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Diagnosing depression in the early curable stages is very important and may even save the

life  of a patient. In this paper, we study nonlinear analysis of EEG signal for discriminating

depression patients and normal controls. Forty-five unmedicated depressed patients and

45  normal subjects were participated in this study. Power of four EEG bands and four non-

linear  features including detrended fluctuation analysis (DFA), higuchi fractal, correlation

dimension and lyapunov exponent were extracted from EEG signal. For discriminating the

two  groups, k-nearest neighbor, linear discriminant analysis and logistic regression as the

classifiers are then used. Highest classification accuracy of 83.3% is obtained by correlation

dimension and LR classifier among other nonlinear features. For further improvement, all

nonlinear features are combined and applied to classifiers. A classification accuracy of 90%

is  achieved by all nonlinear features and LR classifier. In all experiments, genetic algorithm

is  employed to select the most important features. The proposed technique is compared

and  contrasted with the other reported methods and it is demonstrated that by combining
nonlinear features, the performance is enhanced. This study shows that nonlinear analysis

of  EEG can be a useful method for discriminating depressed patients and normal subjects.

It  is suggested that this analysis may be a complementary tool to help psychiatrists for

diagnosing depressed patients.

functions, EEG has been more  popular due to its low-cost and
comparatively easy recording process. There are some evi-
.  Introduction

epression is one of the most common mental disorders that
ffects 121 million people worldwide. It is estimated by the
orld Health Organization that depression will be the sec-

nd major disability causing disease in the world by 2020 [1].
epression is more  than a low mood and people with depres-

ion may experience lack of interest in daily activities, poor
oncentration, low energy, feeling of worthlessness, and at its
orst, could lead to suicide [2].  The exact cause of depression
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is not known. Many researchers believe it is caused by chemi-
cal imbalances in the brain, which may be hereditary or caused
by events in a person’s life.

EEG is a medical test used to measure the electrical activi-
ties of brain and evaluate brain disorders. Among all methods
that used for diagnosing brain disorders and studying of brain
dences that EEG may be a useful tool in studying of depression
[3–5].

erved.

dx.doi.org/10.1016/j.cmpb.2012.10.008
www.intl.elsevierhealth.com/journals/cmpb
mailto:behshad.fard@gmail.com
dx.doi.org/10.1016/j.cmpb.2012.10.008


 s i n
340  c o m p u t e r m e t h o d s a n d p r o g r a m

During past years, theoretical and experimental studies of
brain have shown that this system is best-characterized non-
linear dynamical process. The nonlinearity of brain limits the
ability of linear analysis to provide full description of under-
lying dynamics [6].  The nonlinear analysis method such as
correlation dimension or DFA effectively applied to EEG to
study complexity and dynamics of brain behavior. There are
few EEG studies on depression that based on nonlinear anal-
ysis and in most studies linear methods such as power and
frequency have been used [4,5]. Fan et al. [7] used Lempel–Ziv
complexity as a feature for classifying 26 normal persons, 62
schizophrenic and 48 depressed patients and applied BP-ANN
for classification. The overall accuracy in this study was about
80%. Li et al. [8] studied wavelet entropy of EEG of 20 normal
subjects and 20 depressed patients and they observed higher
wavelet entropy in depression groups. In addition, the discrim-
inant analysis and jackknife replication classification yield an
accuracy of 80%. Detrended fluctuation analysis was used for
11 depressed patients and 11 normal subjects in [9].  In this
study higher DFA value was obtained in depression groups.

The aim of this study is to classify depressed patients
and control subjects based on nonlinear features and improv-
ing the accuracy of classification. The EEG of 19 channels is
recorded for 45 depression patients and 45 healthy partici-
pants. Two groups of features are studied in this study. Power
of four EEG bands: delta, theta, alpha and beta as frequency
and linear features and DFA, higuchi, correlation dimension
and maximum lyapunov exponent are four nonlinear fea-
tures that are used. For evaluation these features, LDA (linear
discriminant analysis), LR (logistic regression) and KNN (k-
nearest neighbors) classifier are adopted to classify the two
groups of depressed patients and normal subjects. For select-
ing the most important and discriminate features, genetic
algorithm is used.

2.  Materials  and  methods

In the first stage, feature extraction is performed. The EEG sig-
nals of 45 depressive patients and 45 normal subjects are used
as the input. Power of four EEG bands and four nonlinear fea-
tures, correlation dimension, Higuchi, DFA and large lyapunov
exponent are calculated for 19 EEG channels.

In the first experiment, each feature vector (included 19
features related to 19 channels) is applied to KNN, LDA and LR
classifiers. To validate reliability and generalization of clas-
sifiers and datasets independent test is used in this paper.
For the independent dataset test, each dataset is divided into
two parts, a training set and a testing set. Two-third samples
are chosen randomly as training set, and the remainder, one-
third samples as testing set. Leave-One-Out Cross Validation
(LOOCV) method is applied in classification of training data
and genetic algorithm for feature selection. Finally, based on
the selected features in classifying of training dataset, classifi-
cation of test dataset is performed. The results of classifiers on

the test datasets are shown in Sections 3.1 and 3.2.  In the sec-
ond experiment, all extracted features of each group, power
and nonlinear, are used by the classifiers. In Section 3.3 the
results of second experiment are given.
 b i o m e d i c i n e 1 0 9 ( 2 0 1 3 ) 339–345

2.1. Data  acquisition

The EEG data were obtained from Psychiatry Centre Atieh,
Tehran, Iran. The data included 45 right-handed unmedicated
depressed patients (23 of which were females), ranged in age
from 20 to 55 years (33.5 ± 10.7 years; mean ± standard devia-
tion (Std.)) and 45 normal persons right-handed (25 of which
were females), ranged in age from 19 to 60 years (33.7 ± 10.2
years; mean ± Std.), who have no psychiatric disorders in past.
Depression diagnosing is assessed prior to EEG data. For diag-
nosing depression symptoms and illness severity, two criteria
were considered: DSM-IV interview resulting in a diagnosis of
depression [2] and Beck Depression Inventory (BDI) [10] score
of ≥10.

The EEG data were recorded in resting condition with eyes
closed for 5 min. Each participant was seated in a comfortable
chair in an electrically and acoustically shielded room. EEG
recording were obtained from 19 surface electrodes placed on
the scalp according to standard international 10/20 system (Fz,
Cz, Pz, Fp1, Fp2, F3, F4, F7, F8, C3, C4, T3, T4, P3, P4, T5, T6, O1
and O2). The sampling frequency, fs is set to 256 Hz with 12 bit
A/D convertor precision. All EEG signals were highpass filtered
with 0.5 Hz cutoff frequency and lowpass filtered with 70 Hz
cutoff frequency. Notch filter is used to remove the 50 Hz fre-
quency. Artifacts were inspected visually and discarded. The
software used for analysis was Matlab.

2.2.  Feature  extraction

2.2.1. EEG  band  power
The EEG signals are filtered with band-pass butterworth fil-
ter to extract four common frequency bands, delta (0.5–4 Hz),
theta (4–8 Hz), alpha (8–13 Hz) and beta (13–30 Hz). For each
band of each channel, the size of 15,360 samples (1 min  of sig-
nals) was selected and Welch method was applied to calculate
power spectrum of EEG bands [11]. In the Welch method, time
series is divided into segments (possibly overlapping) and then
modified periodogram of all segments is averaged.

2.2.2.  Detrended  fluctuation  analysis
DFA is a method for quantifying fractal scaling and correlation
properties in the signal. The advantages of this method are
that it distinguishes between intrinsic fluctuation generated
by the system and those caused by external system [12]. In
the DFA computation of a time series, x(t) of finite length N, is
integrated to generate a new time series y(k) shown in (1).

y(k) =
k∑

i=1

[x(i) − 〈x〉] (1)

where 〈x〉 is the average of x, is given by

〈x〉 = 1
N

N∑
i=1

x(i) (2)
Next, the integrated time series, y(k) is divided into boxes of
equal length and a least squares line is fit to the data of each
box, represents by yn(k). Then, the time series y(k) is detrended
by subtracting the local linear fit yn(k) for each segment. The

dx.doi.org/10.1016/j.cmpb.2012.10.008
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etrended fluctuation is given after removing the trend in the
oot-mean-square fluctuation

(n) =

√√√√ 1
N

N∑
k=1

[y(k) − yn(k)]2 (3)

his computation is repeated for different box sizes (time
cale) to characterize the relation between F(n) and the box
ize n. A linear relation between logarithm of F(n) and size of
he box, indicates presence of power-law scaling: F(n) ∼ n˛. The
caling exponent, ˛, can be calculated as the slope of log F(n)
ersus log n. This parameter represents the correlation prop-
rties of the time series.

.2.3.  Higuchi
iguchi is an algorithm for measuring fractal dimension of

ime series and is used to quantify complexity and self-
imilarity of signal [13]. Higuchi method can be calculated in
ime domain directly so it is easy and fast. For time series x[1],
[2], . . .,  x[n], the higuchi fractal can be calculated as follow:

K new time series are constructed for m = 1, 2, . . .,  k,

k
m =

{
x[m], x[m + k], . . . , x

[
m +

⌊
N − m

k

⌋
k

]}
(4)

here �a� is integer part of a. The length of each k time series
an be defined as:

m(k) = 1
k

∑�(N−m/k)�
i=1 |x(m + ik) − x(m + (i − 1)k)| × (N − 1)

�(N − m/k)� (5)

n average length is computed for each time series having the
ame delay k, as the mean of k length Ln(k) for m = 1, 2, . . ., k.
he procedure is repeated for all k ranging from kmin to kmax.
ielding a sum of average length L(k) for each k as indicated in

(k) =
k∑

m=1

Lm(k) (6)

The slope of least square linear fit in the curve of ln(L(k))
ersus ln(1/k) is estimated as fractal dimension. The method
n [14] is used to determine kmin and kmax in this paper. A value
f kmin = 1 and kmax = 30 were chosen for our study.

.2.4.  Correlation  dimension
imension of a signal can give much information about nature
f a system. Fractal dimension is one of nonlinear methods
hat is used to approximate dimension of a signal. Grssberger
nd Procaccia in 1983 [15], proposed an algorithm (GP) for
omputing fractal dimension that has become most widely
sed for estimating dimension of experimental data. The GP
lgorithm is based on embedding theory and phase space
econstruction. Assume a time series with N data points,

 = [x(1),x(2), . . .,  x(N)], by choosing time delay � and embedding
imension m,  a new m dimension vectors can be reconstructed
s

(i) = [x(i), x(i + �), . . . , x(i + (m − 1)�)] i = 1, 2, . . . , N − (m − 1)�

(7)
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The probability that the points of the set are in the same
cell of size r is presented by C(r):

C(r) = 2
N(N − 1)

∑
i /=  j

�(r − |X(i) − X(j)|) (8)

where C(r) is correlation integral, � is the Heaviside step func-
tion which is defined as �(x) = 0 for x < 0 and �(x) = 1 for x > 0.
The correlation dimension can be estimated from the slop of
log(C(r)) versus log r over linear region:

d = lim
r→0

[
log C(r)
log r

]
(9)

The procedure is repeated for increasing m.  By increasing
embedded dimension, the value of d will increase gradually
until saturation. The saturation value of d is defined as GP
correlation dimension.

In this study, correlation dimension is computed with the
time delay � that is determined by use of minimum mutual
information method [16] and embedding dimension varying
from 3 to 30.

2.2.5.  Lyapunov  exponent
Lyapunov exponent is a useful nonlinear dynamic measure
that quantifies the exponential divergence or convergence
of initially nearby trajectories in phase space. Also, LE can
characterize instability or predictability of a system. A d-
dimensional dynamical system has d lyapunov exponents
but in most applications, largest lyapunov exponent (LLE)
is computed instead of all exponents [17]. The positive LLE
indicates that divergence among initially nearby trajectories
grows exponentially in time and therefore, the nonlinear sys-
tem is chaotic. The maximum lyapunov exponent, �1 for a
dynamical system is defined as,

dj(i) = dj(0)e�1i�t (10)

where dj(i) is the mean Euclidian distance between two neigh-
bor trajectories in phase space at time ti and dj(0) is Euclidian
distance between the jth pair of initially nearest neighbors
after i time step. Taking the algorithm of both side of Eq. (11),
we obtain:

ln dj(i) = �1(i�t) + ln di(0) (11)

The maximum lyapunov exponent is calculated by the slop
of linear fit to the average log divergence curve defined by,

y(i) = 1
�t

〈ln dj(t)〉 (12)

where 〈· 〉 is average over all value of j [18].

2.3.  Feature  selection
Feature selection is a very important step in pattern recog-
nition. The idea of feature selection is to choose a subset of
features that improve the performance of the classifier espe-
cially when we are dealing with high dimension data. Finding

dx.doi.org/10.1016/j.cmpb.2012.10.008
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Table 1 – Results of classification accuracy for power EEG
bands.

Classifier Feature

Delta (%) Theta (%) Alpha (%) Beta (%)

KNN 66.6 70 70 66.6

five electrodes in left hemisphere (C3, P3, O1, F7, T3) and one
electrode in right hemisphere (O2) differ significantly between

62.0 0%

64.0 0%

66.0 0%

68.0 0%

70.0 0%

72.0 0%

74.0 0%

delta

theta

alpha

beta
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significant features that produce higher classification accu-
racy is an important problem.

In this study, we  have 90 training data and features which
made our data very sparse. In this case, appropriate fea-
ture selection method can significantly improve the accuracy
of classification by selecting the most informative features.
Genetic algorithm (GA) as the feature selection technique is
used in this experiment. A vector of length k defines each chro-
mosome where k is the number of features. Each bit in the
chromosome corresponds to one of the features and it indi-
cates if the correspondence feature is selected in the feature
selection process. In each generation of GA, selected features
are given to the classifier and the overall accuracy of classifier
is determined as the fitness function for the next generation.
In our experiments, the size of population for GA is set to 50,
crossover rate to 80% and mutation rate to 5%. In our experi-
ments, other feature reduction methods such as PCA are used.
However, GA as the feature selection technique significantly
improves the accuracy of classifiers.

2.4.  Classification

Three classification techniques are used in our experiments.
We also tested other classification techniques such as SVM
with nonlinear kernel and Naive Bayes [19] using different
types of features. However, our results with LDA, LR and KNN
are superior to those obtained with other methods.

2.4.1.  LDA
Linear discriminate analysis, known as Fisher’s linear discrim-
inant, is a statistical method that is commonly used for data
classification. LDA finds linear combination of features to clas-
sify two or more  classes [20]. The LDA function for two classes
(c1, c2) is defined as:

g(x) = wt(x) + w0 (13)

where x is the input feature vector, w is the weight vector and
w0 is threshold value. The goal is to find optimum w and w0

based on the linear combination of features. Parameters w and
w0 are determined by maximizing the ratio of between-class
variance to within-class variance to guarantee maximal sepa-
rability. After optimizing the parameters, we classify the input
instance as class c1 if g(x) > 0, otherwise x is classified as class
c2.

2.4.2. LR
Logistic regression is another classification technique that we
have used in our experiments. Logistic regression is used as
a powerful technique for classification. The classification is
done by fitting the training data to a logistic function [21].
Logistic function is a continuous function between 0 and 1
that defined as,
�(x) = 1
1 + eˇ0+ˇ1x1+ˇ2x2+···+ˇnxn

(14)

where x is the input vector and  ̌ is the parameter vector.
LDA 66.6 70 73.3 70
LR 70 70 73.3 70

For the binary classification, the input to the logistic func-
tion is a feature vector and the output is the probability of
classifying the input data to positive or negative classes.

2.4.3.  KNN
KNN classifier is one of simple classification that is based on
a distance function for pairs of observations. In KNN algo-
rithm, k nearest training sample for a test sample is found.
Then, test sample is assigned to particular class which is most
frequent class among k nearest training data. This algorithm
only requires an integer value for k and a metric to measure
closeness [20].

3.  Experimental  results

3.1. Result  of  classification  based  on  power  EEG  bands

Table 1 summarized the experimental results when power
bands are applied to classifiers as input. In this table, each row
shows the result of three classifiers. The number of selected
features is about 8 in three classifiers.

Table 1 shows the highest accuracy, 73.3%, has been
achieved when alpha power is applied to the classifiers as the
input. For better comparison the bar chart of results has been
provided in Fig. 1.

According to Fig. 1, alpha power has highest accuracy in dis-
criminating depressed and normal groups in all classifiers. To
study the power in alpha band of two hemispheres between
depressed patients and healthy controls, t-test were carried
out for the mean values of the EEG bands power in left and
right hemispheres in each electrode. Alpha power band of
KNN LDA LR

Fig. 1 – Comparison of classifiers’ accuracy for power
bands.

dx.doi.org/10.1016/j.cmpb.2012.10.008
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Table 2 – Results of classification for nonlinear features.

Classifier Feature

DFA (%) Higuchi (%) Correlation
dimension (%)

Lyapunov (%)

KNN 70 73.3 76.6 70
LDA 76.6 73.3 80 73.3
LR 76.6 76.6 83.3 73.3

Fig. 2 – Location of electrodes with p < 0.05 between
d

d
t

3
f

I
r
t
b
t
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F
n

Table 3 – Results of classifiers accuracy with combined
features in each group.

Classifier Feature

Nonlinear features (%)  Power features (%)
epressed patients and healthy subjects.

epressed patients and normal controls (p < 0.05). Fig. 3 shows
he location of these electrodes.

.2. Results  of  classification  based  on  nonlinear
eatures

n Table 2 the result of nonlinear features, DFA, higuchi, cor-
elation dimension and large lyapunov exponent are given for
hree classifiers. It can be seen that correlation dimension has
een achieved the highest accuracy, 83.3%, when is used as
he input of LR classifier among all features. At last, about 9

eatures are selected by GA in each classifier when 19 features
re used as input. Fig. 2 indicates bar chart of these results.

The DFA and higuchi have approximately the same accu-
acy in classifying two groups in three classifiers and accuracy

60.0 0%

65.0 0%

70.0 0%

75.0 0%

80.0 0%

85.0 0%

KNN LDA LR

DFA

Higuchi

Correla�on di mens ion

lyapunov

ig. 3 – Comparison of classifiers accuracy for each
onlinear feature.
KNN 80 73.3
LDA 86.6 76.6
LR 90 76.6

has the lowest value when lyapunov exponent is used as the
input of classifiers. In addition, Fig. 2 shows LDA and LR clas-
sifier have better accuracy in all features in compare to KNN
classifier.

3.3.  Results  of  classification  based  on  combining
features

In the second experiment, all features of each group are com-
bined and applied to classifiers. GA is employed for selecting
the best features and removing redundant ones. Table 3 shows
the classifiers results on testing dataset.

Fig. 4 shows the accuracy of all classifiers for all nonlin-
ear features and the accuracy of correlation dimension and
LR classifier, as the accuracy among other nonlinear features
and classifiers.

According to these results, the best accuracy, 90%, is
achieved when all nonlinear features used as input of LR
classifier. In addition, the accuracy of all classifiers is higher
than the best result in Section 3.2,  where the highest accu-
racy is related to correlation dimension. Fig. 5 summarized
the results of accuracy for all power bands as features for three
classifiers and the accuracy of alpha power band as the best

result among other power bands.

In this experiment, the best accuracy is obtained by LR and
LDA classifiers and all power bands as the input of classifiers.

65.0 0%

70.0 0%

75.0 0%

80.0 0%

85.0 0%

90.0 0%

95.0 0%

KNN LDA LR

all 
nonlinear 
features

correla�on 
dimension

Fig. 4 – The accuracy of classifiers for combined nonlinear
features and correlation dimension as input.
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66.0 0%

68.0 0%

70.0 0%

72.0 0%

74.0 0%

76.0 0%

78.0 0%

KNN LDA LR

all power 
bands

alpha 
power

Fig. 5 – Accuracy of classifiers for combined power bands

features and alpha power band as the input.

The results show the accuracy has no significant change when
all power bands used as input in compare to best accuracy in
Section 3.1,  when alpha power is applied to LR classifier. For
better comparison, results of nonlinear features and power
bands for three classifiers are illustrated in Fig. 6.

Fig. 6 indicates that the accuracy of three classifiers are
higher for all nonlinear features as the input in compare
to power bands features. In this study, it is shown that the
accuracy of all classifiers is significantly increased when non-
linear features are used as the input of classifiers. This result
shows LR classifier can achieve the accuracy of 90% when
all nonlinear features are applied to this classifier. The final
subset of features that is selected by genetic algorithm in LR
classifier is about 14 and 16 features for nonlinear features
and power band respectively. In the last subset of nonlinear
features that leads to best accuracy of 90%, the most fea-
tures are selected from correlation dimension feature and
the less is related to lyapunov exponent. According to the
best accuracy in Table 2, related to correlation dimension, the
accuracy of classifying depressed patients and normal per-
sons is enhanced approximately by 6.7% when all features are
combined. In this experiment, LR classifier has better results
comparing to other classifiers. When all power bands are used

as inputs, the accuracy has no considerable change in all clas-
sifiers in comparison with result of alpha power as input of
classifiers. The highest accuracy of all power bands is 76.6% in

60.0 0%
65.0 0%
70.0 0%
75.0 0%
80.0 0%
85.0 0%
90.0 0%
95.0 0%

100. 00%

KNN LDA LR

nonlinear 
features

power ba nds 
features

Fig. 6 – Comparison between accuracy of combined
nonlinear features and combined power bands for three
classifiers.
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LR and LDA classifiers. According to these results, nonlinear
features give much better results in classification of depressed
patients and normal subjects.

4. Discussion

In this study, we analyzed resting EEG of 45 depressed patients
and 45 normal subjects by power of EEG bands and four non-
linear features. In classification based on EEG bands power,
the highest accuracy achieved by alpha power, suggesting that
depressed patients and normal subjects differ in alpha band
more significantly than other power bands like delta, theta and
beta. Furthermore, we observed that alpha power had signif-
icant difference in T3, F7, O1, P3, C3 in the left hemisphere
and O2 in the right hemisphere. The mean alpha powers in
these electrodes were higher in depressed patients in com-
parison with normal subjects. These results were similar to
the results obtained in [3].  In this study, Henriques and David-
son reported that left hemisphere of depressed patients had
higher alpha power than left hemisphere of normal subjects.
Also, this study showed alpha power was higher in left hemi-
sphere of depressed patients than right hemisphere of this
group.

In classifying depression patients and normal healthy
subjects with nonlinear features, the highest accuracy was
achieved when correlation dimension used as input of
classification compared with DFA, higuchi and maximum lya-
punov exponent. This experiment showed in discriminating
depressed and normal persons, correlation dimension was
a powerful feature for analyzing EEG signals. For further
improved, we combined the features and used them as one
feature vector for classifying. Combination of power bands
had no considerable changes in accuracy of classifiers but
nonlinear features improved the accuracy of classification sig-
nificantly. The highest accuracy was 90% by combination of
nonlinear features and LR classifier. The number of features,
which GA selected for achieving this accuracy, was 14. Most of
these features are related to correlation dimension. Compared
to previous researches that based on linear and nonlinear
analysis of depressed patients and normal subjects EEG sig-
nals, this study can achieve considerable accuracy, according
to the fact that in this study, independent test is used. The
prediction accuracy obtained from the unknown set shows
the performance of classification and datasets more  precisely.
Knott et al. [5] reported the accuracy 91.3% for classifying 70
depressed patients and 23 normal subjects using linear fea-
tures such as relative power and absolute power. In [8] wavelet
entropy was used for analyzing EEG signals of 26 depressed
patients and normal subjects and 80% accuracy was achieved
in this experiment. Lee et al. [9] applied DFA to EEG of 11
depressed patients and 11 normal subjects and they obtained
that DFA of depressed patients are higher than normal sub-
jects but classification were not used in this study. In our study
DFA value of both depressed patients and normal subjects
were between 0.5 and 1 similar to the results in [9] but no

significant difference were found between two groups.

In this study three classifiers were used. Among this
classification, LR classifier performed better compared to
LDA and KNN classifiers. This study suggests that more

dx.doi.org/10.1016/j.cmpb.2012.10.008


i n b i

n
d
t
a
e
o
d
f

5

I
s
a
4
a
h
n
K
O
w
a
f

w
c
h
r
d
l

a
n
t
c
r
i
a

A

T
h

r

c o m p u t e r m e t h o d s a n d p r o g r a m s 

onlinear features should be studied for analyzing EEG of
epressed patients. Also, instead of using EEG in rest condi-
ion, EEG in different conditions and tasks can be recorded and
nalyzed for depressed patients and normal subjects. How-
ver, future investigation should focus on finding the regions
f brain that involved in depression. Finally, an increase in EEG
ata would make it possible to validate the reliability of these
eatures and classifiers.

. Conclusion

n this paper we  showed EEG signal can be a useful tool in
tudying depression and discriminating depressed patients
nd normal subjects. EEG signal of 45 depressed patients and
5 normal persons were recorded and linear features such
s EEG bands power and nonlinear features such as DFA,
iguchi, correlation dimension and maximum lyapunov expo-
ent were extracted from EEG. Three well-known classifiers,
NN, LDA and LR were employed for classification. Leave-One-
ut method was used for training data sets and the results
ere examined on testing datasets. Furthermore, GA was
pplied for selecting more  informative and significant features
or training datasets.

In power bands of EEG, highest classification accuracy
as achieved by power of alpha band and in this band we

an observe significant difference between electrodes in left
emisphere of depressed patients and normal subjects. These
esults indicated that depressed patients and normal subject
iffer in alpha band more  than other bands especially in the

eft hemisphere.
Among nonlinear features correlation dimension had more

bility to classifying two groups of depressed patients and
ormal subjects. Also, LR classifiers performed better than
wo other classifiers: LDA and KNN. In other experiment, with
ombination of nonlinear features, we can improve the accu-
acy of classification by 6.7% and obtain highest accuracy 90%
n this study. These results confirmed that nonlinear features
re potentially effective methods to analyze EEG signal.
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