environmental 
and economic consequences for human societies. Therefore, identifying the areas prone 
to subsidence can be one of the necessary measures for reducing the potential risks. This 
study aims to evaluate the efficiency of the support vector machine (SVM) algorithm 
and weighted overlay index (WOI) models in zoning the rate of land subsidence hazard 
in Hashtgerd plain, Iran. First, the 19 criteria include groundwater depletion, groundwa-
ter extraction, aquifer thickness, alluvium thickness, aquifer recharge, well density, drain-
age density, groundwater depth, lithology, bedrock depth, average annual precipitation, 
average annual temperature, climate type, agricultural use, urban use, industrial use, dis-
tance from rivers and streams, distance from roads, distance from faults were considered. 
Then, the layers were weighed based on the Best–Worst Method (BWM). The results of 
BWM indicated that the factors of groundwater extraction (0.219), lithology (0.157), and 
groundwater depletion (0.079) have a greater effect on the potential for subsidence hazard. 
Moreover, the results of validation by performing ROC curve showed that the accuracy 
of RBF-SVM, LN-SVM, SIG-SVM, PL-SVM, and WOI were 95.7, 94.3, 94.9, 93.2, and 
90%, respectively. Based on the ROC results, all of the models for preparing the subsid-
ence hazard map in Hashtgerd plain exhibit excellent accuracy. Therefore, all of the models 
used here can predict the areas vulnerable to subsidence properly. In this study, the five 
land subsidence hazard maps were used as new input factors and integrated using fuzzy 
gamma-ensemble methods to make better hazard maps. The results of the ensemble model 
indicated that 19.3% of Hashtgerd plain is in the zone of high to very high sensitivity. The 
results of this study can help planners in managing and reducing the possible hazards of 
subsidence.
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1  Introduction

Subsidence is one of the hazards, which human have faced in recent decades, especially in 
alluvial plains (Fabris et al. 2021; Shi et al. 2021). Subsidence is a type of surface defor-
mation, which is associated with vertical deformation, sudden sinking, or gradual settling 
of the surface of the earth due to the removal or displacement of subsurface material (Shi 
et al. 2016; Galloway et al. 2018). This phenomenon is affected by human activities such as 
overexploitation of aquifers, changing the landuse, constructing and loading the engineer-
ing structures, drainage of organic soils, subsurface mining or pumping the fluids from the 
ground such as oil and gas (Lee and Park 2013; Rudiarto et al. 2018; Guzy and Malinow-
ska 2020; Gido et al. 2020; Fabris et al. 2021), as well as natural geological phenomena 
including subsurface dissolution and karst collapse, deposit density, and movements tec-
tonic faults (Modoni et al. 2013; Pradhan et al. 2014; Sopata et al. 2020).

Subsidence caused by natural factors often occurs gradually and over a long period of 
time. However, subsidence caused by human factors usually occurs suddenly and leads to 
severe environmental and economic consequences such as morphological irregularities 
(Meilianda et al. 2010), damage to man-made facilities (Ibrahim et al. 2018), disturbance in 
the pattern of hydrological flows (Machowski and Rzetala 2018; Meldebekova et al. 2020), 
and destruction of subsurface facilities (Sayyaf et al. 2014; Sahu et al. 2015) in urban and 
coastal areas within less time. Therefore, recognizing the effective factors in creating sub-
sidence and determining the degree of risk of areas is one of the basic steps for preventing 
the damage to vital buildings and infrastructure, planning for sustainable urban develop-
ment, awareness of the temporal and spatial distribution of land surface deformation, and 
reducing the risk rate (Fiaschi et al. 2018; Fabris et al. 2021). Therefore, various research-
ers around the world studied various aspects of this issue, most of which included monitor-
ing the subsidence phenomenon (Aditiya et al. 2017; Liu et al. 2020; Orhan 2021), how 
it is formed, and the mechanism of its formation (Sowers 1976; Nie et al. 2013; Yu et al. 
2018). Further, various researchers modeled and zoned the hazard of subsidence occur-
rence by using different semi-quantitative and quantitative methods such as artificial neural 
network (ANN) (Jung et al. 2005; Kim and Lee 2020), weight of evidence (WOE) (Oh and 
Lee 2010), support vector machine (SVM) (Zhi-xiang et  al. 2009; Sui et  al. 2020), evi-
dential belief function (EBF) (Pradhan et al. 2014), adaptive neuro-fuzzy inference system 
(ANFIS) (Ghorbanzadeh et  al. 2020), analytical hierarchy process (AHP) (Ibrahim et al. 
2018; Rezaei et al. 2020), random forest (RF) algorithm (Mohammady et al. 2019a) and 
multiple criteria decision making (MCDM) (Ghorbanzadeh et al. 2018; Arabameri et al. 
2021a). Implementing these models, along with the use of geographical information system 
(GIS), are suitable tools for estimating the potential of land subsidence based on achieving 
high-resolution data, analyzing the factors affecting this phenomenon, and reducing operat-
ing costs (Pradhan et al. 2014; Tien Bui et al. 2018).

Due to the pervasive environmental risk of land subsidence in more than 300 plains 
of Iran, the need to study about this hazard is important (Mirzadeh et al. 2021). Hashtg-
erd plain is one of these vulnerable plains in Iran. The studies of Geological Survey and 
Mineral Exploration of Iran (2007), which were performed by using the interferometric 
synthetic aperture radar (InSAR) method, indicated that land subsidence occurred with a 
maximum rate of 16 and the average rate of 8.4 cm per year in a wide zone of this plain. 
This plain has been seriously faced with a drought crisis and decreased groundwater lev-
els in recent years. It seems that the groundwater levels in this area will decrease signifi-
cantly in the future due to climate change and continuing the existing conditions in the 
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exploitation of water resources. In fact, changes in agricultural pattern, reduced precipita-
tion, and occurrence of continuous droughts lead to the unplanned and unprincipled use of 
groundwater resources and declining groundwater levels in Hashtgerd plain, which causes 
the conditions for the occurrence and expansion of the land subsidence. Therefore, pro-
viding a suitable model and preparing a land subsidence hazard zonation map can be a 
significant help to local people and competent centers for protecting the human and natural 
resources and reducing the damage caused by land subsidence. In this regard, this study 
aims to identify and classify the sensitive areas, and determine the most important factors 
affecting the occurrence of subsidence based on the weighted overlay index (WOI) model 
and support vector machine (SVM) algorithms, and evaluate the accuracy of these models 
in Hashtgerd plain. The most significant innovation includes:

•	 The appropriate and comprehensive combination of 5 criteria and 19 sub-criteria effec-
tive in assessing the subsidence in Hashtgerd plain based on the opinion of experts and 
review of extensive sources.

•	 Making critical and basic maps such as alluvial thickness, aquifer thickness, aquifer 
recharge, and bedrock depth for the first time in Hashtgerd plain for future researches.

•	 Combining the WOI method and the best–worst method (BWM) in order to create a 
linear optimization problem of criteria weights for the first time.

•	 Comparing the efficiency of the WOI method and 4 kernels of the vector machine algo-
rithm including linear, polynomial, sigmoid, and radial to prepare the subsidence map 
in Hashtgerd plain.

2 � Materials and method

2.1 � Study area

Hashtgerd plain is located in Alborz Province, Iran. The area of this plain is about 1168.8 
Km2, which is located between the latitude 35° 47′ 45" and 36° 03′ 05″ north and longitude 
50° 29′ 05″ and 50° 54′ 28″ east. The climate in Hashtgerd plain is considered as dry and 
cold based on Emberger and dry on Dumarten climate classifications. The aforementioned 
area experiences cold and wet winters and dry summers, which is among the characteristics 
of a dry and cold climate. The annual average temperature in the study area equals 14 °C 
and its absolute minimum and maximum temperature equal − 16.1 and 38 °C, respectively. 
In addition, the 33-year average precipitation in Hashtgerd plain about 373 mm. The cli-
mate of the area in the northern parts is semi-humid, which gradually changes to semi-arid 
toward the south of the plain due to decreasing altitude (Fig. 1).

Geological studies of the area are necessary for knowing the subsidence phenomenon. 
Based on the hydraulic conductivity, the geological formations of this area are divided into 
four main groups, which are described as follows. The first group includes the formations 
with very low permeability. This group includes the formations consisting of ancient and 
very fine-grained sediments of shale, siltstone, and sandstone such as Barut, Zagun, Dorud, 
and Shemshak formations. The low permeability formations belong to the second group. 
The group includes the formations related to the late Paleozoic to early Paleogene, includ-
ing Ruteh, Elika, and Dalichai formations. These formations are predominantly carbonate and 
do not have high hydraulic conductivity. Moderate permeability formations are known as the 
third group, which mainly includes Hezar Dareh alluvial formation and somewhat Neogene 
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sediments. Hezar Dareh Formation is in fact Quaternary alluvial terraces consisting of rubble 
and sand with weak silty-clayey cement. This formation reduces the lateral recharge of the 
aquifer due to its small pores and low permeability. Formations with high to very high perme-
ability are considered as the fourth group. This group includes young alluvial sediments and 
river alluvium. In general, the main aquifer of the plain is composed of high permeability sedi-
ments, which have high hydraulic conductivity.

Further, the tectonic structure of the studied area has been affected by Alborz tectonic 
activities. Therefore, most folds and faults have an east–west trend. Tectonic activities in the 
area have caused more faults than folds. Important faults in this area include Abyek, south 
Taleghan, and Valian faults. Moreover, faults of the area played a major role in forming the 
south mountain ranges of Taleghan as a horst and Hashtgerd plain as a graben (Geological 
Survey and Mineral Exploration of Iran 2007). Its lithological properties are shown in Fig. 2 
and Table 1.

Fig. 1   Location map of the study area
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3 � Research framework

This study was performed in five general steps including identifying and preparing the 
effective environmental criteria, weighting environmental criteria based on the Best–Worst 
Method (BWM), implementing the Weighted Overlay Index (WOI) model and Support 
Vector Machine (SVM) algorithms, preparing the map of the Subsidence Potential Index 
(SPI), and validating the models by using the Relative Operating Characteristic (ROC) 
curve. Figure 3 shows the general steps of the research.

3.1 � Identifying and preparing the effective environmental criteria

Based on the conditions of Hashtgerd plain, reviewing the literature and opinion of experts, 
the effective criteria in the land subsidence zoning were compiled in the two physi-
cal–chemical and economic-social dimensions, five groups of criteria including hydrologi-
cal, geological, climate, land use, and buffer, and 19 sub-criteria including groundwater 
depletion, groundwater extraction, aquifer thickness, alluvium thickness, aquifer recharge, 
well density, drainage density, groundwater depth, lithology, bedrock depth, average annual 
precipitation, average annual temperature, climate type, agricultural use, urban use, indus-
trial use, distance from rivers and streams, distance from roads, distance from faults. In 
this study, Inverse Distance Weighted (IDW) method was used to prepare five maps includ-
ing temperature and precipitation maps, groundwater depletion, groundwater extraction, 
and alluvium thickness. Based on the IDW method, the degree of correlation and similar-
ity between neighbors is proportional to the distance, which can be defined as a function 

Fig. 2   Lithological properties of Hashtgerd plain
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Zonation of subsidence vulnerability in Hashtgerd plain

Determination of Main Criteria

Literature 
review

Area 
conditions

Expert 
opinion

Validation

Performance
the Roc 
method  

Selecting the 
best model

Map of land subsidence susceptibility 
map 

Weighted 
Overlay Index 

model

Support Vector 
Machine algorithm 

Effective criteria in subsidence event

Preparation of criteria

• Bedrock depth
• Average annual 

precipitation 
• Average annual 

temperature 
• Climate type
• Agricultural use
• Industrial use
• Urban use
• Distance from 

waterways 
• Groundwater 

depletion 

• Groundwater
extraction 

• Aquifer thickness
• Alluvium thickness
• Aquifer recharge
• Well density
• Drainage density
• Groundwater depth 
• Lithological units
• Distance from faults
• Distance from roads

Location of subsidence events

Total subsidence events

Training
dataset

Testing 
dataset

Random 
sampling

70% 30%

Fig. 3   Steps of land subsidence zoning process in Hashtgerd plain
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with the inverse of the distance of each point from the neighboring ones (Uyan and Cay 
2010). It is possible to control the significance of known points upon the interpolated val-
ues, based on their distance from the output point with IDW. The weights for samples in 
IDW decrease with an increase in distance between the known samples and the estimated 
points. These weights are controlled by weighting powers, so that greater powers reduce 
the effect of farther estimated points and smaller powers distribute the weights more uni-
formly among the neighbors’ points (Ouabo et al. 2020). The IDW method is considered as 
appropriate when the sample points exhibit enough distribution at the local scale levels (Li 
et al. 2014), so the IDW method was utilized according to the distribution of the samples. 
In order to check the efficiency of the IDW method, the data were removed at one point and 
the actual value was compared with the calculated one based on the root mean square error 
(RMSE) method, indicating that the above-mentioned method is regarded as appropriate 
for preparing the maps intended for this area.

In this study, a land subsidence inventory map was acquired from the Geological Sur-
vey and Mineral Exploration of Iran (2020). A total of 293 LS events have been recorded 
in the study area. Some of the field photographs in this study area are shown in Fig. 1. In 
order to create land subsidence susceptibility maps by statistical, probabilistic, and soft 
computing approaches, land subsidence training and testing datasets are required (Pradhan 
2010; Mokhtari and Abedian 2019). In this study, the models were developed and validated 
by using training and testing dataset, respectively. For this purpose, the land subsidence 
locations were randomly divided into two parts: 70% of these land subsidence (205 land 
subsidence locations) were used to train the model, and the remaining 30% (88 land sub-
sidence locations) were used to validate the performance of the model.

A description of the criteria is given in Table 2. Each criterion should be indicated as a 
map layer in the GIS-based database since a set of criteria was specified. The description 
of the criteria is as follows.

–	 Distance from rivers and streams

Watercourse is one of the important factors in inducing instability in the region (Ghor-
banzadeh et  al. 2018; Ranjgar et  al. 2021). Therefore, this map was extracted from the 
1:50,000 topographic map of the studied area. Then, a map of the distance from rivers 
and streams was prepared by using the Distance tool in ArcGIS software, the continuous 
values of which are between 0 and 4826 m. This layer was classified into 9 classes with 
equal intervals. Score 1 was assigned to the first class, which represents the closest distance 
from rivers and streams, and score 9 to the ninth class. The other classes were assigned the 
appropriate score on a scale of 1 to 9.

–	 Distance from fault

Faults are considered as one of the important criteria in land subsidence events. Vibration 
related to the fault formation can cause an inelastic compaction due to increased effective 
stress in the soil, which leads to subsidence (Galloway et  al. 1999; Pradhan et  al. 2014; 
Navarro-Hernández et al. 2020). In this study, the faults of the region were extracted from 
the geological map with a scale of 1:100,000. After that, the distance from the fault map 
was prepared by using the Distance tool in ArcGIS software. In the continuous map, the 
values were determined between 0 and 15,030 m. This layer was classified into 9 classes 
with equal intervals. Score 9 was assigned to the first class, which represents the closest 
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distance from faults, and score 1 to the ninth class. The other classes were assigned the 
appropriate score on a scale of 1 to 9.

–	 Groundwater depletion and groundwater extraction

One of the causes of land subsidence is related to its natural reaction against groundwa-
ter overexploitation and consequently depletion of the groundwater level due to reduced 
hydraulic pressure and increased stress on sediments (Hu et al. 2009; Huang et al. 2012). 
Groundwater depletion is influenced by factors such as the reduction in rainfall, long-term 
droughts, especially in arid and semi-arid areas such as the study area, and geological con-
ditions, as well as human factors such as indiscriminate groundwater extraction. In fact, 
groundwater extraction is among the critical human factors in reducing the quantity and 
quality of underground water and the occurrence of subsidence phenomenon. In this study, 
the data related to water level changes during 2005–2020 (15 years) obtained from Alborz 
Regional Water Company (2020) were applied to prepare a map of groundwater depletion 
in the study area. Then, the groundwater depletion was prepared by using IDW interpola-
tion method in 5 classes, that class 1 represents the lowest and class 5 represents the high-
est groundwater depletion. Then, scores 1, 3, 5, 7, and 9 were assigned to classes 1 to 5 of 
the map, respectively. In addition, the groundwater extraction rate was prepared by using 
the discharge data of the exploitation wells. After that, a continuous map of groundwa-
ter extraction was prepared by using IDW interpolation method, the values of which were 
determined between 7 and 1756 cubic meters. This layer was classified into 9 classes with 
equal intervals. Score 1 was assigned to the first class, which represents the lowest ground-
water extraction, and score 9 to the ninth class. The other classes were assigned the appro-
priate score on a scale of 1 to 9.

–	 Aquifer recharge

Recharge is one of the effective hydrological factors in subsidence. The higher rate of 
recharge caused the higher hydraulic pressure and greater distance between the grains, 
which reduces the effective stress leading to the lower possibility of subsidence (Nadiri 
et al. 2018; Sadeghfam et al. 2020). This study used the Piscopo method (Piscopo 2001) for 
preparing the aquifer discharge layer. In the Piscopo method, the slope, precipitation, and 
surface permeability of the soil (depth of 0.5–2 m of surface soil) layers were converted to 
the raster layer and the continuous map of aquifer recharge was prepared by weighting and 
overlaying the layers. The values of which were determined between 0.39 and 1. Score 9 
was assigned to the first class, which represents the lowest aquifer recharge, and score 1 to 
the ninth class. The other classes were assigned the appropriate score on a scale of 1 to 9.

–	 Alluvium thickness

Alluvium thickness includes the distance between the land surface and the bedrock. In gen-
eral, subsidence mostly occurs in the layers with higher alluvium thickness since much 
water can be extracted by increasing the alluvium thickness of the area. To prepare this 
layer, the amount of alluvium thickness in each well of the region was calculated by using 
the data of the surface geophysics and well logging obtained from Regional Water Com-
pany of Alborz (2020). Then, these points were interpolated based on the IDW method and 
converted to a raster file. Therefore, a continuous layer of aquifer thickness was obtained. 
The values of which were determined between 60 and 329 m. This layer was classified into 
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9 classes with equal intervals. Score 1 was assigned to the first class, which represents the 
lowest alluvium thickness, and score 9 to the ninth class. The other classes were assigned 
the appropriate score on a scale of 1 to 9.

–	 Climatic parameters

Climatic parameters, especially temperature and precipitation, are one of the effective fac-
tors in the subsidence phenomenon due to their effect on groundwater (Zheng et al. 2017; 
Tafreshi et al. 2019). Therefore, in this study, tabular data such as location and information 
of meteorological stations related to the average annual precipitation and temperature of 
the studied area were imported as the point into the ArcGIS software, which were con-
verted to the annual isohyetal and isothermal maps by using IDW interpolation methods. 
Information about climatic stations is presented in Table 3. Values of isohyetal and iso-
thermal maps were determined between 199 and 850 mm per year and 0–14 °C, respec-
tively. These layers were classified into 9 classes with equal intervals. In the average annual 
precipitation, score 9 was assigned to the first class, which represents the lowest average 
annual precipitation, and a score 1 to the ninth class. In addition, in the average annual 
temperature, score 1 was assigned to the first class, which represents the lowest average 
annual temperature, and a score 9 to the ninth class. The other classes were assigned the 

Table 3   Information about climatic stations

No. Name Longitude Latitude Altitude Type Mean tempera-
ture

Mean 
precipi-
tation

1 Hiv Sarab 50° 3ʹ 53ʹʹ 36° 02ʹ 14ʹʹ 1470 Rain gauge 
station

11.99 305.1

2 Valiyan 50° 50ʹ 28ʹʹ 36° 01ʹ 40″ 1790 Rain gauge 
station

11.6 496.5

3 Aghesht 50° 52ʹ 03ʹʹ 36° 00ʹ 04ʹʹ 1625 Rain gauge 
station

10.1 499.5

4 Sarheh Bar-
ghan

50° 56ʹ 37ʹʹ 35° 57ʹ 57ʹʹ 1800 Rain gauge 
station

9.8 400.1

5 Ardaheh 50° 47ʹ 11ʹʹ 36° 01ʹ 24ʹʹ 1700 Rain gauge 
station

7.8 494.1

6 Khor 50° 42ʹ 44ʹʹ 36° 00ʹ 45ʹʹ 1460 Rain gauge 
station

9.95 344.9

7 Arab Abad 50° 40ʹ 43ʹʹ 36° 01ʹ 02ʹʹ 1350 Rain gauge 
station

9.6 322.5

8 Fashand 50° 45ʹ 16ʹʹ 36° 02ʹ 08ʹʹ 1780 Evaporation 
station

9.1 429.3

9 Deh Someh 50° 50ʹ 25ʹʹ 35° 57ʹ 21ʹʹ 1410 Evaporation 
station

10.8 310.2

10 Najm Abad 50° 30ʹ 13ʹʹ 35° 50ʹ 38ʹʹ 1190 Evaporation 
station

14 200.1

11 Karim Abad 50° 36ʹ 32ʹʹ 35° 50ʹ 42ʹʹ 1160 Evaporation 
station

13.7 206.3

12 Darvan 51° 02ʹ 01ʹʹ 36° 00ʹ 10ʹʹ 2200 Evaporation 
station

5.9 542.8
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appropriate score on a scale of 1 to 9. Moreover, subsidence usually occurs in arid climates 
where groundwater extraction is higher and aquifer recharge is poorer. The map of climate 
type in the studied area was received from Alborz Meteorological Office. Based on the 
map, the climate of the area includes six classes, the first and sixth of which indicate the 
driest and the wettest climate class, respectively. Scores 9, 8, 6, 4, 2, and 1 were assigned to 
classes 1 to 6 of the map.

–	 Land use

Land is used for different purposes and the effect of each of these factors on subsidence can 
be varied. Agricultural and urban uses are one of the main factors in increasing groundwa-
ter extraction and occurring subsidence. Further, the weight of these industrial structures 
causes the compaction of soil layers and land subsidence (Taheri et al. 2018; Zhou et al. 
2020). Therefore, the land use map at the scale of 1:100,000 was obtained from the Forests, 
Range, and Watershed Management Organization of Iran. The agricultural, residential, and 
industrial areas were extracted from it. In this study, industrial, urban, agricultural, and 
other land uses were assigned a score of 7, 7, 9, and 1, respectively.

–	 Bedrock depth

In an area where the bedrock is located at a shallow depth, drilling a well is not possible 
due to low thickness of alluvium. Thus, groundwater is transported to the thicker areas, 
which leads to an increase in the subsidence and horizontal displacement of layers in the 
area (WRI 2014). In this study, the layer of the bedrock depth was prepared from the global 
map of depth to bedrock (https://​data.​isric.​org/​geone​twork/​srv/​api/​recor​ds/ f36117ea-9be5-
4afd-bb7d-7a3e77bf392a). The values of which are continuous and determined between 
0 and 231  m. This layer was classified into 9 classes with equal intervals. Score 1 was 
assigned to the first class, which represents the lowest depth of the bedrock, and score 9 to 
the ninth class. The other classes were assigned the appropriate score on a scale of 1 to 9.

–	 Distance from roads

Communication axes increase the land subsidence and sinkholes by causing the waves to 
the sides and the depth of the earth and collapsing the soil particles in places where mois-
ture decreased, which is related to much passages (Hakim et  al. 2020; Arabameri et  al. 
2021b). Road maps were extracted from the 1:50,000 digitized topographic map of the 
studied area. Then, the map of distance from roads was prepared. In the continuous map, 
the values were determined between 0 and 8424 m. This layer was classified into 9 classes 
with equal intervals. Score 9 was assigned to the first class, which represents the closest 
distance from roads, and score 1 to the ninth class. The other classes were assigned the 
appropriate score on a scale of 1 to 9.

–	 Well density

Density of wells and qanats directly related to the overexploitation of groundwater and 
amount of subsidence (Jeanne et al. 2019). In this study, the location of wells as x and y 
was received from Regional Water Company of Alborz (2020). The density of wells was 
calculated based on the number of wells per square kilometer after entering the ArcGIS 

https://data.isric.org/geonetwork/srv/api/records/
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software. In the map, its values were determined between 0 and 223 wells per square kilo-
meter. This layer was classified into 9 classes with equal intervals. Areas with high well 
density, which are more prone to subsidence, were ranked higher and areas with low well 
density were ranked lower.

–	 Lithology

Rocks show different resistances against the external forces due to differences in the type of 
constituent sediments, conditions, and period of formation (Conforti et al. 2014; Mokhtari 
and Abedian 2019). Therefore, a digital lithological map of the studied area with a scale 
of 1:100,000 was received from the Geological Survey and Mineral Exploration of Iran 
(2020), and the characteristics of the lithological units of Hashtgerd plain were extracted. 
Hashtgerd area has 19 lithological formation classes, and these formations were ranked 
on a scale of 1 to 9 based on the type of constituent materials and with the help of review 
sources. Fine-grained formations, which are more prone to subsidence, were ranked higher 
and coarse-grained formations were ranked lower. The scoring of lithological formations is 
presented in Table 4.

–	 Drainage density

The amount of drainage density is directly related to the subsidence events (Hakim et al. 
2020). Drainage density, which is the ratio of the length of the rivers and streams to the 
studied area, was calculated by using a digital height map and ArcHydro extension in 
ArcGIS software. In the continuous map, the values were determined between 0.04 and 
2.14 km/Km2. This layer was classified into 9 classes with equal intervals. Areas with high 
drainage density, which are more prone to subsidence, were ranked higher and areas with 
low drainage density were ranked lower.

–	 Aquifer thickness

The alluvium thickness is the distance between the ground surface and the bedrock, and 
the aquifer thickness is the distance between the water table and the bedrock. Therefore, 
the aquifer thickness can be easily estimated by subtracting the water table depth from the 
alluvium thickness. In other words, the part of the alluvium thickness saturated with water 
can be considered as the aquifer thickness. In this study, due to the relatively accurate map 
of alluvium thickness and water table depth, this method was used. In the continuous map 
of aquifer thickness, the values were determined between 0 and 285 m. This layer was clas-
sified into 9 classes with equal intervals. Score 1 was assigned to the first class, which rep-
resents the lowest aquifer thickness, and score 9 to the ninth class. The other classes were 
assigned the appropriate score on a scale of 1 to 9.

–	 Groundwater depth

There is a direct relationship between groundwater depth and subsidence. The contour map 
of piezometers was obtained from Regional Water Company of Alborz (2020) and its val-
ues were determined between 10 and 145 m. The continuous map of depth of groundwa-
ter level was prepared by interpolating the contour map of piezometers based on the IDW 
method. The values of which are continuous and determined between 10 and 145 m. This 
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layer was classified into 9 classes with equal intervals. Score 1 was assigned to the first 
class, which represents the lowest depth of the groundwater level, and score 9 to the ninth 
class. The other classes were assigned the appropriate score on a scale of 1 to 9.

3.2 � Weighted overlay index (WOI)

Identifying and assessing the area prone to subsidence is one of the most important issues 
in assessment and spatial development programs (Abidin et al. 2015). Multi-criteria evalu-
ation is a spatial decision support tool to identify the best place or the best pixels based on 
their ranking by evaluating some main criteria. The steps of this method included defining 
the problem, setting goals, selecting the criteria, standardizing, determining the weights, 
using one of the methods of multi-criteria evaluation, and analyzing the results (Saaty 
2008; Song and Chen 2018). The Weighted Overlay Index (WOI) is one of the most com-
mon methods in the multi-criteria spatial decision making, which is widely used in the pro-
cess of assessing and determining the vulnerable zones (Hailegebriel et al. 2007; Vázquez-
Quintero et al. 2020). In this method, the decision maker directly assigns weights to the 
criteria based on the relative importance of each criterion. In this research, the best–worst 
method (BWM) has been used to determine the importance of criteria and sub-criteria.

3.3 � Best–worst method (BWM)

Based on the BWM, best and worst criteria are determined by decision maker and a pair-
wise comparison is made between each of the two criteria (best and worst) and other cri-
teria (Rezaei 2015). Next, a max–min problem is formulated and solved to determine the 
weight of various criteria (Foroozesh et al. 2022). Moreover, a formula is considered for 
calculating the incompatibility rate to check the validity of the comparisons. The steps of 
the method are as follows (Rezaei 2015).

Step 1 A set of decision criteria is determined. The set of criteria is defined as 
C1C2 …Cn , which is needed for making a decision.

Step 2 The best (most important, most desirable) and worst (least important and least 
desirable) criteria are identified. In this step, the decision maker defines the best and worst 
criteria in general and no comparison is made.

Step 3 The preference of the best criterion over the other criteria is determined by using 
the numbers between 1 and 9. The preference vector of the best criterion over the other 
criteria is displayed as AB =

(
aB1.aB2 … .aBn

)
 . In the mentioned vector, aBj indicates the 

preference of the best criterion B over the criterion j . It is clear that aBB = 1.
Step 4 The preference of all the criteria over the worst criteria is determined by using 

the numbers 1–9. The preference vector of the other criteria over the worst criterion is dis-
played as AW =

(
aW1.aW2 … .aWn

)T , where aWj indicates the preference of the worst crite-
rion w over the criterion j . Thus, we have aWW = 1.

Step 5 The optimal values of the weights are determined. The pairs WB

Wj

= aBj and 
Wj

WW

= ajW are formed for determining the optimal weight of each of the criteria. Then, to 
satisfy these conditions in all j , a solution should be found for maximizing the expressions 
||||
WB

Wj

− aBj
||||
 and |||

Wj

WW

− ajW
|||
 for all j which have been minimized. Due to the non-negative 

weights and sum weights, the model can be formulated as follows:
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Further, the problem can be rewritten as follows, where WB indicates the weight of the 
most important criterion, W

w
 shows the weight of the least important criterion, W

j
 is con-

sidered as the weight of the criterion j, and aik × akj = aij , and i and j represent a perfectly 
consistent pairwise comparison matrix.

In these cases, instead of minimizing the maximum value in the set of 

{ 
||||
W

B

W
j

− aBj
||||
and

|||
W

j

WW

− a
jW

|||
 }, the maximum value of their set should be minimized, which 

provides the solutions 
{
|||
WB − aBjWj

|||
and

|||
Wj − ajWWW

|||

}
 . The above-mentioned problem 

can be transformed the following problem (Rezaei 2016).

The optimal values (W∗

1
.W∗

2
.… .W∗

n
) and ξ∗ are obtained by solving the above-mentioned 

model. All steps for the sub-criteria were also calculated separately.

3.3.1 � Calculating the consistency ratio in the BWM method

The consistency ratio is calculated by using the obtained ξ∗ . It is clear that a larger value of 
ξ
∗ indicates a higher consistency ratio. The maximum value of ξ can be obtained because of 

(1)

axj

{
|||||

WB

Wj

− aBj

|||||
.
|||||

Wj

WW

− ajW

|||||

}

s⋅t⋅∑

j

Wj = 1

Wj ≥ 0 for all j

(2)

min �

s ⋅ t⋅

|||||

WB

Wj

− aBj

|||||
≤ � for all j

|||||

Wj

WW

− ajW

|||||
≤ � for all j

WW∑

j

Wj = 1

Wj ≥ 0 for all j

(3)

s ⋅ t⋅

|||
WB − aBjWj

|||
≤ � for all j

|||
Wj − ajWWW

|||
≤ � for all j

WW∑

j

Wj = 1

Wj ≥ 0 for all j



Natural Hazards	

1 3

a
Bj
× a

jW
= a

BW
 and a

BW
∈ {1.2.… .9} . The consistency ratio can be calculated by using the 

consistency criteria given in Table 5 and the presented formula.

The results are more consistent when the values of consistency ratio are closer to zero. In 
the next step, the sum of the product of multiplying the relative weight in the value of the cri-
terion leads to obtaining a potential of the map for the desired goal through Eq. (5).

where SPI indicates the amount of subsidence potential, Wi is considered as the weight of 
each sub-criteria, and Xi shows standardized value of each sub-criteria.

3.4 � Support vector machine (SVM) algorithm

SVM model is based on the statistical learning theory. Based on the theory, the learning 
machine error rate bound for unclassified data can be considered as a generalized error rate 
(Fig. 4). These bounds are considered as a function of the total of training error rates, which 
indicate the complexity rate of the classifiers. The rate of training error and complexity of 
classifier should be reduced for minimizing the generalized error rate, which can be performed 
by maximizing the margin separating. Therefore, this classifier has an appropriate perfor-
mance since it does not depend on the dimension of the input data. SVM model, which has 
been used extensively in recent decades, and is based on the nonlinear transformation synchro-
nously with a high-dimensional feature space (Vapnik 2013).

To provide the subsidence zoning map using SVM, a remote sensing software called ENVI 
4.3 was used. The SVM classifier in ENVI 4.3 software provides four types of kernels, includ-
ing linear, polynomial, radial basis function (RBF), and sigmoid. The mathematical represen-
tations of each kernel (linear, polynomial, radial base function, and sigmoid) are listed below, 
respectively (Tien Bui et al. 2012):

(4)Consistency ratio =

�∗

Consistency criteria

(5)SPI = ΣWiXi

(6)K(Xi,Xj) = XT
i
Xj

(7)K(Xi,Xj) = (𝛾XT
i
Xj + r)d, 𝛾 > 0

(8)K(Xi,Xj) = exp (−𝛾
‖‖‖
Xi − Xj

‖‖‖

2

), 𝛾 > 0

(9)K(Xi,Xj) = Tanh (�XT
i
Xj + r)

Table 5   consistency criteria 
using BWM method

aBW 1 2 3 4 5 6 7 8 9

consistency
criteria

0 0.44 1 1.63 2.30 3 3.73 4.47 5.23
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where γ is the term gamma in the kernel function for all types of kernels except linear ker-
nels. d is the term polynomial degree in a kernel function for a polynomial kernel. r is the 
term bias in the kernel function for polynomial and sigmoid kernels. γ, d, and r are user-
controlled parameters, because their correct determination increases the accuracy of the 
SVM solution.

3.5 � Ensemble of SVM algorithm maps using fuzzy operator

In the next step, in order to improve the prediction accuracy based on multiple outputs 
of vector machine functions, a set of kernals were combined using a fuzzy operator. The 
fuzzy set theory was used to integrate the calculated subsidence hazard indices through 
each model in this study. The concept of fuzzy logic is to consider the spatial objects on 
a map as members of a set. In the fuzzy set theory, membership can take on any value 
between 0 and 1 reflecting the degree of certainty of membership (Park et  al. 2014). 
Bonham-Carter (1994) introduced five operators that were useful for combining explor-
atory datasets: five operators, namely the fuzzy and, fuzzy or, fuzzy algebraic product, 

Fig. 4   SVM principles. A n-dimensional hyperplane differentiating the two classes by the maximum gap: B 
non-separable case and the slack variables ξ (Yao et al. 2008)
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fuzzy algebraic sum, and fuzzy gamma operator. This study applied the fuzzy gamma 
operator for combining the fuzzy membership functions. The Fuzzy Algebraic Product 
is defined as:

where µi is the fuzzy membership function for the ith map, and i = 1, 2,..., n maps are to be 
combined. The fuzzy algebraic sum is complementary to the fuzzy algebraic product, is 
defined as:

The gamma operation is defined in terms of the fuzzy algebraic product and the fuzzy 
algebraic sum by:

where λ is a parameter chosen in the range (0,1), and the fuzzy algebraic sum and fuzzy 
algebraic product are calculated using Eqs. (10) and (11), respectively. In the fuzzy gamma 
operation, when λ is 1 the combination is the same as the fuzzy algebraic sum, and when 
λ is 0 the combination equals the fuzzy algebraic product. The judicious choice of λ pro-
duces output values that ensure a flexible compromise between the ‘increase’ tendencies 
of the fuzzy algebraic sum and the ‘decrease’ effects of the fuzzy algebraic product (Park 
et al. 2014).

3.6 � Evaluating the models

To evaluate the models, the Relative Operating Characteristic (ROC) curve was used for 
assessing the predictability of the models. The ROC curve is a graphical plot of the bal-
ance between the negative and positive error rates for each possible amount of cut-off. 
The area under the curve indicates the rate of system prediction by describing its ability 
to accurately estimate what occurred and what did not occur. The most ideal model has 
the greatest Area Under the Curve (AUC). The AUC values range from 0.5 to 1. The 
classification of the area under the curve includes excellent (0.9–1), highly appropriate 
(0.8–0.9), appropriate (0.7–0.8), average (0.6–0.7), and weak (0.5–0.6). The best accu-
racy of the prepared zonation maps is obtained when the amount of area under the curve 
is closer to 1 (Agarwal and Garg 2016; Chen et al. 2018).

4 � Results

In this study, two physico-chemical and socio-economic dimensions including five cri-
teria and 19 sub-criteria were compiled for determining the zones prone to subsidence. 
Figure 5 shows the criteria map for determining the zones prone to subsidence.

(10)�combination =

n∏

i=1

�i

(11)�combination = 1 −

n∏

i=1

(1 − �i)

(12)�combination = (Fuzzy algebraicsum)
�
⋅ (Fuzzyalgebraicproduct)1−�
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Fig. 5   Classification of effective sub-criteria in land subsidence
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Fig. 5   (continued)
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4.1 � Results of a Weighted overlay index (WOI)

The WOI method was used for assessing the potential of subsidence in the area. In 
the used method, after preparing the 19 sub-criteria as the normalized raster layer, the 
next step related to determining the relative importance of each effective component 
and assigning the appropriate weight to each of the sub-criteria was performed. The 
weighting of each criterion was obtained based on the opinion of each expert sepa-
rately by solving a nonlinear model in Lingo software. Then, the significance coefficient 
or weight of each criterion was obtained by averaging the opinion of all the experts 
(Table 6). �∗ indicates the consistency of a comparison, the value of which for all the 
experts in this study is close to zero. Therefore, the results were very well consistent and 
acceptable.

At this stage, the layers were combined using the weight overlap index method 
to prepare a potential zones of subsidence. High values of the map indicate the high 
sensitivity to the subsidence occurrence and increasing the probability of subsidence 
occurrence.

Subsidence potential index (SPI) = [(groundwater depletion × 0.079) + (groundwater 
extraction × 0.219) + (aquifer thickness × 0.048) + (alluvium thickness × 0.06) + (aqui-
fer recharge × 0.034) + (well density × 0.04) + (drainage density × 0.025) + (groundwater 
depth × 0.078) + (lithology × 0.157) + (bedrock depth ×  0.032) + (average annual precipita-
tion × 0.064) + (average annual temperature × 0.009) + (climate type × 0.013) + (agriculture 
use × 0.026) + (urban use × 0 0.01) + (industrial use × 0.077) + (distance from rivers and 
streams × 0.006) + (distance from roads × 0.004) + (distance from faults × 0.018)].

Table 6   The importance of criteria affecting the subsidence in Hashtgerd plain

Dimension Criteria Sub-criteria Weight Final weight Rank

Physico-chemical
0.858

Hydrology
0.68

Groundwater depletion 0.136 0.079 3
Groundwater extraction 0.375 0.219 1
Aquifer thickness 0.082 0.048 8
Alluvial thickness 0.102 0.06 7
Aquifer recharge 0.058 0.034 10
Well density 0.068 0.04 9
Drainage density 0.043 0.025 13
Groundwater depth 0.136 0.078 4

Geology
0.22

Lithological units 0.833 0.157 2
Bedrock depth 0.167 0.032 11

Climate
0.1

Annual rainfall average 0.743 0.064 6
Annual temperature average 0.1 0.009 17
Climate type 0.157 0.013 15

Socio-economic
0.142

Land use
0.8

Agricultural use 0.233 0.026 12
Urban use 0.084 0.010 16
Industrial use 0.683 0.077 5

Buffer
0.2

Distance from waterway 0.225 0.006 18
Distance from roads 0.125 0.004 19
Distance from faults 0.65 0.018 14
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4.2 � Results of Support Vector Machine (SVM) algorithm

Determining the appropriate values for each of the four kernels is necessary for achieving 
the maximum efficiency in the SVM algorithm process. The setting parameter (C) should 
be determined for LN-SVM. However, C and the gamma parameter (γ) should be deter-
mined for RBF-SVM. Three parameters including C, γ, and bias (r) should be determined 
in the case of SIG-SVM. Four parameters C, γ, r, and degree of kernel (d) are needed 
for PL-SVM. Table 7 indicates the four parameters required for optimizing the algorithm 
for zoning the subsidence. Four output maps of the sensitivity of the basin to subsidence 
were extracted based on this algorithm (Fig. 7). The potential of subsidence was calculated 
between 0 and 1. The greater sensitivity to subsidence occurrence and the higher possibil-
ity of the occurrence were observed when its value is closer to 1.

4.3 � Result of land subsidence vulnerability zoning

Finally, the subsidence potential resulting from the WOI and four kernal SVM algorithm 
was classified into five classes including very low, low, moderate, high, and very high 
based on the Jenks natural breaks classification method (Figs. 6 and 7). Figure 8 showed 
the percentage of land subsidence vulnerability in Hashtgerd plain based on the WOI and 
four kernal SVM algorithm. As shown in Fig. 8, the areas of the very low, low, moderate, 
high, and very high land subsidence susceptibility area in the WOI model are 10.66, 38.51, 
31.49, 11.66, and 7.69%, respectively. The percentage coverage of the very low, low, mod-
erate, high, and very high land subsidence susceptibility area in the SIG-SVM model are 
60.63, 23.43, 7.85, 5.33, and 2.77%, respectively. The percent coverage of the very low, 
low, moderate, high, and very high land subsidence susceptibility area in the RBF-SVM 
model are 81.06, 8.31, 5.65, 3.95, and 1.03%, respectively. The areas of very low to very 
high land subsidence susceptibility area in the PL-SVM model are 2.64, 23.5, 49.33, 17.3, 
and 7.22%, respectively. And the areas of very low to very high land subsidence suscepti-
bility area in the LN-SVM model are 33.16, 34.1, 18,87, 7.94, and 5.93%, respectively. In 
this study, a slight difference was observed in susceptibility classes, which could probably 
be related to the four functions, their modeling process, and parameters (C, γ, r, and d)) 
required to optimize the SVM algorithm in subsidence zoning.

In addition, Fig. 9 shows the distribution of the five susceptibility classes of the ensem-
ble of four SVMs-WOI models. The areas of very low to very high land subsidence sus-
ceptibility areas in the ensemble of four SVMs-WOI are 38.6, 31.9, 10.5, 9.7, and 9.5%, 
respectively. Areas with very high subsidence vulnerability zones are found in the center 
parts of Hashtgerd plain. Comparatively, eastern and northern parts have low and very low 
vulnerability areas.

Table 7   Parameters required to 
optimize the SVM algorithm in 
subsidence zoning

Kernel d r γ Penalty (C)

Radial – – 0/98 90
Sigmoid – 1 1 100
Liner – – – 85
Polynomial 2 1 1 100



	 Natural Hazards

1 3

4.4 � Results of validation based on the ROC curve

The percentage of area under the ROC curve was used for validating the accuracy of the 
WOI method and the functions of the SVM algorithm (Fig. 10). The results of validating 
the performance of the mentioned models by implementing the ROC curve indicated that 
the accuracy of WOI, RBF-SVM, LN-SVM, SIG-SVM, and PL-SVM models were equal 
to 90, 95.7, 94.3, 94.9, and 93.2%, respectively. Based on the ROC results, all of the mod-
els for preparing the subsidence sensitivity map in Hashtgerd plain exhibit excellent accu-
racy. Therefore, all of the models used here can predict the areas vulnerable to subsidence 
properly. Also, the ROC curve for the ensemble model was 96%.

Based on the ensemble of four SVMs-WOI models, which has the highest ability to 
predict the vulnerable areas to subsidence occurrence, 19.3% of Hashtgerd plain is in the 
zone of high to very high sensitivity. The output map of the SVMs-WOI models indicated 
that most zone of the Hashtgerd plain basin is very low to low sensitivity to subsidence 
occurrence. Based on the fuzzy gamma-ensemble model, the central part of Hashtgerd 
plain is more sensitive to subsidence and the possibility of this hazard occurrence is very 
high in this part of the basin. Moreover, these conditions are prevailing in the northwest 
of the plain, and the possibility of subsidence is high there. The overlap of this map with 
the criterion maps showed that most subsidence occurs in the areas near the faults, with 
the highest groundwater extraction, as well as in agricultural lands, old alluvial fans, and 
old alluvial terraces. Further, based on the BWM method and the opinion of the experts, 
factors including groundwater extraction (0.219), lithology (0.157), groundwater depletion 
(0.079), and groundwater depth (0.078) have greater importance on the potential of the 
subsidence hazard in Hashtgerd plain. Abdollahi et al. (2019) reported that the piezometric 
data (groundwater), NDVI, and altitude were the most effective factors in the occurrence 

Fig. 6   Zoning of subsidence vulnerability based on WOI method
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of land subsidence in Kerman province, Iran. In addition, Motagh et  al. (2008) demon-
strated that extraction from the aquifers is one of the most important factors for the subsid-
ence occurrence observed in recent years in the plains of Iran. Mohammady et al. (2019b) 
indicated that groundwater extraction, geological structure, distance from fault, and slope 
percentage played an effective role in subsidence events. Based on the results of weighting 
in the researches, selecting the criteria and their weighting was a function of environmental 
conditions and the location of the studied area. In fact, knowing the studied area was not 
needed if such conditions did not exist, in which case the results of the research would be 
completely wrong.

Based on the ROC model, the efficiency of SVM classification with different kernel 
functions was compared with the WOI classification method. Based on the results, the 
SVM method was regarded as superior to the WOI one in terms of accuracy. The high 
accuracy of SVM should be attributed to its ability to identify the optimal separating 

Fig. 7   Zoning of subsidence vulnerability based on SVM algorithm functions
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hyperplane. Statistically, the optimal separating hyperplane identified by the SVM algo-
rithm should be generalized with the least error compared to other ones by other classi-
fications. The SVM method is considered as superior to other existing techniques due to 
its valuable advantages. For example, the SVM does not face the problem of local optima 
in its training, builds the classifier with maximum generalization probability, determines 
its structure and topology optimally, and forms nonlinear functions easily with low cal-
culations utilizing nonlinear kernels and the concept of inner product in Hilbert space. In 
addition, SVM searches the optimal hyperplane between classes and requires less training 
data for classification. Further, SVM applies the kernel method to transfer the data to a 
high-dimensional feature space where the data can be separated linearly when such a pro-
cess cannot be implemented. Furthermore, SVM uses optimization rules to locate the opti-
mal boundaries between the classes and is regarded as an appropriate alternative to other 

Very Low Low Moderate High Very High
WOI 10.66 38.51 31.49 11.66 7.69
SIG-SVM 60.63 23.43 7.85 5.33 2.77
RBF-SVM 81.06 8.31 5.65 3.95 1.03
PL-SVM 2.64 23.5 49.33 17.3 7.22
LN-SVM 33.16 34.1 18.87 7.94 5.93
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Fig. 8   Percentage of land subsidence vulnerability in Hashtgerd plain
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Fig. 9   Zoning of subsidence vulnerability based on the ensemble of four SVMs-WOI models
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common classification algorithms. The ROC rate of the four support vector method kernels 
RBF-SVM, LN-SVM, SIG-SVM, and PL-SVM was 90, 95.7, 94.3, and 94.9, respectively, 
indicating that all of the kernels in the subsidence classification with the SVM method 
were ranked high, meaning its high ability to determine areas vulnerable to subsidence. 
However, the SVM algorithm has several key parameters which should be set correctly 
to achieve the best classification results, the exact determination of which may be a time-
consuming process requiring the user’s skill and knowledge of the area.

The WOI method is considered as appropriate for subsidence zoning due to the ROC 
rate (90%) and its acceptable accuracy although the results indicate that using the support 
vector machine method provides higher accuracy compared to the WOI method. In WOI 
method, the significance of criteria relative to each other can be considered based on the 
opinion of experts and regional conditions. Assigning weight to each criterion in the over-
lay process allows the researcher to control the influence of different criteria in the model. 
The BWM method was utilized to weight the criteria. Selecting the best and worst criteria, 
reducing the number of comparisons, and increasing the efficiency of the model are among 
the most significant features of the BWM method compared to other ones, despite its ina-
bility to evaluate subjectively and lack of clarity related to mapping the decision makers’ 
perceptions with exact numbers, which requires the use of fuzzy set theory. In addition, the 
BWM method becomes complicated when there are a large number of criteria to compare, 
which requires time-consuming calculations. The results of this study are in line with the 
studies of Xu et al. (2012), Pourghasemi et al. (2013), Tzampoglou and Loupasakis (2017), 
Abdollahi et  al. (2019), and Moharrami et  al. (2020) based on the success of the SVM 
algorithm. Abdollahi et al. (2019) predicted the amount of subsidence based on the rate of 
groundwater depletion and the efficient factors in Kerman, Iran, by using the support vec-
tor machine algorithm. The results indicated that the amount of ROC of SVM algorithms 
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Fig. 10   The model performance evaluation based on ROC curves
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ranged 0.857–0.894 indicating the SVM algorithms had a high validity for land subsidence 
zoning. Moreover, Tien Bui et al. (2012) zoned the sensitivity of landslide by comparing 
four models including regression, SVM algorithm with two radial and polynomial func-
tions, Decision Tree (DT), and Bayesian theory. Validation results showed that RBF-SVM 
and PL-SVM functions had the highest prediction capability. Mohammady et al. (2019b) 
used the SVM algorithm and the WOE model based on Bayesian theory for assessing the 
sensitivity of land subsidence and showed the SVM model had a higher validity. Tzam-
poglou and Loupasakis (2017) examined land subsidence vulnerability and hazard map-
ping in Amintaio basin, Greece, applying multi-criteria assessment and indicated that the 
high correlation between produced maps and field mapping data proves the high value of 
maps and applied techniques in managing and reducing phenomena. In addition, Mohar-
rami et  al. (2020) investigated national-scale landslide susceptibility mapping in Austria 
using fuzzy best–worst multi-criteria (FBWM) decision making and fuzzy analytic hierar-
chy process (FAHP) and argued that the AUC of the PR for the FAHP and FBWM models 
equaled to 0.84 and 0.89, respectively. In fact, FBWM is regarded as a vector-based tech-
nique compared to the matrix-based FAHP method, which requires fewer pairwise com-
parisons, resulting in reducing the error and uncertainty in zoning. Further, the RBF func-
tion had the highest prediction among the functions of the SVM algorithm. RBF function 
is usually the most widely used function among other SVM functions and has the highest 
rate of subsidence prediction in the area due to good learning capability, fewer required 
parameters, and optimization in nonlinear conditions, which was confirmed by the results 
of the study of some studies (Xu et al. 2012; Bhavsar and Ganatra 2014; Mhetre and Bapat 
2015; Chen et al. 2016; Abdollahi et al. 2019). In sum, the comparison between the studies 
indicates that each function and method is selected based on the appropriate application 
and its parameters, accuracy and time required, need and skill of the user, the scale of the 
studied area, available resources, and the like. In addition, each model can exhibit different 
results based on such cases and conditions of each region, and selecting the appropriate 
model requires more research based on different models.

5 � Conclusion

Providing an appropriate model for identifying the areas prone to subsidence can be con-
sidered as a suitable solution for protecting human and natural resources and reducing the 
economic. Therefore, this study aims to model the probability of land subsidence occur-
rence in Hashtgerd plain based on the Weighted Overlay Index (WOI) model and Support 
Vector Machine (SVM) algorithm functions. In this study, 19 environmental criteria were 
used for modeling the hazard of subsidence. Based on the ensemble of four SVMs-WOI 
models, which has the highest ability to predict the vulnerable areas to subsidence occur-
rence, 19.3% of Hashtgerd plain is in the zone of high to very high sensitivity. In this plain, 
extracting from the groundwater resources more than the renewal capacity, construction of 
illegal agricultural wells without exploitation licenses causes the insufficient recharge of 
the aquifer and lack of compensation of the excess of extracting the groundwater. There-
fore, various environmental, economic, and social problems arose providing the conditions 
for increasing the occurrence of land subsidence. In this regard, a correct understanding 
of the rate of groundwater renewability, aquifer recharge, and creating a balance between 
exploitation and recharge of the groundwater can be considered as one of the appropri-
ate management strategies for reducing and preventing the subsidence phenomenon in the 
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aquifer range of Hashtgerd plain. The authors believe that in future research, the use of 
other machine learning methods such as Integrated Neural Networks (INN), Back Propa-
gation Neural Network (BPNN), and regression methods including Generalized Additive 
Model (GAM) and Boosted Regression Trees (BRT) and comparing its results with those 
of the present research can play an effective role in increasing the accuracy and efficiency 
of results. Further, comprehensive monitoring and evaluating the subsidence situation of 
the region by using time series analysis of radar images can help greatly in the land man-
agement plans and watershed management plans.
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