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Abstract
Adult T-cell leukemia/lymphoma (ATLL) is pathogen-caused cancer that is progressed after the infection by human T-cell 
leukemia virus type 1. Four significant subtypes comprising acute, lymphoma, chronic, and smoldering have been identified 
for this cancer. However, there are no trustworthy prognostic biomarkers for these subtypes. We utilized a combination of two 
powerful network-based and machine-learning algorithms including differential co-expressed genes (DiffCoEx) and support 
vector machine-recursive feature elimination with cross-validation (SVM-RFECV) methods to categorize disparate ATLL 
subtypes from asymptomatic carriers (ACs). The results disclosed the significant involvement of CBX6, CNKSR1, and MAX 
in chronic, MYH10 and P2RY1 in acute, C22orf46 and HNRNPA0 in smoldering subtypes. These genes also can classify 
each ATLL subtype from AC carriers. The integration of the results of two powerful algorithms led to the identification of 
reliable gene classifiers and biomarkers for diverse ATLL subtypes.

Keywords  HTLV-1 · ATLL · Cancer · SVM · DiffCoEx · ATLL subtypes

Introduction

Human T-cell lymphotropic virus type 1 (HTLV-1) is a del-
taretrovirus that infects CD4 + T and can develop cancer 
named adult T-cell leukemia/lymphoma (ATLL). HTLV-1 
may induce cell transformation and proliferation, as well 
as immune deficiency in the infected individuals [1, 2]. 
ATLL is developed in almost 5% of the HTLV-1 infected 
subjects. ATLL is primarily classified into four subtypes 
based on Shimoyama classification: lymphoma, acute, 
chronic, and smoldering [3, 4]. The lymphoma and acute 
types are specified by very poor prognosis and aggressive 
manner. The smoldering and chronic subtypes are nominated 

by an indolent clinical course and disparate clinicopatho-
logic traits. The cancer cells are mainly in the blood in acute 
ATLL in spite of lymphomatous ATLL, in which cancer 
cells are mostly placed in the lymphatic organs and lymph 
nodes [5]. Chronic ATLL is specified as a slow-growing or 
low-grade cancer. Smoldering subtype is also a low-grade 
disease and can make no problem without any signs for a 
long time [6].

Exploration of the most effective functional players in 
the development of a disease help find potential biomark-
ers and also possible therapeutic targets. One of the proper 
methods is the identification of co-expressed genes that 
probably have similar functions and also regulate the same 
biological pathways. Algorithms such as DiffCoEx that find 
the differential co-expressed genes between two conditions 
result in finding the most particular co-expressed genes in 
a determined disease state. The remarkable benefit of this 
approach is the identification of differential co-expressed 
gene groups in the presence of the within-group correlation 
between two conditions [7].

Support vector machine (SVM) method is a type of 
machine-learning approach that contains a series of super-
vised learning approaches that could be applied for regres-
sion, outlier detection, and classification. It can be used to 

Edited by Matthias J. Reddehase.

 *	 Mohadeseh Zarei Ghobadi 
	 mohadesehzaree@gmail.com

 *	 Rahman Emamzadeh 
	 r.emamzadeh@sci.ui.ac.ir

1	 Department of Cell and Molecular Biology 
and Microbiology, Faculty of Biological Science 
and Technology, University of Isfahan, Isfahan, Iran

2	 Independent Researcher, Tehran, Iran

http://crossmark.crossref.org/dialog/?doi=10.1007/s00430-023-00767-8&domain=pdf
http://orcid.org/0000-0003-2614-6086


	 Medical Microbiology and Immunology

1 3

classify biological data and find the possible subtypes of a 
specified disease. SVM basically categorizes the samples 
into two classes. However, it can be utilized for multiclass 
classification by crushing the problem into several binary 
classification ones. It is carried out by considering a high 
dimensional space and mapping data points to it to acquire 
a reciprocal linear differentiation between every two classes 
known as the one-to-one method [8].

The poor prognosis of ATLL and its subtypes is a con-
cerning problem in the endemic regions [9]. Therefore, in 
this study, we used a combination of Diffcoex and SVM 
algorithms for categorizing three ATLL subtypes. It resulted 
in the identification of the gene classifiers between asympto-
matic carriers (ACs), who carry HTLV-1 without any sign, 
and patients with one of the three ATLL subtypes. The 
determined genes may have critical roles in the progression 
of each cancer subtype and would be considered potential 
biomarkers.

Results

Identification of differential co‑expressed modules

The overall steps of analysis in this study are summarized 
in Fig. 1. The differential co-expressed gene modules (Dif-
fCoexGMs) between ACs and three ATLL subtypes were 
found utilizing the DiffCoEx algorithm [10]. This method 
actually determines the groups of genes that are specifically 
co-expressed in an ATLL subtype. According to the steps 
of executing the algorithm explained in Materials and meth-
ods, adjacency differences matrices between two conditions 

were initially determined. Afterward, dissTOMs were cal-
culated with β power of 9, 6, and 5 for ACs-ATLL_acute, 
ACs-ATLL_chronic, and ACs-ATLL_smoldering, respec-
tively. Next, the hierarchical tree was constructed using the 
flashClust function. The differential co-expressed modules 
were then identified by cutting the branches of the tree. Fig-
ure 2a–c shows a dendrogram of identified modules based 
on a topological overlap dissimilarity matrix named diss-
TOM (1‑TOM), in which each color denotes a module. Two 
genes have high topological overlap if they are connected 
to a similar group of genes in the network. The dissTOM 
shows the common genes with shared neighbors in a graph, 
which finally leads to identifying modules with a high corre-
lation with a condition. Furthermore, the heatmaps depicting 
the discrepancies between the correlation patterns in Dif-
fCoexGMs are indicated in Fig. 3. The upper diagonal of 
the heatmap reveals a correlation between pairs of genes in 
each module among ATLL subtypes (the red color denotes 
positive correlations and the blue color denotes negative 
correlations). The lower diagonal of the heatmap repre-
sents a correlation between similar gene pairs in ACs. The 
high intensity of color shows a higher correlation between 
the gene expression profiles in a module in a condition. A 
total of six DiffCoexGMs were found between ACs and 
ATLL_acute, in which the green module was highly corre-
lated with ATLL_acte (Fig. 3a). In comparison between ACs 
and ATLL_chronic, five DiffCoexGMs were found. Among 
them, the turquoise module was correlated with ATLL_
chronic (Fig. 3b). Two of the five DiffCoexGMs between 
ACs and ATLL_smoldering including blue and brown were 
correlated with ATLL_smoldering (Fig. 3c). The identi-
fied modules comprise co-expressed genes that are possibly 
more involved in the progression of ACs toward each ATLL 
subtype (Supplementary data file 1). The pathway enrich-
ment analysis of the identified modules was also performed. 
The results revealed the involvement of the genes in mostly 
cancer-related pathways. The related enriched pathways are 
mentioned in Supplementary data file 2. In the next step, 
we found differentially expressed genes (DEGs) among ACs 
and each subtype and then the unique ones for each sub-
type (Supplementary data file 3). Afterward, we found the 
common genes between unique DEGs and the genes in each 
specific DiffCoexGMs for each subtype (Supplementary data 
file 4). These unique genes (U_genes) could be further used 
as features in the machine-learning classification algorithm.  

Finding classifiers using support vector 
machine‑recursive feature elimination 
with cross‑validation (SVM‑RFECV) analysis

To find the best unique classifiers between ACs and ATLL 
subtypes, the SVM-RFECV algorithm was used. The U_
genes obtained from previous analyses were applied as the Fig. 1   Flowchart of the suggested procedure in this study
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Fig. 2   Dendrogram of clustered genes based on (1‑TOM) with defined module colors of a ACs-ATLL_acute, b ACs-ATLL_chronic, and c ACs-
ATLL_smoldering. The colors represent the modules (groups of genes)

Fig. 3   Heatmap of comparative correlation comprising differentially 
co‑expressed modules between a ACs and ATLL_acute, b ACs and 
ATLL_chroninc, and c ACs and ATLL_smoldering. The upward and 

downward diagonals denote the correlations between gene pairs in 
ATLL and ACs, respectively
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features for each analysis. Therefore, a total of 56, 14, and 
103 U_genes were employed as the input features for ATLL_
acute, ATLL_chronic, and ATLL_smoldering, respectively 
(Supplementary data file 4). The data were randomly 
divided to train and test sets (65/35). The obtained accura-
cies for train datasets were found as 0.98, 1.00, and 1.00 
for ATLL_acute, ATLL_chronic, and ATLL_smoldering, 
respectively. Afterward, the test datasets were used to assess 
the constructed models. Figure 4a–c indicates the confu-
sion matrices and classification reports (precision, recall, 
and F1-score) for three subtypes of ATLL. Precision is the 
ratio of correctly observed positive outcomes to all observed 
positive outcomes. Recall is the ratio of correctly observed 
positive outcomes to the total observations in a desired class. 
F1-score is a substantial performance metric. It is defined as 
the harmonic average of precision and recall. The F1-score 
ranges between 0 and 1. A value larger than 0.5 shows a rela-
tively good classification and a value lower than 0.5 reveals 
a failed classification. As indicated in Fig. 4, the constructed 
models for all three subtypes showed successful classifica-
tion results. The accuracies of test datasets were obtained 
as 1.00 for ATLL_acute, 0.95 for ATLL_chronic, and 0.94 
for ATLL_smoldering. The model identified MYH10 and 
P2RY1 as the best classifier for classifying ATLL_acute, 
CBX6, CNKSR1, and MAX for ATLL_chronic, C22orf46 
and HNRNPA0 for ATLL_smoldering from ACs. These 

genes are the potential biomarkers and possible therapeutic 
targets for each ATLL subtype.

Discussion

In this study, we carried out the consecutive stages to find 
the best diagnostic gene classifiers between asymptomatic 
carriers and the subjects with one of the three ATLL sub-
types. For this purpose, the differential co‑expressed mod-
ules were initially used to identify the specific modules 
related to each subtype. Next, the shared genes between the 
unique DEGs and genes in the selected modules were deter-
mined. Afterward, the unique genes were used as the input 
variables in the SVM-RFE machine-learning algorithm.

The analysis revealed MYH10 and P2RY1 as the classi-
fier between ACs and ATLL_acute subjects. MYH10 is a 
cellular protein myosin that has possibly several functions 
in cell shape, cytokinesis, secretion, and capping [11]. It 
also has a significant role in the cytoskeleton reorganiza-
tion and lamellipodial extension during cell spreading [12]. 
Non-muscle myosin IIB (NM IIB) is encoded by MYH10 
which is implicated in tumor invasion, cell migration, and 
the generation of extracellular matrix (ECM) [13].

P2RY1 encodes a protein belonging to the G-protein 
coupled receptors family, which contains a receptor for 
extracellular adenine nucleotides such as ADP [14, 15]. 

Fig. 4   The confusion matrix (a–c) and classification reports (d–f) for ATLL_acute, ATLL_chronic, and ATLL_smoldering subtypes, respec-
tively
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P2RY1 liberates Ca2+ from the intracellular reservoir by 
coupling to phospholipase C, resulting in reversible plate-
let aggregation [16, 17]. It is also involved in the control 
of several physiological functions [18]. It has been dem-
onstrated that the P2RY1 receptor mediates apoptosis in 
prostate cancer and astrocytoma cells in correlation with 
the ERK1/2 activation. It is also known as a cell prolifera-
tion inhibitor. Therefore, P2RY1 receptor is a potential 
anticancer target [19, 20].

CBX6, MAX, and CNKSR1 were identified as the best 
gene classifier for ATLL_chronic. CBX6 is a subunit of 
polycomb repressive complex 1 that intercedes the suppres-
sion of the epigenetic gene and operates as a tumor sup-
pressor or an oncogene [21]. It can promote G1/S phase 
transition, proliferation, invasion, and metastasis capability 
of the cancer cells through adjusting transcription factors 
snail/zeb1-mediated EMT mechanism [22].

MAX is a transcription factor, which is capable of a com-
plex constitution with Myc. Myc is an oncoprotein involved 
in cell differentiation, proliferation, and apoptosis [23]. 
MYC-MAX boosts tumorigenesis and has a significant func-
tion in lymphomagenesis. MYC-MAX heterodimers steer a 
feed-forward circuit that amplifies high MYC expression in 
tumors. MYC regulates the kinase Plk1 to retain its stabil-
ity in an aggressive type of lymphoma. Disturbance in this 
process, Max null B cells leads to a decrease of MYC pro-
tein expression and full repeal of lymphomagenesis [24, 25]. 
MAX deletion results in metabolic rewiring and context-
specific tumor repression [26].

CNKSR1 encodes a kinase inhibitor of ras gene 1 which is 
a linker enhancer for an enzyme. It is a necessary component 
in the receptor tyrosine kinase pathway and can be utilized to 
target tyrosine phosphorylation. CNKSR1 acts as an onco-
gene and accelerates RAF/MEK/ERK signaling through the 
positive feedback effects via its plasmalemmal localization 
[27]. Moreover, the PH domain of CNKSR1 incorporates 
mut-KRAS to interdict the development of mut-KRA cells, 
so can treat some cancers [28].

Two genes including C22orf46 and HNRNPA0 were 
found to be potentially important genes involved in the 
pathogenesis of ATLL_smoldering. C22orf46 is a pseu-
dogene that is predicted to be located in the extracellular 
region. The function of C22orf46 in cancer has not been 
found yet. There is only one report that proposes the onco-
genic role of C22orf46 in adrenocortical carcinoma cells 
(ACC) [29]. It has been shown that circ-CCAC1 facilitates 
ACC progression through miR-514a-5p/C22orf46 signaling. 
Therefore, the function of C22orf46 should be further sur-
veyed. HNRNPA0 is a member of the A/B family of ubiqui-
tously expressed heterogeneous nuclear ribonucleoproteins 
(hnRNPs). It encodes a protein that has two copies of quasi-
RRM domains that attach RNAs, followed by a glycine-rich 
C-terminus. It has been indicated that the attendance of a 

variant in the regulatory region of HNRNPA0 is related to 
increased cancer occurrence [30]. Furthermore, it is a pow-
erful regulator for the growth of cancer cells [31]. However, 
it was downregulated in ATLL_smoldering, so it should be 
investigated in subsequent studies.

Conclusion

In this study, we found the genes that likely have signifi-
cant roles in the development of three ATLL subtypes. The 
outcomes indicate the implication of MYH10 and P2RY1 
in ATLL_acute, CBX6, CNKSR1, and MAX in ATLL_
chronic, C22orf46 and HNRNPA0 in ATLL_smoldering. 
However, further experimental investigations in a large 
sample number are required to validate these potential gene 
regulators.

Materials and methods

Datasets and preprocessing

We downloaded the microarray datasets GSE33615 [32] and 
GSE55851 [33] containing the gene expression values of the 
ATLL samples as well as GSE29312 [34] and GSE29332 
[34] comprising the expression amounts of genes in the 
AC subjects from the database Gene Expression Omnibus 
(GEO). The samples had taken from whole blood or periph-
eral blood mononuclear cells (PBMCs). The expression data 
of each condition were merged, individually. On the whole, 
23, 29, and 10 samples from the ATLL individuals with 
chronic, acute, and smoldering subtypes, respectively, and 
also 37 ACs samples comprising the expression of 14,887 
genes were used for further analysis. The feasible batch 
effects were excluded by employing the function of remove-
BatchEffect in the Limma package [35]. The data were also 
log2-transformed and quantile normalized.

Identification of differential co‑expressed modules

Gene co-expression analysis finds groups of genes that are 
expressed in a concordant way and may regulate similar 
biological processes. On the other hand, identifying the 
different gene groups between two conditions could be uti-
lized to compare them. Therefore, differential co-expression 
analysis aims to find the correlated gene groups in a spe-
cific condition that are not correlated in the other condition 
[7]. Differential co-expression may reveal the rewiring of 
transcriptional networks in reply to various subtypes of a 
disease. To identify the differential co-expressed gene clus-
ters (modules) between two states, the DiffCoEx algorithm 
was applied [13]. DiffCoEx is based on the weighted gene 
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co-expression analysis (WGCNA) [36] and executed as fol-
lows: (i) construction of an adjacency matrix containing 
Pearson correlations between each gene pair; (ii) calcula-
tion of the squared correlation coefficients and then the con-
struction of an adjacency difference (dij) matrix, in which 
the greater dij amounts denote the remarkable co-expression 
alterations between two genes. Each element of dij reaches 
the power β which is defined so that the network pursues a 
scale-free topology [15]. Then dij values reach the power 
of β; (iii) computing the topological overlap dissimilarity 
matrix (dissTOM) to find the common genes with joint 
neighbors; (iv) the hierarchical clustering is then carried 
out with the “flashClust” function [16]. Then, “dynamic-
TreeCut” function is applied to find modules from the con-
structed dendrogram, and “mergeCloseModules” function is 
used to merge near modules; (v) the statistical significance 
of differential co-expression is assessed utilizing the dis-
persion statistic to express the correlation change between 
two states. In this study, we determined the differential co-
expressed modules between ACs and ATLL-acute, ACs and 
ATLL_chronic, ACs and ATLL_smoldering.

Determining differentially expressed genes 
and pathway enrichment analysis

To identify differentially expressed genes between ACs 
and ATLL subtypes, the Limma package (version 3.54) 
was applied in R environment. Benjamini–Hochberg FDR 
adjusted p values < 0.05 were considered to determine DEGs 
[37]. For pathway enrichment analysis of the specific mod-
ules for each subtype, the ToppGene database was employed 
[38]. The terms with p value < 0.05 were determined as sta-
tistically remarkable.

Support vector machine‑recursive feature 
elimination with cross‑validation

SVM is a supervised classification machine-learning algo-
rithm that has been widely used to classify various subtypes 
of a disease. SVM detects a hyperplane to detach the inputs 
into individual groups. Support vectors are used to identify 
the optimum hyperplane. The points near the hyperplane 
are considered support vectors. The output hyperplane is 
one that has the maximum distance from support vectors. 
Generally, the output of the linear function is captured in 
SVM [39]. In this study, we employed SVM with the tenfold 
cross-validation (CV) to find the most significant classifier 
for various ATLL subtypes [6, 40]. The features were the 
significant co-expressed genes that had been determined 
by DiffCoEx algorithm and DEGs. In addition, the recur-
sive feature elimination that is a wrapper feature selection 
algorithm was used to determine the feature’s classifiers. 
This algorithm in association with SVM (SVM-RFE) is 

executed so that the top-ranked variables are selected as the 
most appropriate conditional variables on the given ranked 
subset in the model [41]. The top-ranked variables in the 
ultimate iteration of SVM-RFE are the essential informative 
features and the bottom-ranked variables are the unimpor-
tant variables that could be excluded. The SVM-RFECV 
is executed as follows: (i) training dataset by the SVM; (ii) 
arranging the features utilizing the weights of the attained 
classifier; (iii) removing the features with the lowest weight; 
(iv) updating the training dataset based on the selected fea-
tures; (v) recurring the stages with the training set confined 
with the remaining features. We employed SVM- RFECV 
in Python 3.9.
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