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A B S T R A C T   

Accurate segmentation for the left atrium (LA) is a key process of clinical diagnosis and therapy for atrial 
fibrillation. In clinical, the semantic-level segmentation of LA consumes much time and labor. Although super-
vised deep learning methods can somewhat solve this problem, a high-efficient deep learning model requires 
abundant labeled data that is hard to acquire. Therefore, the research on automatic LA segmentation of 
leveraging unlabeled data is highly required. In this paper, we propose a semi-supervised LA segmentation 
framework including a segmentation model and a classification model. The segmentation model takes volumes 
from both labeled and unlabeled data as input and generates predictions of LAs. And then, a classification model 
maps these predictions to class-vectors for each input. Afterward, to leverage the class information, we construct 
a contrastive consistency loss function based on these class-vectors, so that the model can enlarge the discrepancy 
of the inter-class and compact the similarity of the intra-class for learning more distinguishable representation. 
Moreover, we set the class-vectors from the labeled data as references to the class-vectors from the unlabeled 
data to relieve the influence of the unreliable prediction for the unlabeled data. At last, we evaluate our semi- 
supervised LA segmentation framework on a public LA dataset using four universal metrics and compare it 
with recent state-of-the-art models. The proposed model achieves the best performance on all metrics with a Dice 
Score of 89.81 %, Jaccard of 81.64 %, 95 % Hausdorff distance of 7.15 mm, and Average Surface Distance of 
1.82 mm. The outstanding performance of the proposed framework shows that it may have a significant 
contribution to assisting the therapy of patients with atrial fibrillation. Code is available at: https://github. 
com/PerceptionComputingLab/SCC.   

1. Introduction 

Atrial fibrillation (AF) is a common heart disease and the risk of it 
increases with age (Feinberg et al., 1995). Patients with AF may have 
heart palpitations, breathlessness, low energy, and an increased risk of 
stroke (Center, 2009). Catheter ablation is a current routine therapy for 
patients with AF (Kalla et al., 2017). However, the success ratio of 
catheter ablation is unsatisfactory, after which AF recurrence and the 
second ablation often happen (Chelu et al., 2018). According to the 
clinical experience, ablation strategies and AF recurrence are dominated 
by the degree of atrial fibrosis and the ablation-related scar (Akoum 
et al., 2011; Wu et al., 2021). And learning the topology of the left 
atrium (LA) is crucial for evaluating the degree of atrial fibrosis and 
ablation-related scar in patients with AF. Therefore, to improve the 
success ratio of the catheter ablation, accurate segmentation of the LA in 
medical images is a critical process that can assist the clinic in under-
standing the topology of LA, assessing the risk of AF, and making 

patient-specific treatment plan. Recently, late gadolinium-enhanced 
MRI (LGE MRI) provides a promising visualizing ability for myocar-
dial scar tissues through brightening scar signal intensities to differen-
tiate them from the healthy tissues, which results in the poor boundary 
of the LA (Yang et al., 2020). The LA segmentation involves the LA 
cavity, pulmonary veins, LA appendage, etc. These complex structures 
and the fuzzy boundary problem make the acquirement of the 
semantic-level label of the LA consuming much more time and labor. 
Therefore, accurate and automatic segmenting of the LA in LGE MRI is a 
challenging and necessary task. 

For the past few years, deep learning models have taken impressive 
improvements on several medical image segmentation tasks (Shen et al., 
2017). However, a high-efficient supervised deep learning model re-
quires abundant labeled data. And the requirement of plenty of data 
with dense annotations somewhat slows down the process of deep 
learning application in medical image analysis. On the other hand, a 
large amount of unlabeled data may be available with the development 
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of the wise information technology of med (Cheplygina et al., 2019). 
Hence, research on leveraging unlabeled data for medical image analysis 
is highly required. 

In this work, we focus on semi-supervised learning (SSL) to learn 
representations from both labeled and unlabeled data for LA segmen-
tation. SSL is an intermediate way between supervised learning and 
unsupervised learning (Chapelle et al., 2006), and its efficiency has been 
verified in many computer vision tasks (Van Engelen and Hoos, 2020). 
Typically, SSL attempts to train a model with a limited amount of 
labeled data and a large amount of unlabeled data. The unlabeled data 
supervises the model in a self-training manner with the consistent reg-
ularization which is based on the assumption that predictions of the 
model should be consistent under minor perturbations for the same 
input (Van Engelen and Hoos, 2020). Notably, the scope of this work is 
the standard SSL whose involved data has the same categories and 
modality (e.g. MRI). 

Recently, several LA segmentation works have been done with SSL to 
relieve the requirement of expensive dense annotations for deep 
learning models. Primary works of these SSL models for LA segmenta-
tion are based on consistent regularization. To be specific, they can 
either make model predictions consistent with the original unlabeled 
data and its random perturbed data (e.g. noise, scaling) or make the 
model learn distribution consistency between labeled and unlabeled 
data by adversarial learning. Due to the consistency is calculated among 
predictions of unlabeled data (also called pseudo labels), the false pre-
diction has the potential to make the training unstable. To mitigate the 
effect of unreliable predictions on the stability of training, UA-MT 
leveraged an uncertainty map of predictions for perturbed data to fil-
ter out the high uncertainty regions (Yu et al., 2019). This model 
adopted the mean-teacher (Tarvainen and Valpola, 2017) framework 
that required two networks and multiple forward propagations to 
formulate the uncertainty information. To reduce the time and memory 
cost, Wu et al. designed a network with two decoders and formulated the 
discrepancy of these two predictions as model uncertainty information 
to construct an unsupervised loss (Wu et al., 2021b). However, this 
model just considered the consistency in the output-level. To embed the 
geometric information into training, Li et al. (2020) took a distance map 
regression as an auxiliary task and adopted a discriminator to distin-
guish the source of the predicted distance map to learn the representa-
tion from unlabeled data while learning the shape information (). 
Following this work, Luo et al., 2021a; Luo et al., 2021b extended the 
concept of consistency to the task-level and proposed a dual-task model 
that jointly optimized the segmentation task and a distance map 
regression task to utilize geometric information and unlabeled data at 
the same time. Most of these models leveraged unlabeled data by forcing 
the model to be consistent in either image-/ouput-level or feature-level 
(Wang et al., 2020). But they ignored the class-level information and 
became class-agnostic approaches. However, the class-level information 
is crucial to improve the distinguishability of the segmentation model. 

Contrastive learning has achieved major advances in self-supervised 
representation learning. The main idea of it is to pull the positive sam-
ples together and push the negative samples apart. And the sample 
construction strategy is commonly based on data augmentations at the 
image-level. Augmentations of the same input are positive samples, and 
the other data are negative samples (Khosla et al., 2020; Chaitanya et al., 
2020). The performance of contrastive learning has shown great po-
tential and achieved state-of-the-art results in downstream visual tasks 
(He et al., 2020; Chen et al., 2020). However, the representation 
learning of contrastive learning is usually on the image-level. It is too 
rough to fit the semantic segmentation task. To learn more specific 
representations, Chaitanya et al. (2020) proposed a local version 
contrastive learning to encourage the model to learn local representa-
tions (). Following this local contrastive learning idea, Xiang et al. 
embedded a contrastive loss at the feature level for SSL based on a 
teacher-student model (Xiang et al., 2021). Although these models 
constructed sampling based on local or feature levels, the class 

information is still ignored. 
Inspired by the idea of contrastive learning (Chen et al., 2020; 

Chaitanya et al., 2020; Khosla et al., 2020; Chen et al., 2021), we 
embedded a contrastive consistency loss at the class-level in an unsu-
pervised manner to enable the class-aware SSL. For learning the 
class-level representation, we constructed a classification model 
following a segmentation model that takes the segmentation predictions 
as input and maps them into a class-vector space. Then, we set 
class-vectors of the same class as intra-class samples and class-vectors of 
different classes as inter-class samples. At last, the contrastive consis-
tency loss based on these samples is embedded in the supervised seg-
mentation loss to jointly optimize the segmentation framework. 

In summary, the main contributions of our model are three folds: 
Firstly, we proposed a class-aware semi-supervised LA segmentation 

framework. Compared with the class-agnostic SSL models, the frame-
work can leverage the class-level information to learn representations 
from both labeled and unlabeled data to improve the distinguishability 
of the segmentation model. 

Secondly, we proposed a contrastive consistency loss on the class- 
vector space. Compared with the sample construction strategy at the 
image-level, our class-level sample construction strategy can enable the 
model to learn more distinguishable representations that will be bene-
ficial to the pixel-level segmentation task. Moreover, we set the samples 
of labeled data as the reference to samples of unlabeled data to alleviate 
the effect of the unreliable predictions for unlabeled data. 

Thirdly, we verified our framework on the popular left atrial seg-
mentation dataset and performed plenty of ablation and comparative 
experiments. Both quantitative and qualitative results demonstrated the 
superiority of the proposed framework. 

2. Materials and methods 

In this section, we will introduce the detail of the proposed LA semi- 
supervised segmentation framework. We first briefly present the 
involved data in this work. Afterward, we describe details of our 
framework and loss functions. At last, details of the implementation and 
metrics are described. 

2.1. Materials 

The dataset used in this work was disclosed by 2018 Atrial Seg-
mentation Challenge organizers (Xiong et al., 2021). There are 100 
training data scanned by LGE MRI of patients with AF. The isotropic 
resolution of these data is 0.625mm × 0.625mm × 0.625mm with spatial 
dimensions of either 512 × 512 × 88 or 640× 640× 88. Most of the 
data are provided by the University of Utah, while the rest are provided 
by multiple centers. Hence, the quality and distribution of these data are 
not consistent, which increases the challenge for the automatic LA 
segmentation task. The binary label of these data is provided by three 
trained radiologists using the Corview image processing software (Merrk 
Inc, Salt Lake City, UT). A label contains the LA cavity, pulmonary veins, 
and LA appendage. 

For a fair comparison, the data pre-process and division strategy in 
this work are according to related works (Luo et al., 2021a; Li et al., 
2020; Yu et al., 2019). In detail, the data is firstly center-cropped around 
the heart region and normalized into zero mean and unit variation. 
Then, we split the data into 80 training samples and 20 validation 
samples. For semi-supervised learning, we divide 20 % of training vol-
umes as the labeled data and the rest 80 % of training volumes as the 
unlabeled data. All experiments in this work are trained on the training 
samples and tested on the validation set. 

2.2. Framework 

The overall framework of the proposed method is illustrated in Fig. 1, 
which consists of two sub-models. The main sub-model is a 
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segmentation model Mseg with a dual decoder structure that is shown in 
the black dash box in Fig. 1, termed as E2DNet. It takes 3D volumes as 
input and predicts pixel-level segmentation probabilities at the same 
time. Then a classification model Mcls following E2DNet maps the seg-
mentation probabilities to class-vector space. 

2.2.1. Segmentation model 
Our segmentation model E2DNet is a variant VNet (Fausto et al., 

2016) with an additional decoder. Specifically, E2DNet contains one 
encoder We and two decoders WdA and WdB. It takes both labeled and 
unlabeled volumes as input and generates two probabilities for each 
input. A brief mathematical representation of the segmentation model is 
shown in Eq. (1). 

pdA(x) = σ(fWdA (fWe (x))), pdB(x) = σ(fWdB (fWe (x))) (1)  

where σ is the softmax activation function; x = {xl, xu} is a batch of 
training data, xl indicates the labeled data, and xu indicates the unla-
beled data; pd⋅(x) = {pla

d⋅(x), p
bg
d⋅ (x)} indicates probability maps of each 

class for the input x. The final prediction in the inference stage is the 
average of these two predictions. Based on predictions of dual decoders, 
our model can benefit from the ensemble strategy to enhance the per-
formance of the segmentation model in challenging regions. 

In the training stage, the segmentation loss function only involves the 
labeled data. Following previous LA segmentation works (Yu et al., 
2019), we leveraged a powerful combination of the dice loss function 
(Fausto et al., 2016) and the cross-entropy loss function that is shown in 
Eq. (2) as our supervised segmentation loss function. 

Lseg = LCE(pdA(xl), yl)+ Ldice(pdA(xl), yl)+ LCE(pdB(xl), yl)+Ldice(pdB(xl), yl)

(2)  

where LCE(pl, yl) = yl log pl + (1 − yl)log(1 − pl), Ldice(pl, yl) = − 2×

|pl ∩ yl|/(|pl| + |yl|), and yl, pl indicate the ground truth and prediction of 
the corresponding labeled data xl respectively. 

2.2.2. Classification model and contrastive consistency loss function 
To leverage the class information on the labeled and unlabeled data 

for representation learning, we designed a classification model after the 
segmentation model to extract class-level information. As shown in the 
blue dash region of Fig. 1, the classification model takes the segmenta-
tion probabilities as input and maps the input into the class-vector space 
(shown in the blue circle region of Fig. 1). Specifically, the classification 
model predicts a class-vector zi for each inputpi

d⋅(x), where {i ∈
C|C = {la, bg}} indicates class, la denotes LA, and bg denotes back-
ground. A brief mathematical representation of the classification model 
is shown in Eq. (3). 

zi = σ(fWcls (p
i
d⋅(x))) (3) 

Based on the class-vector of each class, we constructed the contras-
tive consistency loss function based on the class-level sample construc-
tion strategy. As shown in the blue circle of Fig. 1, we set class-vectors 
from the same class as intra-class samples, i.e. {zla

l , zla
u }. And inter-class 

samples are class-vectors from different classes, i.e. {zbg
l , zla

u }. To alle-
viate the effect of the unreliable predictions of the unlabeled data, we set 
class-vectors from the labeled data zl as the reference to class-vectors 
from the unlabeled data zu. At last, to minimize the margin of intra- 
class and maximize the margin of inter-class, the proposed contrastive 
consistency loss function is shown in Eq. (4). 

Lcontrast = −
∑

i∈C
log

exp(L(zi
l, zi

u))∑

j∈C/{i}
exp(L(zi

l, z
j
u))

(4)  

where L denotes the similarity function. By optimizing this Lcontrast, the 
framework can make the similarity of intra-class samples more compact 
and the discrepancy of inter-class samples larger. 

The final loss function of our proposed framework is the combination 
of the segmentation loss and the contrastive consistency loss as shown in 
Eq. (5). 

L = Lseg + λLcontrast (5) 

Fig. 1. The framework of the proposed left atrium semi-supervised segmentation model. There are two sub-models: the segmentation model E2DNet shown in the 
black dash box and the classification model Mcls shown in the blue dash box. The indicates the segmentation loss function for the labeled data. The class-vector 
space is shown in the blue circle, as indicate class-vectors of the labeled and unlabeled data respectively. Class-vectors with different colors indicate different classes. 
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where λ is a weight to balance the importance of the segmentation loss 
and the contrastive consistency loss, we empirically set it to 1 in the 
experiment. With an end-to-end optimization manner, the segmentation 
model can be benefited from the contrastive consistency loss. 

2.2.3. Implementation details and metrics 
The model was implemented by PyTorch framework on a server with 

an NVIDIA RTX 2080Ti GPU. In this work, we adopted VNet (Fausto 
et al., 2016) as the backbone for all experiments. Then we implemented 
our E2DNet by adding an auxiliary decoder to the classical VNet. Most of 
the hyperparameters of our segmentation model followed recent 
state-of-the-art LA segmentation models (Yu et al., 2019; Li et al., 2020; 
Wu et al., 2021b). In detail, the framework was trained based on sto-
chastic gradient descent (SGD) with a momentum of 0.9. The initial 
learning rate lrinit was 0.01 with a step decay strategy as shown in Eq. 
(6), where t denotes the current iteration and the step was set as 2,500. 
And it was trained 6,000 iterations with a batch size of 4. Following 
UA-MT (Yu et al., 2019), we adopted a two-stream sampling strategy to 
load the labeled and unlabeled data in the same batch size. Specifically, 
there were 2 labeled and 2 unlabeled data in each batch. Therefore, it 
did not require extra memory or time cost for saving previous parame-
ters to back up former predictions. 

lr = lrinit × 0.1t/step (6) 

Due to the memory limitation, the volumes were randomly cropped 
into patches with size 112 × 112 × 80 during training. To alleviate the 
over-fitting problem, we adopted online augmentations including 
random crop, random flip, and random rotation 90◦ at the axial view. In 
the inference stage, only segmentation model E2DNet was required. 
Hence, there was no extra time or memory cost compared to other 
models in the inference stage. Predicted patches were extracted by a 
sliding window of size 112 × 112 × 80 with a fixed 18 × 18 × 4 stride. 
The final segmentation result was the average of predictions from two 
decoders of E2DNet of all patches. 

Following recent works, we adopted four universal metrics 
(Yeghiazaryan and Voiculescu, 2015) to validate the performance of the 
proposed framework. Two overlap metrics, Dice score (Dice, 1945) and 
Jaccard (Liu et al., 2012) as shown in Eq. (7), verify the performance on 
the volumetric level. The interval of them is [0%, 100%], and the best 
result approaches 100%. Two surface metrics, 95 % Hausdorff distance 
(95HD) (Gerig et al., 2001) and average surface distance (ASD) (Hei-
mann et al., 2009) as shown in Eq. (8), evaluate the performance on the 
surface level. The interval of them is [0mm,∞), and the best result ap-
proaches 0 mm. 

Dice =
2|P ∩ G|

|P| + |G|
× 100%, Jaccard =

|P ∩ G|

|P ∪ G|
× 100% (7)  

where P is the 3D prediction, and G is the corresponding 3D ground 
truth. 

HD = max { min
sg∈S(G)

d(sg, S(P)), min
sp∈S(P)

d(sp, S(G))}

ASD =

∑

sp∈S(P)

min
sg∈sG

d(sp, sg)

|S(P)|

(8)  

where S(⋅) is the set of the surface of the corresponding volume, d(⋅) is 
the shortest Euclidean distance function to calculate the distance of a 
surface voxel s to another surface S(⋅). 

3. Experiments and Results 

3.1. Comparative Experiments and Results 

Firstly, we compared our framework with four state-of-the-art LA 

semi-supervised segmentation works, including the uncertainty-aware 
mean teacher approach (UA-MT) (Yu et al., 2019), shape-aware adver-
sarial network (SASSNet) (Li et al., 2020), local and global 
structure-aware entropy regularized mean teacher model (LG-ER-MT) 
(Hang et al., 2020), and dual-task consistency framework (DTC) (Luo 
et al., 2021a). Table 1 demonstrates the quantitative comparative result 
of these methods. The first two rows are the results of a fully supervised 
VNet. We set the performance of VNet that trained with 100 % labeled 
training data as the upper bound, and the performance of VNet that 
trained with 20 % labeled data as the lower bound. As shown in Table 1, 
all semi-supervised models benefit from the unlabeled data involved in 
the training stage. In detail, they achieve 2.85–3.78 % improvement in 
Dice score, 4.15–5.58 % improvement in Jaccard, 5.43–7.11 mm 
reduction in 95HD, and 0.38–1.69 mm reduction in ASD compared with 
the lower bound. Notably, our framework achieves the best performance 
on all metrics and is just lower than the upper bound Dice score of 1.33 
%. 

To further illustrate the performance of these comparative models, 
we randomly displayed three segmentation results in the inference stage 
in Fig. 2 for UA-MT, SASSNet, LG-ER-MT, DTC, and our framework. As 
shown in Fig. 2, other comparative models failed in the connection re-
gion between the LA cavity and the pulmonary vein, especially the LG- 
ER-MT. The proposed framework can fit the ground truth well and 
handle the topology of LA better (such as regions pointed out by red 
arrows). These comparative results verify that our framework has su-
perior performance to other models. 

Secondly, we also compared with other three latest semi-supervised 
models proposed for different datasets, including the semi-supervised 
contrastive learning approach (SSCL, Hu et al., 2021), 
dual-consistency semi-supervised learning network (UDC-Net, Li et al., 
2021), and uncertainty rectified pyramid consistency model (URPC, Luo 
et al., 2021b). We re-implemented these models based on their public 
codes and trained them on the 20 % labeled training data set. Table 2. 
demonstrates the comparative experiment results. UDC-Net achieves 
comparative performance with us and gets the best surface metrics. 
Compared with our framework, it requires seven different auxiliary 
decoders during training to learn extensive features. And the additional 
dual uncertainty-guided mechanism improves its robustness. But our 
framework is based on a simpler structure and achieves the best per-
formance on the overlap metrics under a minor weakness on the surface 
metrics than UDC-Net. This further indicates the superiority of our 
framework. 

Table 1 
Comparative experiment results with the latest and previous studies in the same 
database. ‘Data Used’ indicates the amount of labeled/unlabeled data involved 
in the training stage.  

Methods Data Used (train) Metrics (inference) 

Labeled Unlabeled Dice ( 
%) 

Jaccard 
( %) 

95HD 
(mm) 

ASD 
(mm) 

VNet 80(100 
%) 

0 91.14 83.82 5.75 1.52 

VNet 16(20 
%) 

0 86.03 76.06 14.26 3.51 

UA-MT (Yu 
et al., 
2019) 

16(20 
%) 

64 88.88 80.21 7.32 2.26 

SASSNet (Li 
et al., 
2020) 

16(20 
%) 

64 89.27 80.82 8.83 3.13 

LG-ER-MT ( 
Hang 
et al., 
2020) 

16(20 
%) 

64 89.62 81.31 7.16 2.06 

DTC (Luo 
et al.,) 

16(20 
%) 

64 89.42 80.98 7.32 2.10 

Ours 16(20 
%) 

64 89.81 81.64 7.15 1.82  
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3.2. Ablation experiments and results 

In this section, we demonstrated the effectiveness of involved mod-
ules in our proposed framework, including the dual decoder structure 
(E2DNet), and the additional classification model with the proposed 
contrastive consistency loss function. We also verified the impact of the 
ratio of labeled data involved in the training stage on the performance of 
our framework. Table 3 displays the quantitative results for all ablation 
models. These results are grouped by the ratio of labeled data involved 
in the training stage. In both groups of experiments, all proposed mod-
ules have a positive effect on the performance of the LA segmentation. 

3.2.1. Effectiveness of dual decoder for fully supervised segmentation 
The dual decoder structure was inspired by the multi-head ensemble 

strategy (Lee et al., 2015; Li et al., 2019). Ensemble modeling is a 
powerful strategy to improve performance by learning more variant 
representations. The multi-head ensemble has several variants. In this 
work, we focused on the shared encoder and multiple decoders structure 
that can perform inference at one time with fewer parameters. To 

investigate the effectiveness of our dual decoder segmentation structure 
compared with the basic VNet, we firstly conducted an ablation exper-
iment on the VNet and E2DNet in a fully supervised manner. As shown in 
Table 3, E2DNet achieves improvement in all groups of ablation ex-
periments compared with the classical VNet. For example, the E2DNet 
obtains 0.74 % improvement in Dice score, 1.24 % improvement in 
Jaccard, 2.35 mm reduction in 95HD, and 0.71 mm reduction in ASD on 
the 20 % labeled data set. Moreover, the performance improvement on 
the 10 % labeled data set is higher. Fig. 3 demonstrates the performance 
on all metrics in all groups of experiments on the ratio of labeled data 
involved in the training stage. E2DNet achieves better or comparable 
performance on all experiments. These improvements demonstrate the 
effectiveness of the E2DNet. 

3.2.2. Effectiveness of classification model with the contrastive consistency 
loss function for semi-supervised segmentation 

In this section, we verified the impact of the additional classification 
model and the contrastive consistency loss function on the performance 
of E2DNet in a semi-supervised manner. As shown in Table 3, the pro-
posed framework obtains improvement on all metrics in both groups of 
experiments with the proposed contrastive consistency loss function. In 
the 20 % labeled data group, the proposed framework achieves 89.51 % 
Dice score, 81.20 % Jaccard, 7.05 mm 95HD, and 1.82 mm ASD. 
Compared with the E2DNet, it improves 3.04 % in Dice score, 4.34 % in 
Jaccard, and reduced 4.76 mm in 95HD, and 0.98 mm in ASD on the 20 
% labeled data set. This indicates the proposed framework can learn 
representations from unlabeled data and make a positive impact on the 
segmentation performance. We thought this was because the classifi-
cation model learned more global representations to enhance the per-
formance of our segmentation model. Moreover, the classification model 
only appears in the training stage, thereby there is no extra time cost in 
the inference stage. 

3.2.3. Effectiveness of the ratio of used labeled data for semi-supervised 
segmentation 

In former sections, we verified the efficiency of our framework on 10 
% and 20 % labeled data sets, and the proposed framework achieves 
superior performance in both experiments. In this section, we conducted 
an ablation experiment to further evaluate the impact of the proportion 
of labeled data involved in the training stage on the performance of 
VNet, E2DNet, and the proposed framework. Fig. 3 presents the per-
formance of these three models with the proportion of labeled data 
varying from 10 % to 100 % involved in the training stage. As shown in 
Fig. 3, the proposed framework achieves better performance than both 
fully supervised models in all data settings. This indicates the effec-
tiveness of our framework to utilize the unlabeled data. With the 

Fig. 2. Three segmentation results for comparative models. The first column denotes the ground truth. Red arrows point out the error-prone regions.  

Table 2 
Comparative experiment results with other latest semi-supervised learning 
methods on 20 % labeled training data set.  

Methods Metrics (inference)  

Dice ( %) Jaccard ( %) 95HD (mm) ASD (mm) 

SSCL (Hu et al., 2021) 84.93 74.45 6.95 2.18 
UDC-Net (Li et al., 2021) 89.14 80.60 6.43 1.76 
URPC (Luo et al., 2021b) 88.15 79.06 10.68 2.45 
Ours 89.81 81.64 7.15 1.82  

Table 3 
Ablation experiments results of the proposed modules on the 10 % and 20 % 
labeled data set.  

Methods Data Used (train) Metrics (inference)  

Labeled Unlabeled Dice ( 
%) 

Jaccard ( 
%) 

95HD 
(mm) 

ASD 
(mm) 

VNet 8(10 %) 0 79.99 68.12 21.11 5.48 
E2DNet 8(10 %) 0 81.63 70.75 14.25 3.64 
Ours 8(10 %) 72 86.51 76.54 10.51 2.56 
VNet 16(20 

%) 
0 86.03 76.06 14.26 3.51 

E2DNet 16(20 
%) 

0 86.77 77.30 11.91 2.80 

Ours 16(20 
%) 

64 89.81 81.64 7.15 1.82  
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proportion of labeled data increasing, the margin between semi- 
supervised and fully supervised models gradually narrows. The superi-
ority of our semi-supervised segmentation framework is more pro-
nounced when the number of labeled data is small. 

4. Discussion 

In this work, we aimed to develop a class-aware semi-supervised LA 
segmentation framework on LGE MRI for patients with AF. Extensive 
experiments demonstrate that learning representation from the unla-
beled data in the training stage can improve segmentation performance. 
Current mainstream semi-supervised LA segmentation works focused on 
a consistent regularization strategy to leverage the unlabeled data. 
While this kind of model usually requires a complex structure, such as a 
mean teacher with two networks. As shown in Table 1, these models do 
improve the segmentation performance on the semi-supervised LA seg-
mentation task. However, they are class-agnostic models. And as shown 
in Fig. 2, their predictions in the connection region between the pul-
monary vein and the LA cavity are error-prone. Inspired by the idea of 
contrastive learning, we proposed a contrastive consistency loss func-
tion at class-level to enable a class-aware semi-supervised LA segmen-
tation model. With the additional class-level loss function, the model can 
learn more distinguishable representations by maximizing the discrep-
ancy of inter-class and minimizing the margin of intra-class. Apart from 
this, the structure of the dual-decoder in our segmentation model also 
promotes the performance of our model. The dual-decoder structure is a 
simple structure of the multi-head ensemble strategy, which is a well- 
known technology to learn diverse features from an input to increase 

accuracy. It leverages smaller parameters and less inference time to 
achieve a comparable performance against the multiple sampling and 
multiple models strategies. 

Even though the proposed method could relieve the label shortage 
problem, it still confronts the current data shortage problem in medical 
image analysis, because deep learning is a data-driven approach. To 
address the data shortage problem, the best way is to acquire data from 
the hospital. But this way still requires time to bring it to reality. A more 
efficient way to enlarge the training data may adopt the generative 
adversarial network to synthesize data based on currently available 
data. Combining the synthesized data and real data to perform the semi- 
supervised learning may address the data shortage and label shortage 
problems simultaneously. Recently, Chen et al. have tried to leverage 
the adversarial learning strategy to address the LA and scar segmenta-
tion simultaneously (Chen et al., 2021), and cross-domain LA segmen-
tation (Chen et al., 2022). Their results demonstrated the technological 
feasibility to deal with the LA segmentation task under the generative 
adversarial network. In the future, we will pay attention to this tech-
nology to further address the data shortage problem of medical image 
analysis. 

5. Conclusions 

In this study, we constructed a semi-supervised LA segmentation 
framework with a segmentation model followed by a classification 
model. The E2DNet takes patches as input to predict probability maps 
for each class. And the classification model maps these probability maps 
into the class-vector space. At last, the framework is supervised by the 

Fig. 3. Line diagrams of (A) Dice Score, (B) Jaccard, (C) 95HD, and (D) ASD in experiments with different percentages of labeled data for the VNet, E2DNet, and our 
proposed semi-supervised segmentation framework. E2DNet and VNet were trained in a fully supervised manner. 
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segmentation loss of labeled data and self-supervised by the contrastive 
consistency loss between labeled data and the unlabeled data. Thanks to 
the dual-decoder structure of our segmentation model, E2DNet achieves 
better performance than the baseline in a fully supervised manner. Then 
with the additional classification model and the proposed contrastive 
consistency loss function, the proposed semi-supervised segmentation 
framework achieves state-of-the-art performance with limited labeled 
data. Due to the classification model is only involved in the training 
stage, thereby, there is no extra time or memory cost in the inference 
stage compared with other models. The extensive quantitative and 
qualitative results have illustrated the promising potential of our 
framework in the future computer-aided therapy of AF. 
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