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Abstract— Spacecrafts are critical systems that have to survive 

space environment effects. Due to its complexity, these types of 
systems are designed in a way to mitigate errors and maneuver 
the critical situations. Spacecraft delivers to the ground operator 
an abundance data related to system status telemetry; the 
telemetry parameters are monitored to indicate spacecraft 
performance. Recently, researchers proposed using Machine 
Learning (ML) / Telemetry Mining (TM) techniques for 
telemetry parameters forecasting. Telemetry processing 
facilitates the data visualization to enable operators 
understanding the behavior of the satellite in order to reduce 
failure risks. 

In this paper, we introduce a comparison between the different 
machine learning techniques that can be applied for low earth 
orbit satellite telemetry mining. The techniques are evaluated on 
the bases of calculating the prediction accuracy using mean error 
and correlation estimation. We used telemetry data received 
from Egyptsat-1 satellite including parameters such as battery 
temperature, power bus voltage and load current. The research 
summarizes the performance of processing telemetry data using 
autoregressive integrated moving average (ARIMA), Multi-Layer 
Perceptron (MLP), Recurrent Neural Network (RNN), Long 
Short-Term Memory Recurrent Neural Network (LSTM RNN), 
Deep Long Short-Term Memory Recurrent Neural Networks 
(DLSTM RNNs), Gated Recurrent Unit Recurrent Neural 
Network (GRU RNN), and Deep Gated Recurrent Unit 
Recurrent Neural Networks (DGRU RNNs). 

 
Index Terms— data mining, deep learning, machine learning, 

neural networks, satellite performance analysis, telemetry 
mining. 

I. INTRODUCTION 
HE tremendous number of spacecraft launched in the past 
decades, enabled national dependence on space based 

services; such as earth observation, communication and 
satellite navigation. The recent advances in technology and 
corresponding spin off enabled satellite developers to use state 
of the art electronics and software to either operate the 
spacecraft or control its onboard equipment. Recent trend 
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announced in the field of building satellites, is the dependency 
on low cost commercially available components. However, 
despite of using fault mitigation techniques and additional 
shielding onboard spacecraft, may reduce space environment 
effects on satellite components and subsystems, this harsh 
environment has many effects starting from thermal and 
vacuum conditions ending with radiation effects. Spacecraft 
failure has many reasons, such as the significant effects of 
radiation environment on one of the critical components of 
satellite, for example the onboard computer, communication 
system, or power supply[1]. 
Nowadays machine learning(ML) / Data Mining(DM) 
techniques are used widely in various fields such as spacecraft 
operations support - the MARS express power challenge[2] 
spacecraft ground systems[3], failure prognostic of 
avionics[4], and communication networks control which is an 
important aspect for both the service provider and end user. 
Data mining methods have been successfully used to address 
and optimized solutions to this issue where learning 
algorithms for data mining allow following and understanding 
the network behavior so that control functions and parameters 
can be updated during network operation to achieve optimal 
performance in real condition[5]. For the next-generation 
wireless networks, Machine learning is able to overcome the 
challenge of assisting the radio in intelligent adaptive learning 
and decision making, so that the diverse requirements of next-
generation wireless networks can be satisfied [6]. The Age of 
Digital Astronomy is such an extremely data-rich environment 
beyond the capabilities of traditional methodologies and 
approaches for analyzing and extracting new knowledge from 
the data. Way et al.[7] have applied some state-of-the-art 
machine learning and data mining techniques in astronomy; 
where the scientific discovery process is increasingly 
dependent on the ability to analyze massive amounts of 
complex data generated by scientific instruments and 
simulations. JIAO et al.[8] presented a machine learning 
algorithm to detect automatic equatorial GPS amplitude 
ionospheric scintillation and classify scintillation events based 
on training data in the frequency domain. ML / DM techniques 
are also applied on real-time system traces[9], Cyclic Time 
Series classification[10], stock price forecasting[11] and fall 
detection ML approach for Range-Doppler Radars [12]. 

In this research, we investigate the machine learning / data 
mining (ML/DM) techniques that can be utilized to analyze 
the performance of the spacecraft. We used Data mining to 
explore the performance presented by telemetry parameter(s) 
that reflect the health of certain onboard unit. This enables 
satellite operator to monitor the overall satellite health to 
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reduce the risk of failure with accurate and automated manner. 
One of the possible ways to monitor the satellite health is to 
use its online telemetry to allow assessment of its status. The 
prediction of telemetry parameters helps the operator to 
determine potential/ upcoming satellite operating mode, which 
can help support decision making for urgent situations. this is 
important issue, as an urgent situation may cause satellite 
complete loss. The numerical nature of satellite telemetry 
parameter is usually formatted/presented as a time series due 
to nature of satellite operation. The time series regression of 
the satellite telemetry parameters can point to trend in 
telemetry parameter value change, which may cause satellite 
subsystem failure. Monitoring of such trends will alarm for 
possible failure. One simple method is to predict the next 
value(s) of one parameter and apply limit check, so that 
potential failure can be foreseen. When the predicted value 
probability exceeds the percentage of error probability defined 
by satellite operators/designer, it indicates that the related 
subsystem may go into a faulty behavior and thus the satellite 
system will be affected; operator, then, should take 
precautions to avoid this situation. 

This paper is organized as follow; we first give an 
introduction about monitoring the performance of spacecraft. 
Then, we described the satellite subsystems. The third section 
introduces a literature review about machine learning 
techniques used for diverse application; followed by section 
four, we described the detailed algorithms to be evaluated. 
Section five explains the format of the telemetry data received 
from the EGYPTSAT-1 satellite and its associated correlation 
theme. The evaluation methodology is then introduced 
followed by the results of applying the selected algorithms on 
telemetry data. Finally, we conclude the research and illustrate 
our future work. 

II. SATELLITE SUBSYSTEMS 
Spacecraft has a set of subsystems, such as Attitude 

Determination and Control Subsystem (ADCS), Telemetry, 
Tracking and Command (TT&C), Command and Data 
Handling (CDH), Electrical Power Subsystem (EPS), 
Structures and Mechanisms, Guidance and Navigation and 
Thermal Control Subsystem (TCS). The ADCS stabilizes the 
vehicle and orients it in a desired direction during the mission 
despite the external disturbance torques acting on it. The 
structure and mechanism subsystem mechanically support all 
other spacecraft subsystems, attaches the spacecraft to the 
launch vehicle, and provides for ordnance-activated 
separation[13]. 

The telemetry measurements onboard the spacecraft ensure 
obtaining of adequate information about the onboard 
subsystems functioning during the flight operation as well as 
ensure controlled counteracting the off-nominal situations 
onboard the satellite. The satellite telemetry data enables the 
operators in the ground station to monitor the satellite in 
different situations such as separation after orbital injection 
from the launcher, satellite orientation and its dynamics, 
onboard subsystems status and mal-functioning, control 
program and commands execution, revealing of malfunctions 

in the onboard subsystems operation and monitoring of 
satellite instruments and structural elements temperature[14]. 

In our case, to guarantee the full confidence of interpreting 
the input telemetry data set, and to compare the real scenario 
of operation with the corresponding telemetry data set, authors 
used the telemetry data of EGYPTSAT-1, the first Egyptian 
remote sensing satellite, with support from satellite operation 
and design team members[15]. 

III. SATELLITE PERFORMANCE ANALYSIS USING MACHINE 
LEARNING- LITERATURE REVIEW 

Recently, researchers suggested using approaches to 
monitor and evaluate the performance of satellite subsystems; 
furthermore, advanced techniques may be used to predict the 
performance of satellite devices and prepare for early stage 
decision-making. In this context, many algorithms have been 
developed to forecast the failure before it happens based on 
telemetry data received from satellite.  

Yairi et al.[16] proposed a data-driven health monitoring 
method based on probabilistic clustering and dimensionality 
reduction for artificial satellites housekeeping data. Nassar and 
Hussein[17] presented a novel supervised learning algorithm 
based on projection to latent structure discriminant analysis 
technique (PLS-DA) applied to spacecraft telemetry data in 
order to manage the nominal and off-nominal status of the 
spacecraft operations and overcome faulty states in the space 
mission operation. Yang et al.[18] proposed data mining 
methods for in-orbit satellite fault detection and prediction 
which is one of the key technologies for health monitoring of 
in-orbit satellites. 

In this research, we carried out a comparative study 
between some state-of-the-art data mining techniques applied 
on the Egyptsat-1 telemetry. These algorithms are, 
autoregressive integrated moving average (ARIMA), Multi-
Layer Perceptron (MLP), Recurrent Neural Network (RNN), 
Long Short-Term Memory Recurrent Neural Network (LSTM 
RNN), Deep Long Short-Term Memory Recurrent Neural 
Networks (DLSTM RNNs), Gated Recurrent Unit Recurrent 
Neural Network (GRU RNN), and Deep Gated Recurrent Unit 
Recurrent Neural Networks (DGRU RNNs). We selected 
these techniques as surveyed by many previous researches 
[19-25]. Despite many researchers have built their outcomes 
on satellite telemetry available through internet, with low level 
of confidence[26, 27]. Our research used telemetry data with 
very high-level of confidence due to the availability of both 
design documentations of each satellite modules and telemetry 
format corresponding to data ranges of each sensor.  

A. Limit Checking 
Limit checking is the simplest algorithm, which is applied 

earlier and widely used. The technique is based on setting a 
proper range for the applied parameter such as (temperature, 
voltage, and current). By monitoring the variance of each 
parameter, out of that range events can be easily detected. 

The only advantage of this algorithm is its simplicity where 
limits can be set and modified to monitor spacecraft operation. 
Limit checking can be applied for one sensor value. 
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Practically, there is a set of sensors need to be simultaneously 
monitored to assess spacecraft performance. Hence, Limit 
checking is, still, not proper methodology for telemetry deep 
analysis[28, 29]. 

B. Expert System (ES) 
Recently, the Artificial Intelligence is becoming an 

interested field of application for automated systems; one of 
its important developed algorithms is Expert System (ES). ES 
can be applied by establishing knowledge database and 
knowledge-based reasoning engine; using the reasoning 
engine, the ES can predict faults according to the telemetry 
data. Its disadvantage is that a predefined knowledge rules 
should be set first which requires an accurate knowledge of 
the system overall possible cases since it does not implement 
the self-learning concept. Consequently, the ES cannot 
produce new knowledge[28, 29]. 

C. Clustering Techniques 
There are several data driven software tools, such as Orca 

and the Inductive Monitoring System (IMS), have been 
successfully applied to mission operations for both the Space 
Shuttle and the International Space Station. The IMS tool[30] 
uses K-Means clustering data mining technique to analyze 
archived spacecraft data and characterize nominal interactions 
between selected parameters. The Orca tool[31] uses a nearest 
neighbor approach to search for outliers data points in 
multivariate data sets by calculating the distance of each data 
point from neighboring points. Iverson[32] described how 
such data driven techniques have been applied to NASA 
mission control operations where these “data driven” 
applications are able to characterize and monitor interactions 
between multiple parameters and can complement existing 
practice to provide valuable decision support for mission 
controllers. 

K-Means clustering is an approach of machine learning 
techniques. The algorithm is based on partitioning of an (n) 
observation into k clusters in which, each observation belongs 
to the cluster with the nearest mean; it depends on minimizing 
the sum of within-cluster distances. The clustering algorithm 
may converge to different final solutions based on the start 
point of search. These solutions may be local minima if the 
initial partition is not properly chosen; that is why the 
convergence to local minima is the main disadvantage of the 
K-means clustering algorithm[33]. 

K-nearest neighbors(KNN) clustering technique depends on 
the distance to neighboring members of a class; KNN splits 
the dataset into clusters based on a simple majority vote of the 
nearest neighbors of each point[34]. KNN is simple, straight 
and effective however it cannot identify the effect of attributes 
in dataset; For some cases like non-Gaussian distribution or 
non- Elliptical distribution, KNN cannot solve these two kinds 
of problem effectively[35].  

D. Other approaches 
One of the well-known statistical algorithms is the 

autoregressive integrated moving average (ARIMA), which is 
used for time series forecasting such as prediction of traffic 

noise time series[36]. ARIMA usually produces low 
forecasting accuracy in case of nonlinear long-term time 
series. Therefore, it is usually combined with support vector 
machine (SVM), which is also a statistical algorithm, or with 
artificial neural network (ANN). The SVM and ANN support 
the ARIMA to produce better results. Zhang[19] presented a 
hybrid of ANN with ARIMA to predict the Canadian lynx 
time series. Pai and Lin[20] developed a hybrid forecasting 
model consists of SVM and ARIMA for stock price 
forecasting. The SVM is widely used to minimize the 
generalized error bound in order to enhance the performance 
for not only time series forecasting but also classification 
tasks. Yu et al.[21] made a real-time flood stooge forecasting 
using SVM. Tay and Cao[37] proposed a financial time series 
forecasting using SVM. The ANN is a popular technique as 
well, that is used in recognition or regression problems. Park 
et al.[38] presented electric load forecasting using ANN by 
learning the relationship between past, current and future 
temperature readings and the corresponding loads. Khashei 
and Bijari[39] proved that ANN gives better performance than 
ARIMA in time series forecasting. Recently long-short term 
memory (LSTM) has been introduced as recurrent neural 
network (RNN) architecture applied to various real-world 
problems, such as protein secondary structure prediction[40, 
41], reinforcement learning[42], speech recognition[43] and 
handwriting recognition[25]. It has solved several artificial 
problems that remain impossible with any other RNN 
architecture[44]. Ballas et al.[45] presented video 
representations using Gated recurrent units (GRU) RNN and 
stacked layers of GRU RNNs. Another technique known as 
Gaussian Process technique is used for time series evolution 
prediction of complex systems across various engineering and 
business domains, such as the prediction of exchange rate in 
finance, weather and demand for energy using mixture of 
experts. Chandorkar et al.[46] presented a methodology for 
generating probabilistic predictions for the Disturbance Storm 
Time geomagnetic activity index based on Gaussian Process 
Regression models. Mattos et al.[47] performed nonlinear 
system identification in the presence of outliers using Deep 
recurrent Gaussian processes which comprise a powerful 
kernel-based machine learning paradigm that has recently 
attracted the attention of the nonlinear system identification 
community, especially due to its inherent Bayesian-style 
treatment of the uncertainty. A Recently discussed technique 
used for machine learning is State-Space Model, which is used 
for Identification of the nonlinear dynamical systems. Noël et 
al.[48] selected state-space models with polynomial nonlinear 
terms to identify hysteresis in dynamic systems. The 
researchers fitted the data to the model using a rigorous two-
step methodology involving weighted least-squares 
minimization. Jacob et al.[49] proposed a Bayesian approach 
to identify the battery parameters of generic fractional-order 
systems using state-space models where the latent process is 
not Markovian. Stathopoulos and Karlaftis [50] proved that 
the multivariate state space modeling of urban areas 
parameters is complex and tedious, compared with ARIMA 
model, which gives high accuracy in the field of relatively 
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short-term prediction of traffic characteristics.  
As for applying machine learning data mining technique in 

the field of spacecraft performance analysis (named telemetry 
mining), Li et al.[28] and Yairi et al.[29] introduced a 
comparison between most common machine learning 
techniques applied in spacecraft telemetry mining. Yairi et 
al.[29] has surveyed wide range of algorithms and techniques 
used in space systems data mining; the research concluded that 
"a significant issue is how we can guarantee the reliability 
and generality of the acquired information from data. 
Effective and intuitive ways of presenting outputs from the 
detection / diagnosis systems must be also considered, because 
a ML/DM technique is often used as a “black-box” ". In this 
research, we overcome this issue by using high reliability 
information from confident telemetry data source.  

IV. MACHINE LEARNING TECHNIQUES 
This section introduces the usage of telemetry data from the 

satellite in form of Time Series. We represent the data vector: 
X={x(1); x(2);…; x(n) }, where each element x(t) ϵ Rm pertaining 
to X is an array of m values such that {x1

(t) ; x2
(t); … ; xm

(t) }. 
Each value of m corresponds to input variables measured in 
the time series telemetry data. 

A. Auto-Regressive Integrated Moving-Average  
The autoregressive integrated moving average (ARIMA) 

model is a generalized form of an autoregressive moving 
average (ARMA) model[51]. Both of them are used to 
forecast time series data. ARIMA algorithm consists of three 
parts; the first one is the Auto Regressive part where the 
model uses a dependent relationship between an observation 
and number of lagged observations. The second part is the 
integration, where it uses difference between raw observations 
to make a stationary time series. The last part is the Moving 
Average where the model uses the dependency between an 
observation and a residual error from a moving average model 
applied to lag observations. The ARIMA model standard uses 
notation (p,d,q), where p is The number of lag observations, d 
is the degree of differencing, and q is The size of the moving 
average window[52, 53].  

B. Multi-Layer Perceptron  
Multi-Layer Perceptron (MLP) is the simplest form of 

Artificial Neural Network (ANN). It consists of input layer, 
one or more hidden layers which is used to transform the input 
vectors into something that the output layer can use or if there 
are more than one hidden layer; the one’s output is an input to 
the next one, and output layer. MLP is free of cycling so it is 
called Feed-forward neural network (FNN) where the output is 
derived from current input and do not depend on input 
history[22, 54].  

C. Recurrent Neural Network 
Recurrent Neural Network (RNN) is an advanced form of 

MLP, its output depends not only on current input but also on 
previous neurons, because of cycling between neurons of 
hidden and output layers, which give better results than MLP 

network[55]. The hidden layer extracts a set of features from 
the input vectors then they are translated into the target 
context by the output layer. The hidden and output layer 
outputs depend on the nature of the presented problem 
(regression, classification) and the applied cost function such 
as cross entropy, least square errors.  

Due to its recurrent nature, the network can maintain a value 
inside, which enables the RNN to be used as a memory. 
However, it cannot keep a value for more than 5 to 10 time 
steps; this is known as vanishing gradient descent[56]. RNN 
cannot control the timing of reset, forget and store of the data. 
Gating RNN algorithms such as Long Short-Term Memory 
(LSTM) and Gated Recurrent Unit (GRU) are used to 
overcome the problems stated above by using additional gates 
dedicated for these purposes. 

D. Long Short-Term Memory Recurrent Neural Network 
Hochreiter and Schmidhuber[57] have developed the basic 

Long Short-Term Memory (LSTM) architecture with less 
gates (without forget gate) and connections. Gers et al.[56] 
proposed the first modification for the LSTM architecture by 
adding the forget gate that allow LSTM to reset its memory 
cell. LSTM is one of the most effective way to carry out 
learning process for the RNN, such that it can remember 
values for longer time. LSTM is developed from RNN by 
replacing the RNN hidden layer neurons with LSTM blocks. 
Each block has a memory cell that help to overcome the RNN 
vanishing gradient problem. LSTM block consists of memory 
cell to store information for longer time periods; and three 
multiplication units called as gates, where each gate use the 
sigmoid activation function to act as a switch with values 0 
(gate off) and 1(gate on) [44, 55]. Srivastava and Lessmann 
[58] demonstrated that a properly configured LSTM model 
outperforms other techniques used in global horizontal 
irradiance with satellite data. 

E. Deep Long Short-Term Memory Recurrent Neural 
Network 

Deep Long Short-Term Memory Recurrent Neural 
Networks (DLSTM RNNs) are consisted of stacked multiple 
layers of LSTM blocks, where each block output is an input to 
the next block in next layer. It is used to maximize the 
memory size in case of forecasting next values or 
classification problems[26]. Using more stacked layers usually 
enhances the prediction accuracy. This technique achieves 
higher learning capacity but needs large dataset for model 
training[59]. The key aspect of deep learning is that these 
layers of features are not designed by human engineers; they 
are learned from the dataset using a general-purpose learning 
procedure[60]. Fischer and Krauss[61] applied DLSTM to a 
large scale financial market prediction task on the S&P 500, 
from December 1992 until October 2015; they found that 
DLSTM is more suitable for the forecasting domain rather 
than standard deep neural network and the logistic regression 
by a very clear margin. 

F. Gated Recurrent Unit Recurrent Neural Network 
Gated Recurrent Unit (GRU) is an alternative form of 

LSTM with more simplicity. The GRU combines the input 
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and forget gate together in one gate called update gate; and the 
peephole connections is removed in-order to decrease the 
number of parameters used in calculations, this helps to 
improve the training performance and accelerate the algorithm 
speed[23]. The GRU does not have a separate memory cell 
that is why it uses the gates to modulate information flow in 
the unit. The update gate controls the importance degree of the 
previous memory content, to either keep it or update its 
content. The reset gate allows the GRU to forget unnecessary 
memory content[62]. Zhao et al.[63] applied GRU recurrent 
neural networks on machine health monitoring systems for 
modern industries.  

G. Deep Gated recurrent unit Recurrent Neural Network 
Deep Gated Recurrent Unit Recurrent Neural Networks 

(DGRU RNNs) are built by stacking multi layers of GRU 
units, such that each lower unit output feeds the next unit in 
next layer. It is used as storage for regression or classification 
tasks[24]. Deep learning neural network is making major 
advances in solving problems that have resisted the best 
attempts of the artificial intelligence community for many 
years. It has turned out to be very good at discovering 
complicated structures in high-dimensional data and is 
therefore applicable to many domains of science, business and 
government[64]. Tan et al.[65] used a hierarchical gated 
recurrent neural network to model the context information. 
They used gate mechanism at both word level and sentence 
level to select words and sentences closely related to the 
question. Mou et al.[66] proposed a novel deep RNN model 
that can effectively analyze hyperspectral pixels as sequential 
data and then determine information categories via network 
reasoning. 

V. FORMATION OF TELEMETRY PARAMETERS 
In a complicated system, such as satellite, telemetry 

parameters are the only indictors for satellite performance and 
subsystems health. Total number of telemetry parameters may 
be over few thousand. In this research, we select (based on 
system designers’ recommendation) the most essential 
parameters that indicate the satellite status/health, most of 
these parameters are much correlated to each other; as shown 
by performing pattern matching. This enabled us to find the 
most related parameters and subsystems behavior. Fig.  1 
shows the correlation between parameters in following 
subsystems: communication subsystem, Command and Data 
Handling (CDH), Electrical Power Subsystem (EPS).  

The correlation is estimated using the parameters readings 
from five successive telemetry files. These subsystems are the 
most critical ones in the satellite. CDH failure means complete 
loss of the satellite, EPS failure means no power will be 
supplied to any subsystem, and communication system failure 
means satellite may be working by itself while no 
communication with ground station (no inter-satellite 
communication exists). 

    
The proposed parameters are Bt: represents battery 

temperature, Asolar: is the solar array current, Aload is the 
load current, volt is the power bus voltage. VMP1X and 
VMP2X are the output power of main and reserve set of 
communication system transmitter. The tomb1 and tomb2 are 
the camera lens temperature. The t2gps parameter represents 
the casing temperature of the GPS. The TMT parameter is the 
telemetry secondary power subsystem temperature. Thermal 
subsystem parameters are represented by the temperature 
sensors reading tx mounted at external heat shield of satellite 
body. In general, Satellite telemetry parameters are high 
dimensional and highly correlated in the manner as shown in 
Fig.  1. Principle component analysis is usually used for 
dimensionality reduction; However, this method cause loss in 
physical representation of resulted dimensions, and since 
domain expert knowledge will be more useful in our study, we 
decided to select system parameters that reflects critical health 
of satellite. The correlation between these parameters allows 
us to select those who are highly correlated to each other’s, 
and consequently express their behavior. The selected 
parameters can be treated separately (univariate with respect 
to other selected parameters, but covariate with respect to its 
correlated -not selected- parameters); in the same time, they 
are more expressing overall satellite performance and possible 
failures. 

In our case (Egyptsat-1), we based our study on the domain 
expert knowledge in conjunction with correlation matrix to 
select critical parameters. Similar study has been carried out 
on x-11 Chinese satellite, where autoregressive model, back 
propagation neural network and non-parametric regression 
techniques have been compared and applied to satellite power 
systems in order to predict the selected parameters with high 
accuracy (measured by mean percentage error 1%) [67]. 

VI. EVALUATION METHODOLOGY 
In this section, an evaluation of the above-mentioned 

algorithms is introduced. We formatted the telemetry 
parameters extracted from the raw telemetry data received 
from the Egyptsat-1 satellite, so that it can be used as an input 
to each algorithm; based on this we selected the following 

 
Fig.  1. The correlation between the satellite telemetry parameters in 
different subsystems. 
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telemetry parameters: power bus voltage, load current and 
battery temperature. These parameters are recommended by 
satellite designers that can indicate potential failure of satellite 
critical subsystems including power, communication and 
onboard computer (these parameters have high correlation 
with other parameters). The telemetry parameters are time 
tagged counting for number of ticks (in seconds), so we used 
the first 67% of the telemetry values for learning each 
algorithm while the other 33% of the total period is used for 
evaluation; as a result, about 7000 to 8000 value from each 
parameter have been used in the evaluation process. we then 
estimate the root mean square error (RMSE), mean absolute 
error (MAE), Pearson coefficient, and r2 – correlation [68] to 
assess prediction accuracy. 

We started by using telemetry files from different periods of 
satellite lifetime; five successive raw data files have been used 
from each period. The data are extracted and formatted to 
allow easy interpretation of values. As a result, we constructed 
a comparison table to illustrate the accuracy of each algorithm. 
All techniques are implemented based on Python3 
programming language. The neural network techniques are 
implemented using Keras deep learning library on top of 
Google TensorFlow; figures are obtained using matplotlib 
library for Python 2D plotting; we run algorithms on a 
computing platform with processor speed Intel® core™ i5 - 
2410M CPU@ 2.30 GHZ 2.30GHZ, RAM 6 GB, and 64-bit 
operating system windows 7. Unifying the platform of 
implementation allowed us to calculate the execution time of 
the tasks per telemetry file. We concluded the comparison 
between algorithms based on accuracy of prediction and time 
of execution.  

VII. RESULTS 
This section introduces the results of running the seven 

selected algorithms (ARIMA, MLP, RNN, LSTM, GRU, 
DLSTM, and DGRU) for three telemetry datasets; each set is 
composed of five successive telemetry files from years 2008, 
2009, and 2010. 

The time series regression of telemetry parameters has been 
used to demonstrate the ability of this method to detect 
possible failures; we used a simple approach to predict the 
next value(s) of one parameter and apply Shewhart control 
[69] to check the limits of the predicted values, as shown in 
Fig.  2.  

 

LSTM was able to predict the satellite load current values 
(which is defined by expert as main indication of power 
subsystem health). When the LSTM predicted value exceeds 
the upper control limit (UCL) or the lower control limit 
(LCL), it alerts for possible failure. 

For each parameter, a time series is constructed and used as 
an input to the algorithm under evaluation. About 5000 
values/readings have been used for training for each 
algorithm, followed by about 2700 reading used for test. The 
predicted values are compared with the actual values to 
measure prediction accuracy. High prediction accuracy means 
that the technique can inform about the future values (either 
normal or abnormal state) with high probability. Figures from 
Fig.  3 to Fig.  9 represent the results of evaluation for the 
seven algorithms for “voltage sensor for power bus” for year 
2008. 

The blue lines, always behind the green and red data lines- 
usually will not be in clear view, represent the original/ real 
data values; while green lines represent the predicted values of 
data used for training; in this research we re-predicted the 
values of the data used for training to get more accurate results 
for overall prediction performance of the algorithm under 
evaluation; the prediction accuracy of the training data is not 
always 100%; the red lines represent the prediction values of 
the test data. As for ARIMA and LSTM, predicted values are 
almost identical to original ones, so that blue lines are totally 
covered by both green and red lines; on the other hand, for the 
other algorithms an observable difference occurs, so that 
visible parts of blue lines can be distinguished. 

A. ARIMA Algorithm: 

 
B. MLP Algorithm: 

 
 

Fig.  4. MLP prediction result for 2008 data files. 

  

 
Fig.  3. ARIMA prediction result for 2008 telemetry data files. 

  

 
Fig.  2. Shewhart Control Chart for detecting abnormal values. 
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C. RNN Algorithm: 

 
D. LSTM Algorithm: 

 
E. GRU Algorithm: 

 
F. DLSTM Algorithm: 

 

G. DGRU Algorithm: 

 

VIII. DISCUSSION 
A comparison between the proposed techniques is presented 

in Table I. The techniques (ARIMA, MLP, RNN, LSTM, 
GRU, DLSTM, and DGRU) are applied on three different 
datasets from 2008, 2009, and 2010 of Egyptsat-1 lifetime. 

 
We calculated the root mean square error (RMSE), Mean 

Absolute Error (MAE), Pearson coefficient and r2 correlation 
coefficient for each technique as an accuracy measure. The 

TABLE I   
TECHNIQUES COMPARISON 

Algorithm year RMSE MAE Pearson 
Coe.  

r2 
Coe. 

Execution 
time (S) 

ARIMA 

2008 0.2021 0.0695 0.9861 0.9724 20016 

2009 0.2104 0.0675 0.9866 0.9734 12665 

2010 0.1889 0.0682 0.9903 0.9808 24516 

MLP 

2008 0.2214 0.0945 0.9855 0.9712 11531 

2009 0.2651 0.2354 0.9860 0.9721 10200 

2010 0.2210 0.1260 0.9890 0.9781 13494 

RNN 

2008 0.2037 0.0896 0.9859 0.9720 34757 

2009 0.2141 0.1098 0.9864 0.9729 30915 

2010 0.2051 0.0901 0.9893 0.9787 37084 

LSTM 

2008 0.2047 0.0758 0.9864 0.9730 66090 

2009 0.2016 0.0958 0.9877 0.9756 51526 

2010 0.1985 0.0824 0.9901 0.9802 71267 

GRU 

2008 0.2037 0.1214 0.9863 0.9728 48000 

2009 0.2117 0.0783 0.9874 0.9749 44713 

2010 0.1956 0.0882 0.9900 0.9801 55143 

DLSTM 

2008 0.2074 0.1048 0.9878 0.9758 79832 

2009 0.2134 0.1680 0.9857 0.9715 67888 

2010 0.2017 0.1285 0.9906 0.9812 88174 

DGRU 

2008 0.3012 0.1216 0.9859 0.9720 68359 

2009 0.2042 0.1397 0.9829 0.9661 60863 

2010 0.2139 0.2168 0.9892 0.9785 67672 

 

 
Fig.  9. DGRU prediction result for 2008 data files. 

  

  
Fig.  8. DLSTM prediction result for 2008 data files. 

  

  
Fig.  7. GRU prediction result for 2008 data files. 

  

  
Fig.  6. LSTM prediction result for 2008 data files. 

  

  
Fig.  5. RNN prediction result for 2008 data files. 
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average accuracy is then computed for each year, as shown in 
Table I, and the overall accuracy of each technique is 
calculated in Fig.  10 to Fig.  13. The execution time is 
calculated in seconds for each process. 

From the results Table I, we can see that Autoregressive 
integrated moving average (ARIMA), has the best prediction 
accuracy all over the whole datasets regarding to RMSE and 
MAE. This statistical approach runs in a time series prediction 
behavior faster than all other neural network techniques; 
moreover, ARIMA is relatively simple algorithm and cost-
effective approach to carry on the required function. 

On the other hand, for the neural network algorithms, long 
short-term memory recurrent neural network (LSTM-RNN) 
achieved the highest performance accuracy regarding Pearson 
coefficient and r2 correlation coefficient, but timely consumed; 
multilayer perceptron (MLP) is the fastest neural network 
algorithm but with less accuracy. The dataset for 2010 is 
relatively larger than dataset for 2008 and 2009 which makes 
the accuracy of 2010 dataset relatively better than the others as 
shown in Table I. 

The figures from Fig. 10 to Fig. 13 present a comparison 
between different techniques from point of view of each 
accuracy measure RMSE, MAE, Pearson and r2 Coefficient. 
As for root mean square error (RMSE) accuracy measure, 
shown in Fig.  10, ARIMA gives better accuracy followed by 
LSTM then GRU; the same behavior is found in mean 
absolute error (MAE) as shown in Fig.  11. The correlation 
accuracy measure techniques: Pearson and r2 correlation, 
shows that the LSTM followed by GRU and DLSTM gives 
higher accuracy as shown in Fig.  12 and Fig.  13. 

As we can see from these figures; for artificial low earth 
orbit satellites, that have relatively short life time (3-5 years) 
relative to communication and navigation satellites (15-20 
years), both regression techniques and neural network 
technique (used for prediction) have very closed accuracy 
measures values (especially ARIMA and LSTM). This can be 
explained due to the smaller datasets introduced to the neural 
network as learning period; terrestrial systems and artificial 
communication satellites may last for longer time (15-20 years 
life time) which means more data can be provided for training. 
Fischer and Krauss [61] used LSTM for large data set (1992-
2015) with very good prediction performance. 

 

 

 

 

IX. CONCLUSION 
This paper introduces comparison between machine-learning 
algorithms (ARIMA, MLP, RNN, LSTM, DLSTM, GRU, and 
DGRU) used for prediction of spacecraft telemetry data. 
Spacecraft parameters value are predicted using real telemetry 
data of Egyptsat-1 satellite. From the results, LSTM and GRU 
algorithms give a high prediction accuracy (from correlation 
accuracy measure point of view); while ARIMA and LSTM 
have highest prediction accuracy (from mean error accuracy 
measure point of view). By applying these algorithms on 
presented parameters, we found that ARIMA and MLP models 
run with highest speed. While RNN takes relatively more time 
due to its recurrent nature. GRU is faster than LSTM due to its 
lower number of gates; however, LSTM gives better 
performance. DGRU and DLSTM take more time in 
processing between staked layers used in each algorithm; 
these algorithms give less accurate results because it requires 
large size of dataset for deep learning process.  
The results show that, at least in Egyptsat-1 case, for short 
lifetime satellites (3-5 years) it would be more efficient to use 
simple linear regression (such as ARIMA) for predicting 
critical parameters of satellite. Using neural network may be 

 
Fig.  13. Techniques Comparison according to r2.  

 
Fig.  12. Techniques Comparison according to Pearson.  

 
Fig.  11. Techniques Comparison according to MAE. 

  

 
Fig.  10. Techniques Comparison according to RMSE.  
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more efficient in long-term prediction as the case of 
communication satellites (15-20 years).   
We recommend simpler regression techniques such as 
ARIMA for implementation “for low earth orbit satellite 
telemetry mining” that will give comparable results with 
complex neural network. However, for building an integrated 
system for both telemetry mining and classification, the LSTM 
will be best candidate for this purpose, as it can be used for 
prediction, fault diagnoses and classification. 
Planned Future work is the implementation of LSTM using 
wither Graphical Processing Unit or Field Programmable Gate 
Array for fast and real time data processing, toward an 
integrated system for telemetry prediction, fault diagnoses and 
classification. The system will be used in operation of satellite 
Ground control station at Cairo, Egypt for next satellite 2019. 
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