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Abstract This paper proposes a consensus secure control scheme in the presence of denial-of-service (DoS)

attacks based on an event-trigger mechanism. In contrast to a scenario in which attacks are the same

and simultaneously paralyze all channels, the DoS attack addressed in this paper occurs aperiodically and

results in the independent interruption of multiple transmission channels. A sufficient condition for the

attack duration is designed and a distributed event-triggered control scheme is proposed, where the updated

instants are triggered aperiodically to reduce the required communication resources. It is shown that the

overall system is stable with the proposed scheme according to the Lyapunov stability theory and that Zeno

behavior is excluded. Finally, a numerical example is presented to verify the effectiveness of the proposed

scheme.
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1 Introduction

Over the past several years, the control issues of multi-agent systems (MASs) have attracted extensive

attention owing to their wide range of applications [1–3] in unmanned aerial vehicle (UAV) formations,

multi-sensor network filtering, and flocking. A fundamental problem for MASs is the design of control

approaches on the basis of combined information from local and neighboring sources such that all agents

achieve consensus. Remarkable results have been achieved by multiple scholars [4–7]. Accompanying the

development of communication technology, it has been reported that MASs are vulnerable to malicious

attacks [8–11]. Severe attacks deteriorate the control performance of the networked system [10, 12–14]

and may result in undesirable instabilities. It is important and challenging to design effective secure

control methods for MASs.

Many efforts have been taken into developing the secure control of networked MASs against attacks.

Currently, the primary types of attacks include DoS attacks [15], replay attacks [16], and deception

*Corresponding author (email: yyang@njupt.edu.cn)

http://crossmark.crossref.org/dialog/?doi=10.1007/s11432-019-2687-7&domain=pdf&date_stamp=2020-3-13
https://doi.org/10.1007/s11432-019-2687-7
info.scichina.com
link.springer.com
https://doi.org/10.1007/s11432-019-2687-7
https://doi.org/10.1007/s11432-019-2687-7
https://doi.org/10.1007/s11432-019-2687-7


Yang Y, et al. Sci China Inf Sci May 2020 Vol. 63 150208:2

attacks [17]. These attacks act over transmission channels, control channels, sensors, and agents. For

MASs, DoS attacks are one of the most common and destructive form of attacks, invalidating system

resources by affecting the measurement and control channels and resulting in serious delays and packet

loss problems in the system. Such attacks pose a critical problem to the secure control and stability

analyses of MASs. In [18], a queue model [19] was employed to describe such attack behavior, and a

system under DoS attacks was transformed into a system with time delays. A model-based resilient

controller was designed for an MAS under DoS attacks in [20]. DoS attacks occur periodically in the

real world, and the robust output consistency problem has been discussed for a class of heterogeneous

linear MASs with aperiodic sampling [21]. Many existing secure control strategies for MASs under DoS

attacks satisfying certain frequencies and durations [15, 22, 23] have also been proposed. A type of pulse

controller was designed using a dynamic observer and measuring triggered state reset method in [15],

which considered maximizing the frequency and duration of DoS attacks. However, in the above studies,

it was assumed that the attackers simultaneously paralyzed all communication links. Only a few reports

have been found for the case that multiple transmission channels are attacked independently.

Apart from time-driven strategies, another key technique related to the secure control of MASs is event-

triggered mechanisms [24]. Unnecessary communication might result in the inefficient implementation

of energy consumption, communication bandwidth, congestion, and computational resources. To reduce

the communication requirements while guaranteeing the system performance, event-triggered control

methods were widely applied to MASs [25–28]. A novel distributed periodic-resilient event-triggered

communication scheme was discussed and analyzed in [29] in which it was assumed that the DoS attacks

were partially identified. Event-triggered secure controls were designed in [30,31] without Zeno behavior

by observing the internal states of an agent in a linear system subjected to aperiodic DoS attacks. A

flexible control framework was developed [22] to balance the performance and communication resources

and obtain the input-to-state stability. A leader-following consensus issue was solved in [8,9] using event-

triggered control under DoS attacks, and a self-triggered communication scheme was proposed in [9] to

further avoid continuous monitoring. Despite the fact that there exist few studies related to secure control

with event-triggered mechanisms, most such studies have not taken into account the performance loss

caused by DoS attacks, which is a potential issue.

Inspired by the above-mentioned studies, in this paper, a distributed secure control scheme using an

event-triggered scheduling method is designed for a linear MAS to achieve consensus in the presence of

DoS attacks. The main contributions of the paper can be summarized as follows.

(1) We design the secure control scheme for a linear MAS under unknown and aperiodic DoS attacks.

As opposed to the scenarios in [8, 21, 30, 31], where all the communication links simultaneously suffered

DoS attacks, the multiple transmission channels suffering DoS attacks from multiple adversaries are

independent in this paper, and a sufficient condition of the attack duration and the decay rates for

different attack modes are obtained.

(2) A novel event-triggered function is designed for the control scheme. As opposed to [11,22,29,32–34],

in which the authors designed secure controllers based on either time-driven or traditional event-triggered

strategies, we introduce a resilient secure event-triggered mechanism considering extra errors caused by

DoS attacks into an event-triggered function to update the actual state of the system only at the triggered

instants and avoid unnecessary events. Moreover, compared with the event-trigger-based consensus results

in [22, 29, 32], an additional term, a decaying function, is employed in the triggered function to fully

guarantee Zeno-free phenomena for all agents. Accordingly, the event-triggered control scheme is feasible.

The rest of the paper is arranged as follows: Section 2 introduces the related preliminaries: algebraic

graph theory, DoS attacks, and the control objective. In Section 3, a distributed trigger-based secure

control scheme is proposed along with a stability analysis. A numerical example is presented in Section 4,

and conclusion is given in Section 5.

Notation. R represents the set of real numbers. 1N represents an (N × 1)-dimensional vector with

each element set to 1. IN is an (N × N)-dimensional identity matrix. diag{b1, . . . , bN} is a diagonal

matrix with bi, i = 1, . . . , N . λi(·), i = 1, . . . , N is an eigenvalue of a matrix with λmin(·) and λmax(·)
representing the minimum and maximum eigenvalue of the matrix, respectively. For two sets Y1 and Y2,
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Y1\Y2 represents the element set belonging to Y1 but not to Y2, and |Y1| is the cardinality of the set Y1.

‖ · ‖ and ⊗ are the Euclidean norm for vectors and the Kronecker product for matrices, respectively.

2 Preliminaries

2.1 Algebraic graph theory

A time-varying undirected graph is defined as G(t) = {V , E(t)}, where V = {1, 2, . . . , N} represents the set
of nodes and E(t) ⊆ V × V represents the set of edges. (j, i) ∈ E(t) denotes that the node i can receive the

information directly from the node j. The set of agents neighboring node i is Ni = {j ∈ V|(j, i) ∈ E(t)},
and the adjacency matrix is A(t) = [aij(t)] ∈ R

N×N , where aij > 0 is the weight of the edge (j, i). If

(j, i) ∈ E(t), aij = 1; otherwise, aij = 0. To simplify the notation, we set (j, i) equal to (i, j). The

in-degree matrix is defined as D(t) = diag{d1(t), . . . , dN (t)} ∈ R
N×N , where di(t) =

∑
j∈Ni

aij(t). We

define L(t) = D(t)−A(t) as the Laplacian matrix of G(t), where the Laplacian matrix L(t) is a symmetric

matrix in this paper. The initial graph and the initial Laplacian matrix are defined as G0 = {V , E0} and

L0, respectively, where E0 represents the initial set of edges.

Assumption 1. The initial graph G0 is undirected and connected.

Assumption 1 is commonly adopted in existing studies. The authors in [30, 33] assumed that an

undirected graph is connected. Following this assumption, 0 and the vector 1N are a simple eigenvalue

and an eigenvector of L0, respectively, and the eigenvalues of L0 have the property 0 = λ1(L0) < λ2(L0) <

· · · < λN (L0). Therefore, the eigenvalues of L(t) can be expressed as 0 = λ1(L(t)) 6 λ2(L(t)) 6 · · · 6
λN (L(t)).

2.2 DoS attack model

The DoS attack is an immediate security threat for the MAS, and it paralyzes the system performance by

invalidating the data resources over the transmission channels, control channels, or both. In this paper,

it is assumed that only the transmission channels are attacked, that is, the control scheme is not able

to obtain relevant information from its neighbors. As opposed to the results in [15, 22, 23, 35], where the

authors reported scenarios in which all transmission channels in the MAS are simultaneously in paralysis,

we consider a case that the DoS attacks over each transmission channel are independent. This means

that parts of agents can successfully exchange information with their neighbors despite DoS attacks on

other channels. A description of such an attack is shown in Figure 1, and it is reasonable to assume that

the links (i, j) ∈ E0 and (j, i) ∈ E0 are attacked at the same time. The scenario in which DoS attacks

are simultaneously posed to all the communication links as in [15,22,23,35], can be viewed as one of the

special cases in this paper.

Here, we define the set of all possible attack modes as Θ. The set of time intervals for the paralyzed

channels over [t1, t2) is defined as Πij(t1, t2), and the set of channels launched by the adversary with time

t is Ω(t) = {(i, j) ∈ E0 \E(t)|t ∈ Πij(0,∞)}. Then, the Laplacian matrix of the DoS attack mode is LΩ(t),

and from the graph theory, the Laplacian matrix of the MAS under attack is L0 − LΩ(t).

The union of two time interval sets, where one is the set of channels subjected to the DoS attack and

the other is the set of channels not subjected to the DoS attack, is described as

ΞΩ(t)(t1, t2) = (∩(i,j)∈Ω(t)Πij(t1, t2)) ∩ (∩(i,j)/∈Ω(t)Π̄ij(t1, t2)), (1)

where Π̄ij(t1, t2) = [t1, t2]\Πij(t1, t2) represents the set of channels that are not subjected to the DoS at-

tack over [t1, t2). From (1), one has ∪Ω(t)⊆E0
ΞΩ(t)(t1, t2) = [t1, t2), Πij(t1, t2) = ∪(i,j)∈Ω(t)⊆E0

ΞΩ(t)(t1, t2).

Owing to the fact that the resources and energy of the adversary are limited, the DoS attack may

be interrupted, go to sleep before the next period, and launch restricted successful attacks during a

finite period. As shown in Figure 2, the m-th DoS attack time interval on channel (i, j) ∈ E0 is hmij =

[t̄mij , t̄
m
ij + ∆̄m

ij ), where t̄
m
ij is the instant that the DoS attack occurs and ∆̄m

ij is the attack duration.
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Figure 1 (Color online) A schematic of DoS attacks. Figure 2 (Color online) Time sequences of the DoS at-

tacks.

Assumption 2 (DoS duration). For channel (i, j) ∈ E0, there exist Π0
ij > 0 and 0 < 1

τij
< 1 such that

len(Πij(t1, t2)) 6 Π0
ij +

1

τij
(t2 − t1) , (2)

where len(Π(ij)(t1, t2)) represents the total length of time for the set of the DoS attack time intervals

over [t1, t2) and
1
τij

denotes the magnitude of the strength of the attack.

Remark 1. Considering the fact that the number of agents in the MAS is finite and the initial commu-

nication topology is known, we can list all the DoS attack modes over the set Θ. For an MAS connected

though the set of an edge E , with the assumption that a non-DoS attack is treated as a single mode, the

total number of modes is 2
|E|
2 . For the set Ω(t) ⊆ E at the instant t, this can also be represented by a

communication topology with the adjacency matrix. Interested readers may refer to [33] for more details.

Remark 2. If the system repeatedly suffers from DoS attacks and the duration is unlimited, the control

scheme will not be able to receive information from neighboring agents to achieve consensus and this may

result in performance degradation for the overall system. Accordingly, an assumption concerning finite

attack duration should be made, which is common in practical applications. For example, many devices

have only limited resources and once the resources are exhausted, they stop working. As for 1
τij

, we

discuss its influence on the control performance and present a stability analysis in Section 3, and the

consensus error performance with different values of 1
τij

is illustrated in Section 4.

2.3 Problem formulation

We consider a linear MAS composed of N identical agents, where the dynamics of the individual agent

are

ẋi(t) = Axi(t) +Bui(t), i = 1, . . . , N, (3)

where xi ∈ R
n is the state vector, ui ∈ R

m is the control input, and A ∈ R
n×n and B ∈ R

n×m are the

system matrix and the input matrix, respectively.

Assumption 3. (A,B) is stabilizable.

Remark 3. For the system (3), Assumption 3 is standard with the guarantee of the existence of a

symmetric positive definite matrix that satisfies the algebraic Riccaic equation (ARE), and it can also be

found in [36, 37].

The objective of this paper is to design a distributed secure control scheme using an event-triggered

method, which guarantees that the MAS (3) under the DoS attack with the duration condition achieves

consensus [36] such that

lim
t→∞

∥∥∥∥∥∥
xi(t)−

1

N

N∑

j=1

xj(t)

∥∥∥∥∥∥
= 0, i, j = 1, 2, . . . , N, i 6= j, (4)

and non-Zeno behavior is included.
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3 Event-triggered secure control scheme

3.1 Secure control scheme design

For the MAS (3) under the DoS attack, the distributed event-trigger-based scheme is designed such that

ui(t) = Kξ̂i(t), (5)

where K ∈ R
m×n is the feedback gain matrix, ξ̂i(t) =

∑
j∈Ni(G0),(j,i)/∈Ω(t) aij(t)(x̂j(t)− x̂i(t)), x̂i(t) =

xi(t
i
ki
), x̂j(t) = xj(t

j
kj
), and tiki

and tjkj
are the triggered instants of Agents i and j, respectively.

Remark 4. If tiki
occurs within a DoS attack interval, the real-time information of Agent i’s neighbors

will not be sampled. The worst part is that if all communication channels of Agent i are paralyzed, Agent

i neither receives its neighbors’ information nor sends its own information to nearby neighbors, and it

can be viewed as ui(t) = 0. This topic is addressed in [8, 30, 31], where all transmission channels in the

MAS are simultaneously attacked.

The measurement error is defined as ei(t) = x̂i(t)− xi(t). The fact that the MAS attack might cause

unexpected errors results in loss of performance, and the traditional triggered design and analysis might

also fail. In this paper, it is assumed that Agent i is able to evaluate the active instant t̄mij of the attack

from their ability to obtain their own neighbors’ information. The extra error caused by the attack is

denoted as edosi = xi(t)− xi(t̄
m
ij ), where t̄

m
ij is detected by Agents i and j.

The triggered instant is

tiki+1 = inf{t > tiki
|hi(ei(t), ξ̂i(t)) > 0}, (6)

where

hi(ei(t), ξ̂i(t))=‖ei(t)‖2−β2
i (||ξ̂i(t)‖2+̟i(t)

2+ψi(t)), (7)

βi is a positive constant, the decaying function ̟i(t) is bounded satisfying ̟i(t) > 0 for t > 0,

limt→∞̟i(t) = 0, and the extra error function ψi(t) =
∑

j∈Ni(G0),(j,i)∈Ω(t) aij(t)‖edosi (t)‖2. Note that

the extra error edosi (t) only appears when DoS attacks occur, and edosi (t) is zero when the system is not

suffering from attacks. edosi is constrained by the limited resources of the DoS attacks.

Remark 5. Because the triggered function is traditionally chosen as h̄i(ei(t), ξ̂i(t)) = ‖ei(t)‖2 −
β2
i ‖ξ̂i(t)‖2, Zeno behavior may exist in a finite time, or it can only be guaranteed that there exists

at least one agent that is Zeno-free; however, it cannot be guaranteed that all agents are Zeno-free. In-

spired by [38,39], a decaying function ̟i(t) is employed in (7) to avoid the occurrence of Zeno behavior.

To rule out Zeno behavior, ̟i(t) is a bounded and decreasing function whose value is larger than zero

and approaches zero only when t → ∞. We show the comparison of the number of triggered events,

maximum inter-event time, and minimum inter-event time with and without ̟i(t) in Section 4.

Remark 6. Owing to the presence of DoS attacks, Agent i cannot obtain information from its neigh-

boring Agent j when the communication link between Agents i and j is attacked. With the data loss

experienced by Agent i, the value of its triggered condition might change significantly, and the trig-

gered number of Agent i might increase drastically. This would lead to unnecessary triggered instants

or Zeno behavior. The authors in [8, 9, 30, 31] discussed the impact of attacks on triggered functions

and design time-triggered schemes for the system under DoS attacks. However, the triggered instant

is not determined according to the state of the system, and it may also result in unnecessary triggered

events. Therefore, an extra error function ψi(t) in the event-triggered function is introduced to indicate

the impact of the DoS attacks, and the triggered instants are determined by the states of the system and

the extra errors. The comparison results of the triggered function with and without ψi(t) are shown in

Section 4. Additionally, because the duration of each attack is bounded and the energy of the attack is

limited, the extra error is also constrained.
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3.2 Stability analysis

Define x(t) = [x1(t), x2(t), . . . , xN (t)]T, x̂(t) = [x̂1(t), x̂2(t), . . . , x̂N (t)]T. It follows from (3) and (5) that

ẋ(t) =
[
IN ⊗A−

(
(L0 − LΩ(t))⊗BK

)]
x(t)−

(
(L0 − LΩ(t))⊗BK

)
e(t). (8)

Define an error vector

δi(t) = xi(t)− x̄(t), (9)

where x̄(t) = 1
N

∑N
i=1 xi(t) is the average state of the MAS. In addition,

δ(t) = (M ⊗ In)x(t), (10)

where M = IN − 1N1
T
N

N , and δ(t) = [δ1(t), δ2(t), . . . , δN (t)]T. From the definition of δ(t), it is easy to

obtain (1N ⊗ In)δ(t) = 0. Defining Ψ = [ 1N√
N
, ν(t)] ∈ R

N×N , and ν(t) = [v2(t), v3(t), . . . , vN (t)] and

letting vi(t) denote the corresponding eigenvector of λi(t), i = 2, 3, . . . , N , the following properties hold

in the Laplacian matrix of the initial communication topology:

ΨΨT = ΨTΨ = IN , ΨTL(t)Ψ = diag{0, λ2(t), . . . , λN (t)},

ΨTLΩ(t)Ψ = diag{0, νTLΩ(t)ν}, L0 − LΩ(t) > 0,

and

ML(t) = L(t)M = L(t), MLΩ(t) = LΩ(t)M = LΩ(t). (11)

Then, combining (8) with (10) and (11) yields δ̇(t) = [IN ⊗A− ((L0−LΩ(t))⊗BK)]δ(t)− ((L0−LΩ(t))⊗
BK)e(t).

In this paper, the following symmetric and positive definite matrices R, Q and P are involved in our

main result and their relationship is described by the following ARE:

ATP + PA− PBR−1BTP +Q = 0. (12)

Let k0 = ‖PBK‖, λ̄ = max{λmax(L0−Lθ), θ ⊆ Θ}, λ = min{λmin(ΛL0 − ΛLθ
)|λmin(ΛL0 −ΛLθ

) > 0, θ ⊆
Θ}, w = λ̄2, and λ = min{λmin(ΛL0 − ΛLθ

)|λmin(ΛL0 − ΛLθ
) > 0, θ ⊆ Θ}, where

ΛL0 =




λ2(L0) 0 · · · 0

0 λ3(L0) · · · 0
...

...
. . .

...

0 0 · · · λN (L0)




and ΛLθ
=




λ2(Lθ) 0 · · · 0

0 λ3(Lθ) · · · 0
...

...
. . .

...

0 0 · · · λN (Lθ)



.

The main result of this paper is presented below.

Theorem 1. Consider an MAS (3) with Assumptions 1 and 3 and bounded initial conditions. There

exist scalars θij1 and θij2 satisfying

αΩ(t) −




∑

(i,j)∈Ω(t)

θij1 +
∑

(i,j)∈E0\Ω(t)

θij2



 6 0, (13)

τ̄ =
∑

(i,j)∈E0

[
θij1
τij

+

(
1− 1

τij

)
θij2

]
< 0, (14)
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and

θij1 − θij2 > 0. (15)

Then, under the control scheme (5) and triggered instant scheduling (6) with K = µR−1BTP , µ >
1
2λ ,

β2
max 6

3
4λ

2
min(Q)

3
2λ

2
min(Q)λ̄2+8k2

0λ̄
4 , and β

2
max <

1
2λ̄2 , the MAS (3) suffering a DoS attack satisfying Assumption 2

can reach a consensus (4).

Proof. Consider the following Lyapunov function:

V = δT(t) (IN ⊗ P ) δ(t), (16)

and the derivative of (16) yields

V̇ = δ̇T(t)(IN ⊗ P )δ(t) + δT(t)(IN ⊗ P )δ̇(t)

= V̇1(t) + V̇2(t), (17)

where V̇1(t) = δT(t)[IN ⊗ (ATP + PA) − 2(L0 − LΩ(t)) ⊗ PBK]δ(t) and V̇2(t) = −2δ(t)[(L0 − LΩ(t)) ⊗
PBK]e(t). Defining δ̃ =

(
ΨT ⊗ In

)
δ, we can obtain δ̃1(

1
T
N√
N

⊗ In) = 0 from (1N ⊗ In) = 0.

For the stability analysis, the following three cases are discussed according to different attack modes.

The first and second cases are scenarios in which the transmission channels remain connected or partly

disconnected under the DoS attack. In the third case, we assume that all transmission channels are

paralyzed.

(1) When λmin(ΛL0 − ΛLΩ(t)
) 6= 0, the communication topology under the DoS attack remains con-

nected. Note that it involves the situation where the system without attacks recovers to the initial

topology. From Assumption 1, we have

V̇1(t) = δ̃T(t)(IN ⊗ (ATP + PA))δ̃(t)− 2δ̃T(t)(ΨT(L0 − LΩ(t))Ψ⊗ PBK)δ̃(t)

6 δ̃T2:N(t)(IN−1 ⊗ (ATP + PA))δ̃2:N (t)− 2δ̃T2:N(t)λ · (IN−1 ⊗ PBK)δ̃2:N (t), (18)

where δ̃2:N = [δ̃2, δ̃3, . . . , δ̃N ]T.

Using Assumption 3, we can obtain P from (12). Then, taking K = µR−1BTP with µ > 1
2λ into

account, as well as (18), we have

V̇1(t) 6 δ̃Ti (t)
(
IN−1 ⊗ (ATP + PA− PBR−1BTP )

)
δ̃i(t)

=

N∑

i=2

δ̃Ti (t)
(
ATP + PA− PBR−1BTP

)
δ̃i(t). (19)

According to the definition of δ̃, it yields V̇2(t) =−2δ̃T[ΨT(L0−LΩ(t))Ψ⊗ PBK](ΨT ⊗ In)e(t). Because

of δ̃1(t) = 0 and letting ẽ2:N (t) = (νT ⊗ In)e2:N(t), one finds that

V̇2(t)62‖[νT(L0−LΩ(t))ν ⊗ PBK]‖‖δ̃T2:N‖‖ẽ2:N‖.

With the inequality xy 6
ρ
2x

2 + 1
2ρy

2 with 0 < ρ < λmin(Q)
k0w

, we have

V̇2(t) 6 2‖PBK‖
N∑

i=2

(
λ2N (L0 − LΩ(t))

1

2ρ
δ̃Ti δ̃i +

1

2ρ
ẽTi ẽi

)

6 k0

N∑

i=2

(
wρδ̃Ti δ̃i +

1

ρ
ẽTi ẽi

)
. (20)

Using (12), (19) and (20), Eq. (17) can be written as

V̇ 6 −
N∑

i=2

δ̃Ti Qδ̃i + k0

N∑

i=2

(
wρδ̃Ti δ̃i +

1

ρ
ẽTi ẽi

)
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6 (k0wρ− λmin(Q))

N∑

i=1

δTi δi +
k0
ρ

N∑

i=1

eTi ei. (21)

Define ξi(t) =
∑

j∈Ni(G0),(j,i)/∈Ω(t) aij(t)(xj(t)− xi(t)), t ∈ [tiki
, tiki+1], and in stack forms this results

in ξ(t) = −((L0 − LΩ(t))⊗ In)x and ξ̂(t) = −((L0 − LΩ(t))⊗ In)(x + e). Then, it follows from (9) that

‖ξ̂(t)‖ = ‖ − ((L0 − LΩ(t))⊗ In)(x + e)‖
6 ‖ξ‖+ ‖((L0 − LΩ(t))⊗ In)e‖ 6 ‖ξ‖+ λ̄‖e‖. (22)

According to (L0 − LΩ(t))(L0 − LΩ(t)) = (L0 − LΩ(t))MM(L0 − LΩ(t)), one has

‖ξ‖2 = xT((L0 − LΩ(t))⊗ In)((L0 − LΩ(t))⊗ In)x 6 λ̄2‖δ‖2. (23)

Then, Eqs. (22) and (23) yield

‖ξ̂(t)‖ 6 λ̄‖δ‖+ λ̄‖e‖. (24)

According to the triggered condition (6), during the triggered interval, one has

‖e(t)‖2 6 β2
max‖ξ̂(t)‖+ ‖w̄(t)‖2 +

N∑

i=1

ψi(t), (25)

where βmax=max{βi, i=1, . . . , N}, ξ̂(t)=[ξ1(t), ξ2(t), . . . , ξN (t)]T, and̟(t)=[̟1(t), ̟2(t), . . . , ̟N(t)]T.

Combining (24) with (25) yields

‖e‖2 6 1− σmax

σmax
‖δ‖2 + β2

max

σmax

(
‖w̄(t)‖2 +

N∑

i=1

ψi(t)

)
, (26)

where 0 < σmax = 1− 2β2
maxλ̄

2 < 1. Incorporating (26) into (21), we have

V̇ (t) 6 α1V (t) + ϕ(t) + φ(t), (27)

where α1 = −(34λmin(Q)−̺(1−σmax))/λmax(P ) and ϕ(t) = ̺β2
max

∑N
i=1̟

2
i (t), φ(t) = ̺β2

max

∑N
i=1ψi(t),

and ̺=
4k2

0λ̄
2

λmin(Q)σmax
.

(2) When λmin(ΛL0 − ΛLΩ(t)
) = 0, the communication topology under the DoS attack is not connected.

From (18), we know that V̇1(t) 6 δ̃T2:N (t)(IN−1 ⊗ (ATP + PA))δ̃T2:N (t). Further, if there exists α̃2 > 0

such that PA+ATP − α̃2P < 0, one has

V̇1(t) 6 α̃2λmax(P )

N∑

i=2

δ̃Ti δ̃i. (28)

It follows, from (20), (26) and (28), that

V̇ (t) 6 α2V (t) + ϕ(t) + φ(t), (29)

where α2=[
λmin(Q)

4 +α̃2λmax(P )+̺(1− σmax)]/λmax(P ), and ϕ(t) and φ(t) are defined in (27).

(3) For LΩ = L, all the communication links are attacked. From δ̇(t) = (IN ⊗ A)δ(t) and using

PA+ATP − α3P < 0, we can obtain the time derivative of (16):

V̇ = δT (t)
[
IN ⊗ (PA+ATP )

]
δ(t) 6 α3V (t) + ϕ(t) + φ(t), (30)

where ϕ(t) and φ(t) are presented in (27).

In summary, from the above three cases and the results of (27), (29) and (30), one has

V̇ 6 αΩ(t)V (t) + ϕ(t) + φ(t), (31)
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where the decay rates

αΩ(t) =





α1, if LΩ(t) 6= L0, λmin(ΛL0 − ΛLΩ) 6= 0,

α2, if LΩ(t) 6= L0, λmin(ΛL0 − ΛLΩ) = 0,

α3, if LΩ(t) = L0.

Define ξk as the instant when the DoS attack changes from one mode to another. For t ∈ [ξk, ξk+1)

and using the iterative method, Eq. (31) yields

V (t) 6 exp(αΩ(ξk)(t− ξk))V (ξk) +

∫ t

ξk

exp(αΩ(ξk)(t− s))ϕ(s)ds +

∫ t

ξk

exp(αΩ(ξk)(t− s))φ(s)ds

6 exp(Dk(t, 1))V (0) + exp (Dk(t, 2))

∫ ξ1

ξ0

exp(αΩ(ξ0)(ξ1 − s))ϕ(s)ds

+ · · ·+ exp(Dk(t, k + 1))

∫ ξk

ξk−1

exp(αΩ(ξk−1)(ξk − s))ϕ(s)ds

+

∫ t

ξk

exp(αΩ(ξk)(t− s))ϕ(s)ds +

∫ t

ξk

exp(αΩ(ξk)(t− s))φ(s)ds

6 exp(D̄(0, t))V (0) +

∫ t

ξ0

exp(D̄(s, t))ϕ(s)ds+

∫ t

ξk

exp(αΩ(ξk)(t− s))φ(s)ds,

where Dk(t, r) = αΩ(ξk)(t − ξk) +
∑k

m=r αΩ(ξm−1)(ξm − ξm−1) and D̄(s, t) =
∑

Ω(t)⊆E0
αΩ(t)len(ΞΩ(s,t)).

From (13), we can deduce that

D̄(s, t) 6
∑

Ω⊆E0




∑

(i,j)∈Ω(t)

θij1 +
∑

(i,j)∈E0\Ω(t)

θij2


 len(ΞΩ(t)(s, t))

=
∑

(i,j)∈E0

[ (
θij1 −θij2

)
len(Πij(s, t)) + θij2 (t−s)

]
, (32)

where

len(Πij(s, t)) =
∑

Ω(t)⊆E0,(i,j)∈Ω(t)

len(ΞΩ(t)(s, t)).

With Assumption 2 and according to (2), (14), and (32), Eq. (31) can be converted to

V (t) 6 exp
(
τ̄ t+ Π̄0

)
V (0) +

∫ t

ξ0

exp(τ̄ (t− s) + Π̄0)ϕ(s)ds +

∫ t

ξk

exp(αΩ(ξk)(t− s))φ(s)ds, (33)

where Π̄0 =
∑

(i,j)∈E0
(θij1 − θij2 )Π0

ij . Because the energy of the adversary is limited, ϕ(t) and φ(t) are

bounded. Therefore, V is bounded, which implies that xi(t), i = 1, 2, 3 are bounded.

In the following part, we analyze the Zeno behavior, which is defined in the limited time [38], under

the proposed secure control scheme. A conservative triggered condition can be set such that

‖ei(t)‖2 6 (ωi
k)

2 (34)

for (7), where ωi
k = ‖̟′

i(t
i
ki
)‖ and ̟′

i(t) is a bounded decreasing function with a faster decay rate than

̟i(t). Then, during [tiki
, tiki+1), the derivative of ‖ei(t)‖ is

d

dt
‖ei(t)‖ 6

‖eTi (t)‖
‖ei(t)‖

‖ėi(t)‖

6 ‖A‖‖ei(t)‖ + ‖Axi(tiki
)

+BK
∑

j∈Ni(G),(j,i)/∈Ω(t)

aij(t)(xj(t
j
kj
)− xi(t

i
ki
))‖ 6 ‖A‖‖ei(t)‖ + αi

k,
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where

αi
k = maxt∈[ti

ki
,ti

ki+1)
‖Axi(tiki

) +BK
∑

j∈Ni(G0),(j,i)/∈Ω(t)
aij(t)(xj(t

j
kj
)− xi(t

i
ki
))‖.

Further, one has ‖ei(t)‖ 6
αi

k

‖A‖
(
exp(‖A‖(t− tiki

))− 1
)
, and, with (34), it yields ‖ei(tiki+1)‖ = ωi

k 6

αi
k

‖A‖ (exp (t
i
ki+1 − tiki

) −1). Then, it follows that tiki+1 − tiki
> 1

‖A‖ ln(
‖A‖ωi

k

αi
k

+ 1). Because ωi
k > 0 and

αi
k > 0, we obtain tiki+1 − tiki

> 0. Therefore, it is proved that Zeno behavior can be excluded under the

proposed secure control scheme.

For t ∈ [0,∞), we can conclude that the control scheme (5) with (6) guarantees that Eq. (33) holds

for all agents. Further, owing to τ̄ < 0 and the properties of ϕ(t) and φ(t), we can obtain V (t) → 0 as

t → ∞. Because V = δT(t)(IN ⊗ P )δ(t) > δT(t)λmin(P )δ(t) = λmin(P )‖δ‖2 and limt→∞ V (t) → 0, we

obtain the result limt→∞ ‖δ(t)‖ → 0 and then limt→∞ ‖δi(t)‖ → 0. By virtue of Assumption 1, all agents

converge to 1
N

∑N
j=1 xj(t) and therefore, Eq. (4) holds. This completes the proof of the theorem.

For a special case, if we choose ̟i(t) to be an exponentially decaying function for each agent, the

exponential convergence can be obtained through the following corollary.

Corollary 1. If an exponential convergence function is chosen for each agent’s ̟i(t), that is, if

̟i(t) = bi exp(−ait), where ai and bi are positive constants, the convergence rate is exponential.

Proof. Choosing an exponential convergence function ̟i(t) = bi exp(−ait) for each agent, we have∑N
i=1̟

2
i (t) 6 B exp(−Ht), i = 1, . . . , N , where B and H are positive constants. Then, the following

inequalities can be obtained directly from Theorem 1:

V (t) 6 exp
(
τ̄ t+ Π̄0

)
V (0) + ̺β2

max

∫ t

ξ0

exp(τ̄ (t− s) + Π̄0)B exp(−Hs)ds

+̺β2
max

∫ t

ξk

exp(αΩ(ξk)(t− s))φ(s)ds.

By integrating the above inequalities, we find

V (t) 6






exp(τ̄ t+ Π̄0)V (0) + ̺β2
maxB exp(τ̄ t+ Π̄0)

+̺β2
max

∫ t

ξk
exp(αΩ(ξk)(t− s))φ(s)ds, when H = −τ̄ ,

exp(τ̄ t+ Π̄0)V (0)− ̺β2
maxB exp(τ̄ t+Π̄0)

τ̄+H exp(−Ht+ Π̄0 − exp(τ̄ t+ Π̄0 − (H + τ̄)ξ0))

+̺β2
max

∫ t

ξk
exp(αΩ(ξk)(t− s))φ(s)ds, when H 6= −τ̄ .

(35)

If the performance loss caused by the DoS attacks is not taken into account, that is, if the last term

disappears in (35), it is easy to find that V converges exponentially to 0 using (16) and (35). This

means that δ → 0 in an exponential manner and that the convergence rate of each agent’s consensus is

exponential.

Remark 7. As for αΩ(t) in (31), it is a positive or negative constant depending on the different DoS

attack modes. This poses a difficulty for the stability analysis of the system. To solve this problem,

we introduce a set of equivalent parameters θij1 and θij2 following [33, 34], where θij1 corresponds to the

link (i, j) ∈ E0 being attacked and θij2 corresponds to the link (i, j) ∈ E0 not being attacked. The two

parameters are used to distinguish whether the channel (i, j) ∈ E0 is under the attack.

Remark 8. In this paper, the duration of the DoS attack is not arbitrary, and the distributed secure

control scheme is against the specific DoS attack under certain conditions. The strength of the attack 1
τij

in (2) should satisfy the conditions of (13) with suitable choices of the scalars θij1 and θij2 . More details

concerning the DoS duration are shown in Section 4.

Remark 9. The decaying function ̟i(t) in (7) is an additional term implemented to avoid the occur-

rence of Zeno behavior. The inter-event time will be longer than that in the traditional one. If the extra

term ̟i(t) converges slowly enough, the impact of the DoS attack on the Zeno behavior of the event-

triggered scheme will be alleviated. In general, it is required that the function ̟i(t) satisfies ̟i(t) > 0,

d̟i(t)/dt < 0 and limt→∞̟i(t) → 0. For example, ̟i(t) =
1

1+t or ̟i(t) = bi exp (−ait), where ai and
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1

32

Figure 3 Communication graph.

Table 1 Decay rates αΩ under different attack conditions

Attack condition Algebra condition αΩ

|Ω| = 0, 1 LΩ 6= L, λmin(ΛL0
− ΛLΩ

) 6=0 −0.141

|Ω| = 2 LΩ 6= L, λmin(ΛL0
− ΛLΩ

)=0 0.407

|Ω| = 3 LΩ = L 0.46

bi are positive constants. To compromise between the Zeno-free behavior and the system performance,

an exponential convergence function ̟i(t) = bi exp (−ait) can be chosen for each agent.

4 Simulation

Here, we choose an MAS consisting of three agents in R
2. The communication topology is shown in

Figure 3, and the dynamics of the agents are

ẋi(t) =

[
0 −0.3

0.4 0

]
xi(t) +

[
0

1

]
ui(t), i = 1, 2, 3,

where xi(t) = [xi,1(t), xi,2(t)]
T and ui(t) is the control input. The initial states are x1(0) = [1, 2]T,

x2(0) = [−1,−2]T, and x3(0) = [4, 4.5]T. There are eight possible attack modes in total: Θ = {∅, {(1, 2)},
{(1, 3)}, {(2, 3)}, {(1, 2)(2, 3)}, {(1, 2)(1, 3)}, {(1, 3)(2, 3)}, {(1, 2)(1, 3)(2, 3)}}. The strength of the DoS

attack, 1
τij

, i, j = 1, 2, 3, i 6= j, is set to 0.2 for each communication channel in our simulation; this

implies that the DoS attack duration is less than 6 s if the simulation time is set to 30 s. The set

of channel-attacked instants is denoted as Ω ⊆ Θ, and λ = 1 and λ̄ = 3. We choose µ = 0.6 and

K = [−0.4062, 0.7115] with R = 1 and Q = I2. According to a large number of simulations assessing the

choice of ̟i(t), the exponential function for all agents can have better control performance and smaller

consensus error; therefore, we choose βi =
√
0.02 and ̟i(t) = exp(−0.1t), i = 1, 2, 3 in the triggered

functions. We can obtain the decay rates αΩ, shown in Table 1, under different attack conditions according

to the stability analysis. It is seen that as the number of links under the DoS attack increases the decay

rates αΩ increase gradually with fewer information interactions between agents. We choose θij1 = 0.16

and θij2 = −0.045.

The DoS attack signal is shown in Figure 4, where 1 indicates that the channel (i, j) ∈ E0 is under

attack and 0 indicates that the system is not under attack. Figures 5 and 6 show the state xi of the

system and the control input ui, respectively, for i = 1, 2, 3. In Figure 6, we can see that u1, u2, and u3
approach zero when all the communication channels of the MAS suffer DoS attacks. Figure 7 shows the

triggered instances. The performance comparison, including the triggered number, maximum inter-event

time, and minimum inter-event time is recorded in Table 2 [27, 28, 35, 38–42]. Table 2 shows that the

designed event-triggered function can guarantee that each agent exhibits Zeno-free behavior and works in

a normal triggered manner. If ̟i(t) is not considered in the triggered function, the minimum inter-event

time equals to the accuracy of the simulation and there will be more triggered number. ψi(t) reflects the

impact of the attack on the triggered function and the number of triggers owing to the extra error, and it

also avoids unnecessary triggers. Figure 8 shows the relationship between the triggered function and the

measurement error of Agent 1; the threshold jitters are caused by the extra errors in the presence of the
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Table 2 Performance comparison for different triggered functions

Function
Control Updated numbers of agents Minimum Maximum

scheme 1 2 3 inter-event time inter-event time

[27, 28, 40–42] ̟i(t) = 0, ψi(t) = 0 1822 1899 1643 0.01 1.49

[38, 39] ̟i(t) 6= 0, ψi(t) = 0 709 688 676 0.02 1.54

[35] ̟i(t) = 0, ψi(t) 6= 0 1364 1271 1122 0.01 1.49

Our paper ̟i(t) 6= 0, ψi(t) 6= 0 611 570 560 0.02 1.54

attacks. The consensus error is defined as Eδ(t) =
√∑N

i=1 δ
T
i (t)δi(t), and a comparison of the consensus

errors for different magnitudes of DoS attack strengths, such as 1
τij

= 0.2, 1
τij

= 0.5, and 1
τij

= 1, is shown

in Figure 9. Greater attack strengths result in larger consensus errors. However, if the attack constantly

occurs, the system will not be able to achieve consensus, resulting in an undesirable control performance.

5 Conclusion

In this paper, the event-trigger-based consensus secure control problem was discussed for linear MAS

under DoS attacks. The transmission channels were paralyzed by independent aperiodic and unknown

DoS attacks and the decay rates under different attack conditions were obtained. The triggered condition
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for the DoS duration was developed, and the MAS consensus was achieved without Zeno behavior. A

future line of research would include a self-triggered approach for heterogeneous MASs connected through

a directed communication topology in the presence of DoS and/or other attacks.
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