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a b s t r a c t

Although many existing damage diagnosis techniques based on the combination of optimization
algorithms and finite element model updating have been studied and demonstrated to be promising,
there are still some limitations that need to be improved to enhance their performance for the large
and complex structures. In this regard, the present article proposes a FE model updating technique
based on the existing commercial software SAP2000-OAPI and an enhanced symbiotic organisms search
(ESOS) algorithm for damage assessment of full-scale structures. First, to overcome the complexities
of FE simulation, the FE model of monitored structure is built in SAP2000 software for analyzing the
dynamic behavior of the structure. Then, the damage assessment of the structure is set up in the form
of an optimization problem in which the objective function is established based on a combination
of flexibility matrix and modal assurance criterion (MAC). An improved version of SOS algorithm,
called ESOS algorithm, is adopted to solve this optimization problem for detecting and quantifying any
stiffness degradation induced by damage. To perform the iterative optimization task automatically, a
link between MATLAB and SAP2000 is created by using the OAPI feature of SAP2000. Finally, the
numerical investigations on two full-scale structures with considering measurement noise and sparse
measured data demonstrate the feasibility of the proposed technique in predicting the actual damage
sites and their severities.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

With the general goal of maintaining civil and mechanical en-
gineering structures safely and efficiently, a considerable amount
of effort has been devoted to the development of structural health
monitoring (SHM) systems during the last few decades [1,2]. In
an SHM system, predicting the location and the magnitude of
structural damage is one of the most fundamental tasks. Thus,
a great deal of attention has been paid to researchers on innova-
tive technologies and techniques for structural damage localiza-
tion and quantification. Among all available strategies, vibration-
based damage diagnosis (VBDD) techniques have been considered
as the most attractive ones [3–5]. These VBDD techniques can be
roughly classified into two categories: non-model (data-driven)
based methods and model-based methods. The non-model-based
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methods, without using structural analytical programs, are able
to localize the structural damage efficiently but they are difficult
to achieve the damage severity estimation with a relatively high
level of accuracy. On the contrary, the model-based methods
requiring a numerical model (i.e., finite element (FE) model) are
more effective to identify both the damage location and its extent
[6,7].

Basically, a set of model-based fault detection approaches is
usually developed using FE models and model updating strategies
to provide an effective manner for structural damage tracking. In
this manner, a FE model is employed to analyze and simulate the
actual behavior of structural system under different conditions,
and then the process of updating model’s parameters is iteratively
adjusted to correlate measured and predicted response data. Once
the correlation achieves a good agreement, the selected updating
parameters would serve as damage indicators. Compared with
many other available strategies, intelligent optimization meth-
ods have been more widely used for the FE model updating
process [8]. Over the past decade, various meta-heuristic opti-
mization algorithms have shown remarkable success in solving
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the model updating-based damage detection problem, such as
teaching–learning-based optimization (TLBO) algorithm [7,9],
Jaya algorithm [10], lightning attachment procedure optimiza-
tion (LAPO) algorithm [11], and several improved/ hybrid opti-
mization algorithms [12–15]. For a more detailed summary of
this subject, interested readers may refer to meticulous literature
reviews [8,16]. Although many existing damage diagnosis tech-
niques [8] based on the combination of optimization algorithms
and FE model updating have been studied and demonstrated to
be promising, there are still some issues that need to be improved
more thoroughly as follows:

(i) Structural FE analysis in computational programs like MAT-
LAB may be restricted to the ability to simulate the actual
behavior of large and complex structures because of mod-
eling simplifications [17], which may lead to an incorrect
damage prediction. In addition to this, the development
of the FE model in MATLAB program for analysis of full-
scale structures is usually expensive and time-consuming,
or even impossible. Accordingly, a majority of the existing
techniques in the literature still focused on relatively small
and simple structures.

(ii) Another challenge is the use of incomplete measurements
and noise-polluted measured data for damage localization
and quantification due to instrumentation cost and mea-
surement conditions, which leads to increase ill-posedness
for the updating process [18]. Effectively accounting for this
challenge is therefore an important undertaking.

(iii) The performance of the updating process mainly depends
on the strength of optimization algorithm selected to up-
date the model’s parameters [8]. In this viewpoint, power-
ful and reliable optimization algorithms should be devel-
oped and applied with the aim of decreasing the compu-
tational cost and producing accurate and reliable damage
prediction.

Among a large number of newly proposed metaheuristic op-
timization algorithms, symbiotic organisms search (SOS) algo-
rithm [19] has received increasing attention from the community
of researchers dealing with optimization problems due to its
implementation efficiency and stability. The SOS algorithm, a
novel population-based optimization algorithm, takes inspiration
from the interactive relationship between organisms in nature.
It was originally designed for continuous optimization problems
and its results showed superior performance in comparison with
other well-known meta-heuristic algorithms (i.e., genetic algo-
rithm (GA), particle swarm optimization (PSO), differential evo-
lution (DE), and cuckoo search (CS)). Since then, the SOS algo-
rithm and its modified versions have been successfully applied
to different types of optimization problems, such as electronic en-
gineering [20,21], economic dispatch [22,23], engineering struc-
tures [24–26], design of antenna arrays [27,28], and other engi-
neering applications [29–31]. According to some recent review
articles [32–34], it is concluded that the areas of application and
performance of the SOS algorithm are constantly being broad-
ened and improved. Until now, however, very little work used
the algorithm and/or its modified versions are reported in the
field of damage diagnosis of structures. In our recent study [26],
we applied the standard SOS algorithm for solving the damage
assessment problem of 2D frame and truss structures and its
results revealed that this algorithm is very promising for the field.
In the present research, the enhanced symbiotic organisms search
(ESOS) [35] algorithm is exploited to further improve the perfor-
mance of the original SOS algorithm for damage identification of
full-scale structures.

With the rapid development of modern computational tech-
nologies, commercial FE modeling software packages have been

well developed and becoming powerful tools in engineering ap-
plications. These software packages not only are capable of an-
alyzing large and complicated structural systems more accu-
rately and conveniently but also allow users to link them with
third-party software (e.g., MATLAB). By taking these advantages,
optimization-based FE model updating techniques in conjunction
with commercially available FE software packages have been
recently proposed by a few researchers in the field of structural
damage identification. For instance, Sanayei and Rohela [36] de-
veloped a parameter identification system (PARIS) program that
is utilized as an available Optimization Toolbox coded in MAT-
LAB interacting with FE analysis solver of SAP2000 software via
Open Application Programming Interface (OAPI), for automated
FE model updating of full-scale structures. The PARIS program
showed its feasibility for model calibration and impairment iden-
tification purposes. Nevertheless, this program was not focused
on identifying elements individually of the monitored structure
but on each group including a large number of elements. Nozari
et al. [37] presented a FE model updating framework by com-
bining gradient-based least-squares optimization approach and
SAP2000 software for modal identification and damage detection
of a 10-story building using ambient vibration measurements.
In their proposed framework, however, only a small number of
updating parameters (12 parameters) were considered in the
optimization process. As found in the literature, there is very
little work that used the integration of a commercial software
package with a powerful and reliable optimization algorithm for
structural damage localization and quantitation. Thus, additional
research efforts are necessary to develop new FE model updat-
ing techniques that can effectively address the above-mentioned
challenges.

In the present work, a FE model updating technique based
on existing commercial software SAP2000-OAPI and ESOS algo-
rithm is proposed for damage assessment of full-scale structures.
First, to overcome the complexities of FE simulation, a SAP2000
model of the monitored structure is utilized for analyzing the
dynamic behavior of the structure. By using structural vibration
parameters (e.g., natural frequencies and corresponding mode
shapes) extracted from the SAP2000 model, the ESOS algorithm
is adopted to minimize an objective function that is formulated
based on a combination of flexibility matrix and modal assurance
criterion (MAC). Herein, the ESOS algorithm, an improved version
of the original SOS algorithm to reduce the computational cost,
is coded in MATLAB interacting with SAP2000 through OAPI
feature for two-way data exchange. Finally, the effectiveness
and robustness of the proposed FE model updating technique
are investigated through two numerical examples including an
industrial steel frame and a 3D two-story full-scale building with
various possible damage scenarios. In addition, the simultaneous
effect of measurement noise and sparse measured data on the
proposed technique is also taken into account.

The remainder of this article is structured as follows. Section 2
presents the statement of optimization-based damage diagnosis
problem using SAP2000-OAPI, whereas Section 3 provides an
introduction to SOS and enhanced SOS algorithms. In Section 4,
the numerical results and performance evaluation of the pro-
posed damage identification technique are discussed. Lastly, we
highlight some important concluding remarks in Section 5.

2. Statement of FE model updating problem using SAP2000-
OAPI

The FE model updating problem is an inverse problem whose
the solution can predict both damage site and damage magnitude.
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Fig. 1. Flow chart of SOS algorithm.

This problem can be treated and solved as an optimization task
that is mathematically posed as

finding x = x1, x2, . . . , xn
Minimize Γ (x)
S.t. 0 ≤ xi ≤ 1, i = 1, 2, . . . , n

(1)

where xi, the ith component of n design variables, is the loca-
tion and degree of damage of suspected elements; Γ (x) is the
objective function.

As shown in Eq. (1), the damage detection process is achieved
by minimizing an objective function that can be defined based
on the discrepancy between experimental modal parameters and
the corresponding analytical predictions. The objective function
plays an important role in the successful updating of structural
model parameters. Although there are various objective functions
available in the literature [8,16], it is difficult to find a clear
criterion for choosing a proper objective function [38]. Among
the modal parameters, mode shape, and modal flexibility are the
most common parameters used to construct an objective function
for tracking damage. In the present study, a modal flexibility-
based residual is incorporated with a modal assurance criterion
(MAC)-based residual to generate an expected combined objec-
tive function. The two forms of the residuals are given as follows

Fk(x) =

(Fdk − Fck (x)
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(2)
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where Fdk and Fck are, respectively, the kth column of the flexibility
matrix obtained from the damaged structure and the FE analytical
model; ∥·∥Fro denotes the Frobenius norm of a matrix; Φ d

r and
Φ c

r are, respectively, the rth mode shape vector obtained from
the damaged structure and the FE analytical model. Based on the
residuals, the combined objective function is expressed as
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1
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1
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r

(
1 −

√
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)
(4)

where nc denotes the total number of columns in the flexibility
matrix; nmod denotes the number of considered mode vibrations;
w1 and w2 are the weighting factors to the residuals. In general,
the weighting factors reflect the relative importance of each
residual, and their selection values are based on trial-and-error
and/or engineering judgment.

For the purpose of finding the value of vector x (design vari-
able vector) of Eq. (4), a powerful and reliable optimization tool
should be chosen to minimize the function Γ (x). In each iteration
of the updating process of vector x, a SAP2000 model of the
monitored structure is invoked as a slave program for FE analysis.
Through OAPI feature, a link between MATLAB and SAP2000 is
created to exchange two-way data. This allows performing the
iterative optimization process automatically.

3. Introduction to SOS and enhanced SOS algorithms

3.1. Standard SOS algorithm

SOS algorithm, which was first developed by Cheng and
Prayogo [19], is a nature-inspired metaheuristic optimization al-
gorithm. The distinctive advantage of this algorithm is that it uses
only a few common controlling parameters (including maximum
number of generations (Gmax), population size (Np), and problem
dimension (D)) and has no requirement of parameter fine-tuning
or adjustments. The SOS algorithm mimics three fundamental
symbiotic interaction strategies in the ecosystem, namely mutu-
alism, commensalism, and parasitism. This algorithm is initialized
by a population of organisms called an ecosystem, in which each
member of the ecosystem can be considered as one candidate
solution to the studied problem. Then, by simulating these in-
teraction strategies between two members randomly, the next
population is generated to improve their fitness in the ecosys-
tem. The course of these symbiotic interactions is repeated until
stopping criteria are reached. Fig. 1 illustrates the steps of the
SOS algorithm, and the formulas for the four main steps including
initialization, mutualism, commensalism, and parasitism phases
are given as follows:

Initial parameters and ecosystem initialization:
In the first step, the input parameters of the SOS algorithm,

such as D, Gmax, and Np, are specified. The group of initial organ-
isms in the ecosystem is initialized by

Xi,j = X l
j +rand∗

(
Xu
j − X l

j

)
, i = 1, 2, . . . ,Np; j = 1, 2, . . . ,D (5)

where rand is a random number between 0 and 1; X l
j and Xu

j
represent the lower and upper bounds of Xj, respectively;

The mutualism phase:
In the mutualism phase, Xi is the ith organism which ran-

domly interacts with another organism Xk(where k ̸= i, k ∈

(1, 2, . . . ,Np)) to create new candidate organisms. The mutual-
istic interaction results in improving their fitness value as well as
increasing their survival in the ecosystem, are given by Eqs. (6)
and (7), respectively

Xnew
i = Xi + rand ∗

[
Xbest −

(
Xi + Xk

2

)
∗ BF1

]
(6)

Xnew
k = Xk + rand ∗

[
Xbest −

(
Xi + Xk

2

)
∗ BF2

]
(7)

where the term Xbest denotes the best organism of the ecosystem
at generation G; BF is the beneficial factor and given by

BF1 = 1 + round[rand]
BF2 = 1 + round[rand] (8)

where round is utilized to set a beneficial factor (BF ) either 1 or
2.

After that, the selection operation is conducted by comparing
the fitness function of two new candidate organisms (Xnew

i and
Xnew
k ) with those of Xi and Xk organisms

Xi =

{
Xi ifΓ (Xi) ≤ Γ (Xnew

i )
Xnew
i otherwise (9)
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Fig. 2. The flowchart of the proposed FE model updating process..

Xk =

{
Xk ifΓ (Xk) ≤ Γ (Xnew

k )
Xnew
k otherwise (10)

The commensalism phase:
Like mutualism activity, an organism Xk is randomly cho-

sen from the ecosystem to interact with Xi. In the commensal-
ism phase, the organism Xi attempts to get benefits from the
interaction to improve its functional value. The mathematical
formulation of the phase can be expressed as

Xnew
i = Xi + rand(−1, 1) ∗ (Xbest − Xk) (11)

where rand is a uniformly generated random number in the range
[−1, 1].

Finally, the selection operation is employed to choose individ-
uals that give better fitness values to the next phase,

Xi =

{
Xi ifΓ (Xi) ≤ Γ (Xnew

i )
Xnew
i otherwise (12)

The parasitism phase:
In this phase, an organism Xi from the ecosystem is ran-

domly selected and then it creates an artificial parasite named as
‘‘parasite-vector’’ by duplicating Xi and modifying some randomly
selected design variables within its bounds. Parasite-vector acts
as a host to another organism Xk(where k ̸= i, k ∈ (1, 2, . . . ,Np)),
as shown by

Xparasite,k =

{
Xi,k if rand(0, 1) ≤ rand(0, 1)
X l

+ rand ∗
(
Xu

− X l
)
otherwise (13)

Thereafter, the selection operation in this phase is given as

Xi,j =

{
Xparasite, k ifΓ (Xparasite, k) ≤ Γ (Xi,j)
Xi,j otherwise (14)

3.2. Enhanced SOS algorithm

Although the successful applications of the standard version
of SOS algorithm have been proved in the literature, researchers
have proposed several improved versions to make SOS suitable
for different optimization problems [32]. In this present study, an
improved version of the standard version [19], called enhanced
SOS algorithm (ESOS) that is equipped with a modification to
the parasitism phase, is applied to set a better balance between
exploration and exploitation and simultaneously improve the
convergence rate of the basic SOS algorithm. The effective per-
formance of the ESOS algorithm has been investigated for solving
mathematical benchmark and structural engineering design prob-
lems [19]. Motivated by the success, the article will extend the
ESOS algorithm for solving the optimization problems for damage
assessment of full-scale structures.

Modifications on original parasitism phase:
The modified parasitism phase is mainly focused on saving

computational cost but still maintaining the global ability in
search space. In order to meet this objective, a sub-phase termed
as ‘‘cleptoparasitism’’, incorporated with the parasitism phase of
the conventional SOS algorithm. The cleptoparasitism sub-phase
is similar to that which was developed from crow search algo-
rithm (CSA) [39]. This sub-phase simulates the ingenious behavior
of crows in keeping their food’s hiding place, and is expressed in
this article as follows:

Xnew
cleptoparasite = Xcleptoparasite + coef (Xbest − Xcleptoparasite) (15)

where Xcleptoparasite is treated as a host to another organism; coef
denotes the coefficient of the difference in value possessed by the
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Fig. 3. (a) The FE model of industrial steel frame; (b) Node and element numbering of the FE model.

Table 1
The material properties and geometrical properties of all elements in the industrial steel frame.
Section types Elements Young’s modulus

(MPa)
Poisson’s ratio Mass density

(kg/m3)

I500 × 165 × 10 × 6 × 185 × 10 1–6

206 0.3 7850I500 × 250 × 14 × 8 × 250 × 14 7–13, 18–21
I(900-400) × 250 × 14 × 8 × 250 × 14 16, 17
I(900-500) × 250 × 14 × 8 × 250 × 14 14, 15

Note: I500 × 165 × 10 × 6 × 185 × 10 denotes I shape section with 500 mm height, 165 mm top flange width, 10 mm top flange thickness,
6 mm web thickness, 185 mm bottom flange width, and 10 mm bottom flange thickness; I(900-400) × 250 × 14 × 8 × 250 × 14 denotes
I shape section with the height varied from 900 mm to 400 mm throughout its length.

Table 2
Five different damage scenarios in the industrial steel frame.
Scenario Description Damaged elements

(reduction of stiffness)

A Single damage on main frame column 14 (20%)
B Double damage on column and beam 4 (20%) & 12 (30%)
C Double damage at on main frame column and beam 14 (20%) & 16 (20%)
D Double damage at two adjacent on main frame beam 16 (20%) & 18 (40%)
E Multi-damage on frame 10 (15%) & 15 (20%) &

16 (40%) & 20 (20%)

highest degree of adaptation (Xbest )

coef = rand(−1, 1) ∗ fl (16)

where fl denotes flight length determined by Askarzadeh [39]. In
this study, the value of fl is set to 2.

As mentioned above, the modified parasitism phase comprises
two sub-phases including the cleptoparasitism sub-phase and the
original parasitism sub-phase. These two sub-phases should be
chosen with one of the rates changing from 0.6/0.4 to 0.4/0.6. It
is because a rate that is not too biased towards one side may
gain a better balance between the exploitation and exploration
capabilities. In this study, the chosen rate of two sub-phases is
0.6/0.4. In addition, we would like to note that choosing the rate
of two sub-phases would directly affect the search performance
of the ESOS algorithm, and hence the selection of a suitable rate
should be based on specific problems. The pseudo-code of this
phase can be described as:

if rand[0, 1] ≤ 0.6
Generate parasite-vector (Eq. (13))
Selection operation

else if
Generate cleptoparasite-vector (Eq. (15))
Selection operation

end if

(17)

It should be noted that the generation counter will be in-
creased from G to Gmax by repeating the three phases (mutualism,

commensalism, and modified parasitism phases) and simultane-
ously check for stopping criterion. After the search process termi-
nates, the optimal solution to the studied optimization problem is
identified. The flowchart of the FE model updating process based
on SAP2000-OAPI and ESOS algorithm for damage assessment of
full-scale structures is presented in Fig. 2.

4. Numerical examples

In this part, the proposed FE model updating technique is uti-
lized for damage detection and quantification of full-scale struc-
tures. Two numerical examples comprising an industrial steel
frame and a 3D two-story full-scale building are carried out
to illustrate the effectiveness and robustness of the proposed
technique. For each example, various possible damage scenarios
are examined with and without noise-polluted data. Structural
damage is simulated by a local reduction of Young’s modulus
of selected members. It is assumed that the behavior of the
monitored structures is linear before and after the existence of
damage. Due to the stochastic nature of noisy conditions, five
independent runs are performed for each damage scenario, and
then the average results of damage diagnosis are reported. Con-
trol parameters of ESOS algorithm for both examples are given
as: Np = 30, Gmax = 300, and stop criterion = 10−8.

4.1. An industrial steel frame

The first example considered is an industrial steel plane frame
(45 m wide and 8 m high), as described in Fig. 3. The FE model
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Fig. 4. Damage detection results for five damage scenarios of the industrial steel plane frame: (a) Scenario A; (b) Scenario B; (c) Scenario C; (d) Scenario D; (e)
Scenario E.

of the industrial steel frame was constructed by using SAP2000
v16 commercial software, which consists of 21 elements with
23 nodes. The sections of main columns and beams are non-
prismatic rigid frames varied throughout the length. The material
properties and geometrical properties for all elements are shown
in Table 1. Five different damage scenarios are considered for
the steel frame and their details are described in Table 2. The
last scenario, a multi-damage case with different severities, is
represented as a more difficult situation to test the feasibility
of the proposed FE model updating technique. For all scenarios,
only the first five modes are utilized in both noise-free and noise-
polluted data (±1% noise in natural frequencies and ±5% noise in
mode shapes). The first five free vibration frequencies of the steel
plane frame calculated using SAP2000 v16 are 2.991, 3.382, 6.480,
9.603, and 13.004 Hz, respectively.

To deal with the problem of limited measurement data, a finite
number of sensor measurements at nodes 4, 6, 9, 17, 19, 21, and

23 is assumed to be installed on the steel frame structure, which
provides the partial mode shapes at measured 21 DOFs (degrees-
of-freedom). The nodes highlighted with red circles in Fig. 3(b)
represent the locations of measurement points.

The average results of identified damage ratios of 21 elements
obtained by the proposed FE model updating technique for sce-
narios A to E are reported in Fig. 4(a) to (e), respectively. Overall,
the results indicate that despite the effect of data incomplete-
ness and measurement errors, all the sites of actually damaged
elements in all hypothetical damage scenarios are correctly lo-
calized. It is also seen that the existence of noise in modal data
causes to decrease the accuracy of identified results. Specifically,
in the noise-free condition, the proposed technique produces
both the location and severity of damage(s) with high accuracy.
In the noise-polluted condition, there are a few false alarms
(i.e., element 21 in scenario C; elements 20 in scenario D) with
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Fig. 5. Damage detection results for scenario E of the industrial steel plane frame using different optimization algorithms.

Fig. 6. Comparison of damage identification results for scenario E of the industrial steel plane frame with measurement noise (5%) using various modes.

small damage ratios, although it still maintains the acceptable
accuracy of damage severity estimation.

To test the performance of the selected optimizer for solv-
ing the model-updating-based damage detection problem, the
results given by ESOS algorithm are compared with those ob-
tained by biogeography-based learning particle swarm optimiza-
tion (BLPSO) [40], modified differential evolution (MDE) algo-
rithm [13], and SOS algorithm. For this purpose, the four op-
timization algorithms are applied to scenario E (multi-damage
case) considering the incomplete measured data with noise (5%).
According to Fig. 5, the poor damage detection and many large
false errors result from the BLPSO algorithm and one large false
alarm occurs in element 21 when using the MDE algorithm.
Meanwhile, both the SOS and ESOS algorithms correctly localize
the actually damaged elements and have almost the same accu-
racy for damage identification in the steel frame structure. Fur-
ther, Table 3 provides the statistical results of structural damage
identification from the SOS and ESOS algorithms in 5 independent
runs. From the table, one can find that the mean values of ele-
mental stiffness reductions obtained by these two optimization
methods are quite similar. In particular, for the noise-free case,
the mean error of SOS and ESOS algorithm are 0.05% and 0.15%,
respectively, while those for the noisy case are 7.45% and 6.05%,
respectively. Also, the standard deviation of the predicted results
is relatively small. Nevertheless, in terms of computational effort,
the ESOS algorithm uses the lower number of structural analy-
ses compared with the original SOS algorithm. These compari-
son results demonstrate the computational efficiency of selected
optimizer for solving the problem.

To further illustrate the validity of the proposed damage iden-
tification technique in measurement situations, the influences of

measurement noise levels and numbers of selected modes on
its accuracy are also studied. First, to bring a thorough view
on the selection of the modes for damage identification with
measurement noise (5%), the proposed method is carried out on
damage scenario E using the first three, four and five modes
measured from the measurement points. According to Fig. 6, the
number of used modes has a significant influence on the accuracy
of the proposed method. In this case, it is found that better
estimation results are obtained when the number of considered
modes increases progressively to five. Then, different noise levels
are considered here by adding ±7% or 10% instead of ± 5% noise
in mode shapes (1% noise in natural frequencies is fixed). The bar
plot in Fig. 7 shows the average value of evaluated damage sever-
ity for scenario E with the three noise levels (5%, 7%, and 10%).
As can be seen from the figure, although the average identified
damage extents are still close to the true values, the proposed
method has a few false alarms elements (elements 8 and 21)
appeared in its predictions. This result implies that a further
increase in measurement noise level from 5% to 10% results in
the reduction of accuracy of identification results in this case.

4.2. A 3D two-story full-scale building

In the second example, we consider a 3D two-story full-scale
building, 12 m long, 6 m wide, and 7 m high. The building has a
concrete slab at each floor level and the thickness of each plate
is 120 mm. The material properties and geometrical properties of
the building structure are tabulated in Table 4. A 3D FE model
of the structure is undertaken using SAP2000 v16 commercial
software, as shown in Fig. 8. The concrete plate is modeled with
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Table 3
The statistical results of SOS and ESOS algorithms for damage scenario E of the industrial steel plane frame.
Scenario Noise

level
Actual
location

Assumed
value

SOS algorithm ESOS algorithm

Avg. value Std. Dev Avg. NSA Avg. value Std. Dev Avg. NSA

E

0%

x10 0.15 0.1504 0.0014

1956

0.1499 0.0009

1464x15 0.2 0.1998 0.0001 0.2001 0.0002
x16 0.4 0.3997 0.0004 0.3999 0.0003
x20 0.2 0.2003 0.0003 0.2001 0.0002

5%

x10 0.15 0.1345 0.0169

2394

0.1441 0.0163

1842x15 0.2 0.1932 0.0104 0.1932 0.0108
x16 0.4 0.3837 0.0216 0.3841 0.0202
x20 0.2 0.1760 0.0204 0.1742 0.0214

Avg. value = average value of stiffness reduction factor; Std. Dev = standard deviation; Avg. NSA = an average number of structural analyses.

Fig. 7. Comparison of damage identification results for scenario E of the industrial steel plane frame using the first five modes with measurement noise levels.

Fig. 8. The FE model of 3D two-story full-scale building and its element numbering.

thin shell elements, whereas frame elements are employed for
columns and beams. In total, the SAP2000 modeled building
comprises 48 shell elements, 21 frame elements, and 76 nodes. To
investigate the feasibility of the developed technique, six different
damage scenarios are considered and listed in Table 5. In this
example, it is also assumed that only the first five modes are
available for structural damage detection. The first five natural
frequencies of the building structure calculated using SAP2000
v16 are 0.861, 1.885, 2.774, 3.008, and 4.513 Hz, respectively.
Fig. 9 displays the first five vibration modes of the simulated
building structure.

To deal with the incompleteness conditions of measured modal
data, a set of selected sensors at 23 nodes are installed to provide
the partial mode shapes. Fig. 10 highlights the locations of these

measurement points on the plan view of the building. So, the
updating process will use these 138 DOFs information to predict
damage locations and their severities.

Employing the proposed FE model updating technique, the
final structural damage detection results are shown in Fig. 11(a)
to (f) for scenarios A to F, respectively. It is evident from the
figures that overall, all the true damaged positions are correctly
identified. Particularly, in the case of spatially-incomplete mea-
surements with noise-free data, the proposed technique succeeds
in both localization and damage quantification with high pre-
cision. In the case of spatially-incomplete measurements with
noise-polluted data, although several undamaged elements are
falsely detected especially for multi-damage scenario F, it is still
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Fig. 9. The first five vibration modes of the simulated building structure.

Fig. 10. Sensor layout on 3D two-story full-scale building: (a) first floor; (b) second floor.

Table 4
The material properties and geometrical properties of all elements in the 3D two-story full-scale building.
Section types Elements Young’s modulus

(MPa)
Poisson’s ratio Mass density

(kg/m3)

C 300 × 300 2-5, 46–49

35 0.2 2500
C 400 × 400 1, 6
B 200 × 400 7-9, 11 − 13, 50 − 53
B 300 × 500 10
F 120 14-45, 54–69

Note: C 300 × 300 denotes the column section with 300 mm width and 300 mm height; B 200 × 400 denotes the beam section
with 200 mm width and 400 mm height; F 120 denotes the thickness of floor slabs is 120 mm.

effective to localize the actually damaged elements and approx-
imately estimate their severities. These presented results also
emphasize the impact of measurement errors on the success of
the FE model updating process.

Further, to illustrate our statement about the efficiency of
the selected optimization algorithm, the impairment assessment

results of the ESOS algorithm for scenario F are compared to those
from the basic SOS algorithm in Table 6. This table presents the
statistical results comprising the mean values, standard deviation
and number of structural analyses of both the optimization algo-
rithms for scenario F. Again, the comparative results indicate that
both the ESOS and basic SOS algorithms produce similar damage
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Fig. 11. Damage detection results for six damage scenarios of the two-story full-scale building: (a) Scenario A; (b) Scenario B; (c) Scenario C; (d) Scenario D; (e)
Scenario E; (f) Scenario F.

detection outcomes. However, in view of the computational cost,

the ESOS requires a less number of structural analyses to reach

the optimum solution than the SOS.

5. Conclusions

The article presents an optimization-based FE model updat-
ing technique coupled with a commercial software package for
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Table 5
Six different damage scenarios in the 3D two-story full-scale building.
Scenario Description Damaged elements

(reduction of stiffness)

A Single damage on column 1 (20%)
B Double damage on column and beam 2 (30%) & 9 (20%)
C Double damage on floor and column 15 (20%) & 47 (40%)
D Double damage on floor (stories 1 and 2) 36 (20%) & 64 (20%)
E Triple damage at on beam and floor 10 (20%) & 64 (20%)
F Multi-damage on column, beam, floor 2 (25%) & 10 (20%) & 27

(40%) & 60 (25%)

Table 6
The statistical results of SOS and ESOS algorithms for damage scenario 3 of the two-story full-scale building.
Scenario Noise

level
Actual
location

Assumed
value

SOS algorithm ESOS algorithm

Avg. value Std. Dev Avg. NSA Avg. value Std. Dev Avg. NSA

F

0%

x2 0.25 0.2498 0.0014

2790

0.2502 0.0002

1416x10 0.2 0.1992 0.0001 0.1996 0.0003
x27 0.4 0.3995 0.0004 0.3977 0.0016
x60 0.25 0.2445 0.0003 0.2466 0.0042

5%

x2 0.25 0.2436 0.0200

5850

0.2518 0.0063

3900x10 0.2 0.1885 0.0166 0.1949 0.0098
x27 0.4 0.3072 0.0632 0.3361 0.0779
x60 0.25 0.2083 0.1015 0.1799 0.1088

Avg. value = average value of stiffness reduction factor; Std. Dev = standard deviation; Avg. NSA = an average number of structural analyses.

damage assessment of full-scale structures. The current study
exploits the commercial software SAP2000 as a slave program
for FE analysis and an enhanced symbiotic organisms search
(ESOS) algorithm as a powerful optimization solver for finding the
optimal solution of FE model updating problem. The ESOS algo-
rithm coded in MATLAB is studied in conjunction with SAP2000
v16 through OAPI feature for two-way data exchange during the
optimization process. Numerical investigations are carried out for
an industrial steel frame and a 3D two-story full-scale building
with different hypothetical damage cases, which enable us to
draw the following conclusions

• The ESOS algorithm is computationally efficient compared
to the basic SOS algorithm due to using less number of struc-
tural analyses. Therefore, this ESOS algorithm is highly rec-
ommended for the purpose of incorporating with FE model
updating.

• Only the first five measured incomplete modes that are
employed to calculate the objective function are sufficient
to solve the damage detection problems successfully.

• Even under spatially-incomplete measurements and a rel-
atively high level of noise, the proposed damage diagnosis
technique can reliably produce the detection of true damage
locations and the prediction of damage magnitudes with an
acceptable level of accuracy.

• The proposed FE model updating technique is successful in
the integration of a commercial FE modeling software with a
custom research software, which significantly steers the use
of modern technology for damage assessment of full-scale
structures. Such a technique can be potentially developed
and applied to real SHM systems. It should be pointed out
that in real conditions, the operational and environmental
fluctuations such as temperature, wind, and humidity will
lead to negatively affect the performance of the proposed
technique. Thus, before applying the proposed technique to
real-world structures, it is essential to study how well this
technique works under different effects of these factors.
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