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With the growing interest in autonomous driving, constant connectivity for vehicles is becoming essential 
to enable the complete knowledge of the surrounding area, transmit and receive data that is crucial for 
the autonomous control. The vehicle mobility results in frequent service interruptions, and therefore, 
seamless handovers are required to mitigate this problem. Several IP-based solutions have been proposed 
in the literature, but they require tunneling approaches, which present excessive signaling and data 
overhead, service delay, and packet loss. One of these approaches, the NEMO-enabled Proxy Mobile IPv6 
(N-PMIPv6) architecture, supports transparent handovers and simultaneous multi-homing, but at the cost 
of a high complexity and network overhead.
This work explores the flexibility of Software Defined Networks (SDNs) in the management of a Vehicular 
Ad-hoc NETwork (VANET). In particular, the SDN concept is used to provide a seamless horizontal 
handover for the vehicle and its end-users. Two different SDN architectures are proposed, evaluating the 
impact of the depth of the softwarization environment. Real vehicular hardware and emulated mobility 
scenarios are used in the evaluation process where different application services are exploited. Results 
show that the lower complexity of the SDN solution allows for a better performance during a handover 
in a VANET, in terms of delays, packet losses and network overhead, making it seamless for the vehicles 
and its users.

© 2021 Elsevier Inc. All rights reserved.
1. Introduction

The recent advances in the automotive industries and telecom-
munication technologies brought focus on Intelligent Transporta-
tion System (ITS), which are part of the services required for au-
tonomous driving, of which Vehicular Ad-hoc NETworks (VANETs) 
gain much more attention. One of the most researched topic re-
garding VANETs tackles the end-to-end connectivity of Vehicle-
to-Infrastructure communication flows [1]. VANETs are highly-
dynamic networks whose connectivity profile is influenced by the 
speed and direction of its moving elements, On-Board Units (OBUs) 
equipped in vehicles, and the profile of the network infrastructure, 
where Road Side Units (RSUs) bridge the gap between the core 
network and the moving network entities. Therefore, horizontal 
handovers are much more frequent than in traditional Wireless Lo-
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cal Area Networks (WLANs): an OBU with a connection established 
with an RSU (also denoted as Point-of-Attachment (PoA) under this 
scope) will soon be out of its range and establish a new connection 
with a different PoA.

For many years the Internet Protocol was not prepared to deal 
with the mobility of its users, as it was implemented assuming 
that each element would be always in the same location. With 
the mobility becoming the rule, and not the exception, additional 
network solutions and mechanisms have been proposed to im-
prove the IP standard, either IPv4 and IPv6, such as Mobile IP 
(MIP) [2], Network Mobility (NEMO) [3] and NEMO-enabled Proxy 
Mobile Internet Protocol (N-PMIP) [4,5]. Although these solutions 
create exciting and practical applications for mobile networks, the 
handover process is not optimized, especially for VANETs. When a 
vehicle moves, and consequently changes its PoA, the mobile node 
needs to send a binding update to the Home Agent (HA) to no-
tify its change of the Care of Address (CoA). Even more optimized 
solutions that use the concept of the hierarchy of foreign agents 
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and mobility anchors present an excessive signaling overhead and 
service delay [6].

More recently, the distinct features of Software-Defined Net-
working (SDN), such as its flexibility, programmability and network 
abstraction, have set the stage for a novel networking paradigm 
termed as Software-Defined Vehicular Networks (SDVNs) [7]. The 
convergence of SDN with VANETs is seen as an important direction 
that can address most of the VANET current challenges [8]. In an 
SDVN data plane entities communicate with the control plane en-
tities for coordinated and efficient communication. The controller 
provides an up-to-date network view to the application plane that 
helps it to manage various services (e.g., security, access control, 
mobility, and QoS) in the network. The RSUs share the collected in-
formation about the vehicles and the transportation system to the 
SDN controller, and execute specific functions that are placed/mi-
grated upon request of vehicles or from other RSUs. Considering 
the mobility prediction of vehicles, service contents can be mi-
grated to the next visited RSUs to enhance the overall service 
quality by reducing service latency [9].

In this work we explore the advantages of the SDN concept 
with respect to the horizontal handover process in a VANET. Fol-
lowing two different SDN architectures, distinguished by the depth 
of the softwarization environment, a new SDN based solution for 
seamless1 handovers in VANET is presented and compared to the 
most sophisticated and updated existing IP-based solution, the 
N-PMIPv6 [10]. Performance results obtained with real vehicu-
lar equipment and considering two different application services, 
namely video streaming and file download, show that the pro-
posed solutions, even if not yet capable of multi-homing, present 
very promising results, specially in terms of the reduction of the 
average delay and packet loss during the handover process. More-
over, this work shows that SDN solutions are the way forward 
to decrease the disruption caused by the handover while increas-
ing the flexibility of the handover detection process, minimizing 
service interruptions during autonomous control and driving. The 
main contributions of this work can be summarized as follows:

• An assessment of the vehicular network regarding the man-
agement of horizontal handovers following the SDN concept;

• Two distinguished SDVN architectures, with different depths 
regarding the SDN technology, to manage in a seamless way 
the horizontal handovers caused by the vehicle’s movement;

• Deployment, test and evaluation of the proposed SDVN solu-
tions in real vehicular communication equipment (OBUs and 
RSUs) addressing realistic communication profiles;

• Performance comparison against a non-SDN mobility manage-
ment solution.

The remaining of this article is organized as follows. Section 2
overviews the related work. Section 3 details the N-PMIPv6 mo-
bility management process. Section 4 explains the proposed archi-
tecture for our SDN-based mobility management solution and how 
handovers are handled. Section 5 overviews the implementation 
and deployment of the SDN approaches. Section 6 evaluates the 
SDN solutions and compares them with the N-PMIPv6 approach. 
Finally, Section 7 presents valuable remarks about this work and 
introduces future work.

2. Related work

In a network-based approach such as Proxy Mobile IPv6 
(PMIPv6), the connectivity suffers from a lengthy handover latency 

1 The term seamless is used because the handover process is transparent to the 
end-user, and not because the service has no interruptions, which will depend on 
the network connectivity.
2

and packet loss during a handover process. The work in [11] pro-
posed a solution based on the Neighbor Discovery used in IPv6 to 
reduce the latency and packet loss. In [12], the authors proposed 
a fast handover scheme using IAPP (Inter-Access Point Protocol). 
Moreover, the work in [13] has shown that in a Mobile IP-based 
handover, the registration process requires a large number of lo-
cation updates and excessive signaling overhead, resulting in a 
significant service delay. The solution proposed in [14] presents 
inter-technology IP-based handovers in a multihoming capable 
scenario, i.e. when multiple radio access technologies are avail-
able. To mitigate service interruptions, the authors in [15] have 
recently proposed a network-based L2 extension handover scheme 
for VANETs, reducing the signaling cost and handover latency.

On the other hand, SDVNs have witnessed substantial incre-
ments from technical and architectural aspects. With the advances 
on the 5G network architecture, the SDN has been explored to 
manage vertical handovers and boost the characteristics of VANETs, 
namely to increase the radio access coverage and provide comple-
mentary communication paths with the Internet.

SDN-enabled 5G-VANET was proposed to resolve the rising traf-
fic conditions by promoting the Heterogeneous Network (HetNet) 
concept [16]. Neighboring vehicles are put under the same clus-
ter, depending on the real-time road situations using SDNs’ global 
information collection and network control capabilities. Because of 
the segregation of information plane and control plane, 5G-VANET 
handles and encourages centralized control over HetNets, by giving 
a comprehensive network view. The work in [17] evaluated differ-
ent strategies to balance the SDN control plane through the dif-
ferent communication technologies assuming a trade-off between 
cost and network control latency. An SDN-enabled social-aware 
clustering algorithm for 5G-VANET was proposed to empower the 
adaptive and efficient clustering for communication and informa-
tion sharing between Base Stations [18]. The core logic is to build a 
cluster of nodes that follow similar social matches, which can pos-
sibly have the same future routes. An improved genetic algorithm 
has been also proposed to optimize the dynamic network changes 
in VANETs [19]. It includes the solution for adjusting the dynamic 
changes often occurring in the network, and also gives the guar-
antee about the solution diversity. The main idea is to balance the 
use of V2V and V2I traffic to minimize the latency. Fuzzy analytic 
hierarchy process and multi-path transmission control protocol are 
also used to solve the problem of vertical handover in heteroge-
neous wireless networks based on SDN [20].

Other authors explore the concept of SDN in vehicular environ-
ments by making use of Fog Computing to enable more efficient 
vehicular communications [21], to coordinate the load balancing 
for inter-domain communication in 5G vehicular networks [22], or 
even to leverage the concept of Internet of Vehicles with multiple 
SDN controllers [23].

Regarding the horizontal handover in VANETs, some recent 
works exploring the SDN technologies have been proposed. The 
work in [24] proposed a fast handover scheme based on the mobil-
ity prediction of vehicles. The authors do not provide any informa-
tion about the mobility prediction scheme and a single architecture 
is considered where the RSUs are not included in the SDN plane. 
Still, two different network domains, with two SDN controllers, are 
assumed. The performance evaluation, using a network simulator, 
is too simplistic since the handover delay is the only metric un-
der discussion: there are no statistics about the control overhead, 
or even the information about the packet loss, delay and jitter for 
a network service.

Following the same rationale, the work in [25] discusses the 
advantages of anticipating the handover process aiming to reduce 
the control signaling overhead and network congestion. The work 
proposes the use of a Mobility Anchor, as used by the IP-based 
solutions, and duplicates the packets to increase the probability 
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of packet delivery, which may overload the network unnecessarily, 
even more in scenarios of high mobility and frequent handovers. 
Regarding the performance evaluation, and just like the previous 
work, a network simulator is used and no specific services, with 
different traffic profiles, are considered.

The work in [26] follows a different approach as it merges both 
philosophies: the SDN concept with the PMIPv6 architecture. The 
authors keep both management entities, the Local Mobility Anchor 
(LMA) of the PIMIPv6 architecture, and the SDN controller of the 
SDVN, which can be seen as a duplication of services, and intro-
duces one additional step in the handover management increasing 
the network overhead: the RSUs communicate with the SDN con-
troller, which then communicates with the LMA. Additionally, the 
LMA in architectures such as PMIPv6 is the point of concentration 
of all communications between the vehicular domain and the In-
ternet, due to the tunnels created to handle the mobility, which 
may represent a point of overload and a critical point of failure. 
Additionally, the performance analysis is limited since the only 
metric of analysis is the latency associated with the handover pro-
cess.

Contrary to the above-discussed studies, in this work we focus 
on the advantages of the SDN management of the horizontal han-
dover when two different SDN architectures are considered - when 
the RSUs are inside and outside of the SDN environment. The be-
havior of the SDN controller is highly detailed and both solutions 
are evaluated using real vehicular hardware - a rare evaluation 
setup found in the literature - and different and realistic traffic 
profiles. Furthermore, a large set of evaluation metrics are consid-
ered and compared with N-PMIPv6 [10] solution.

3. Base work

This section describes an enhanced version of the N-PMIPv6 
mobility approach, to use it as a baseline for comparison purposes 
with the SDN-based solution. Based on the NEMO-enabled Proxy 
Mobile IPv6 (N-PMIPv6) [4], it has been added with multihom-
ing support [14,10,27]. The main entities used in this protocol are 
shortly explained as follows:

• LMA: the Local Mobility Anchor is the Home Agent (HA) of 
this architecture. It manages the binding states of all mobile 
nodes, it is responsible for the routing process, and it also 
stores information about the overall network status to opti-
mize the traffic balancing distribution;

• MAG: the Mobile Access Gateway is responsible for track-
ing and notifying the LMA about all the mobility-related as-
pects. The MAGs are RSUs where the end-devices can connect 
through wireless interfaces, and serve as a gateway to the 
LMA. They behave like a PoA to OBUs;

• mMAG: a mobile MAG acts as a mobile router in a vehicle, be-
ing responsible for providing IP Internet access to the vehicle 
and its users. The mMAG is an OBU that connects itself and 
the end-user with the mobility network;

• CN: the Correspondent Node is a peer node with which a Mo-
bile Node (the vehicle and its users) wants to communicate. 
It represents an entity connected to a global network (such as 
the Internet). The LMA bridges the CN specific traffic to the 
mobile network connected to the LMA.

Fig. 1 illustrates the current N-PMIPv6 approach. It considers 
an inter-technology scenario, where the mMAGs (in the OBUs) can 
be connected to the infrastructure through the MAGs (RSUs) us-
ing IEEE 802.11g/n, IEEE 802.11p/WAVE, LTE, or others. To handle 
mobility, the traffic is sent in IPv4-IPv6 and IPv6-IPv6 tunnels, in-
troducing significant overhead.

Additionally, the architecture contains a connection manager 
running in the OBUs. This entity is responsible for the selection of 
3

Fig. 1. Current N-PMIPv6 architecture. (For interpretation of the colors in the fig-
ure(s), the reader is referred to the web version of this article.)

the best technologies and connections available. It can also make 
single and multiple connections simultaneously, through multi-
homing, allowing the VANET to have the best load balancing pos-
sible for the traffic that flows through the OBU.

The control messages exchanged in this approach are Router 
Solicitation (RS) and Router Advertisement (RA) messages between 
the OBUs and the RSUs, and Proxy Binding Update (PBU) and 
Proxy Binding Acknowledgment (PBA) messages between the RSUs 
and the LMA. These messages are customized to fulfill our needs 
in diverse functionalities and help in the handover process, still 
complying with the legacy protocol specifications. When the OBU 
changes its PoA, it sends an RS message with all the needed infor-
mation to inform the LMA about this handover process. At the RSU, 
this information from the RS is integrated into the PBU sent to the 
LMA. After that, the LMA updates its User Cache Entry, starting the 
handover process at the LMA side. A PBA and a RA message are 
also sent in the downlink. This process typically happens twice 
to assure the correct handover in case of loss of some control 
messages. As the control messages piggyback the needed informa-
tion to perform the handover, the handover process does not add 
considerable overhead. On the other hand this process takes sig-
nificant time as the handover is just completed after both the LMA 
and the OBU change their routes to use the new PoA after process-
ing the information that is sent through these messages, and the 
updated tunnels supporting the communication between the OBU 
and the LMA through the new RSU are established. Moreover, the 
amount of overhead in the data plane is significant, due to the suc-
cessive tunnels (required for the mobility process and for the IPv4 
services in the vehicles or from its users).

A handover in a VANET happens when an OBU, to which one 
or more users can be connected, through a connection manager, 
understands that the RSU (or RSUs in the case of multi-homing) 
that it is connected to does not have a strong enough signal. Then, 
the communication path used to communicate with the Internet 
should be updated through a better RSU, if available. This process 
should be transparent for the vehicles (OBUs) and the users con-
nected to the OBU, and should ensure that it is a seamless process 
by providing the minimum latency and packets’ loss.

4. SDN-based handovers

Software Defined Networking (SDN) is a network paradigm that 
aims at splitting the network architecture into control and data 
planes [28,29]. In the control plane, one or more controllers are 
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responsible for creating and managing rules that are to be applied 
to the data/forwarding plane equipment, namely SDN switches.

Communication between both planes is supported by commu-
nication protocols such as the OpenFlow protocol [30], maintained 
by the Open Networking Foundation (ONF).2 The OpenFlow proto-
col defines the set of messages between controllers and switches. 
This set of messages includes the ones responsible for creating and 
updating a rule in a switch. The rules are programmable and de-
fine the actions of the switch, like dropping or forwarding a packet, 
considering the controller decision through a user defined criteria, 
information about the network topology, performance metrics, and 
others.

This means that, unlike the IP based solution, the control plane 
of an SDN based network can be programmed to detect the occur-
rence of a handover and then act accordingly. For example, it can 
be performed by changing routes to a mobile node and updating 
the information of the location of this node in a data structure for 
management or monitoring of the network, without the required 
overhead of a solution like N-PMIPv6. Also, unlike N-PMIPv6, the 
control plane is decoupled from the traffic forwarding, increasing 
not only flexibility, but also providing the possibility for future ex-
tensions of SDN based solutions.

The proposed SDN based mobility solution enables fast mo-
bility for VANETs through a unified network abstraction. This is 
performed by creating heterogeneous wireless devices at the RSUs, 
giving more flexibility to its use, such as generate abstraction, and 
using them as SDN switches with a unified interface. Instead of 
having a LMA as in the N-PMIPv6 approach, responsible for the 
management of all communications, with SDN, one or more con-
trollers are responsible for the handover detection and control.

In this work we propose two SDN architectures whose differ-
ences lie on the depth of the softwarized environment. In the first 
one, RSUs do not present SDN capabilities, while in the second one, 
the SDN environment is extended to the edge.

4.1. SDN architecture 1 - pure reactive solution

Fig. 2 illustrates the first approach for a mobility-based SDN so-
lution. In this first stage, we consider a centralized control plane 
with a single SDN switch. This switch is responsible for establish-
ing the connection between the vehicular infrastructure - RSUs, 
OBUs and end users - and an external gateway that has access to 
the Internet. The switch allows the processing of packets from and 
to the OBUs (and its users) by the control plane.

In this architecture, the controller application detects the han-
dover after it has already started: it does that by detecting a 
change in the source MAC address of the packets coming from a 
specific OBU. This change of MAC address shows that the packet is 
coming from a different RSU than the one to which the OBU was 
previously connected to.

Since the handover detection is based on the analysis of pack-
ets, this solution requires data traffic between an OBU and another 
endpoint, so that the handover can be detected. If no traffic is gen-
erated, the handover will not be detected.

For this solution to work, the RSUs need to be connected to 
at least one SDN switch, which in turn, needs to be connected to 
one or more SDN controllers. For experimental purposes, one SDN 
switch is considered, but in a real situation, several switches would 
be needed to ensure proper load balancing from the traffic of many 
RSUs in a VANET.

Beyond supporting the handover, there are other benefits of us-
ing an SDN switch instead of a regular switch, even without the 
controller. For example, one advantage is the possibility to allocate 

2 https://opennetworking .org/.
4

Fig. 2. SDN mobility network - architecture 1.

and assign the network resources, such as bandwidth, in a dynamic 
approach.

4.2. SDN architecture 2 - a step towards a proactive solution

A possible improvement to the SDN based architecture is a 
more proactive detection, where the handover is detected imme-
diately when it is happening, even if there is no traffic. For this 
purpose, a second architecture is proposed, where the RSUs them-
selves are part of the SDN topology by also being SDN switches. 
This way RSUs can communicate to the controller(s) the changes 
in the topology, including the handover situation.

Such architecture, where the RSUs are part of the SDN topol-
ogy, has not been fully explored previously. Thus, this work will 
give preliminary insights on the advantages of having another layer 
of SDN switching, and if it presents a huge impact in the overall 
performance of the mobility management system.

Fig. 3 illustrates this approach. Here, the RSUs are part of the 
SDN data plane and abstracted in SDN switches with an unified 
interface. Enabling the control plane to manage the network and 
network resources at the RSUs’ level allows for more flexibility for 
specific V2V applications, not requiring the traffic to flow through 
the physical SDN switch.

4.3. The controller role

After detecting a handover, the controller needs to modify the 
flows in the switches as needed to ensure a seamless handover. In 
the proposed solution, the controller, after detecting a handover, 
changes the rules in the affected switches, i.e. the switch where 
the OBU was connected and the switch where it is now connected. 
These changes ensure that any traffic to the OBU is forwarded 
through the new switch, and not the old one. Section 5.1 details 

https://opennetworking.org/
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Fig. 3. SDN mobility network - architecture 2.

the mechanisms implemented in the controller application so it 
can properly work in such mobility approaches.

5. Implementation and deployment

The first step towards the implementation and deployment of 
both architectures started with building the base topology. This 
base topology follows the layout presented in Figs. 2 and 3, and in-
cludes several main components, namely: OBUs, RSUs, end-users, a 
gateway, SDN switch(es) and, of course, an SDN controller.

The deployment of the topology considers several steps: (1) the 
configuration of the nodes that make up the vehicle network, that 
is, the configuration of network addresses, default routes, network 
forwarding as well as Network Address Translation (NAT) (more 
specifically, the Source NAT) on each one of the OBUs, so that 
a variety of end-users can be represented as the single OBU in 
the network; (2) the configuration of the SDN switch (or switches 
depending on the topology), which in this case means the config-
uration of an OpenFlow switch software [31]; and finally, (3) the 
configuration of the SDN controller to enable the control commu-
nication with the SDN switch(es).

Once the topology is deployed and all components are correctly 
interconnected and configured, it is possible to start the develop-
ment of the SDN controller application.

5.1. SDN controller application

The SDN controller application is the main component of the 
solution and is responsible for managing the flow control on each 
SDN switch. In our approach, the SDN controller application can be 
divided into several main processing steps, as illustrated in Fig. 4, 
which will be discussed next.
5

5.1.1. Handling unknown packets
The main method in the controller application is the packet 

handler, the entry point of the packets sent by the SDN switch to 
the SDN controller. The packet handler is invoked asynchronously, 
every time a packet arrives at the SDN switch and it does not have 
a matching flow. When a packet is received, it is checked the per-
tinent information of this packet (e.g. addresses, protocols). After 
the collection of this information, the packet gets processed based 
on its protocol (this will be explained in further detail in the sec-
tions below). In this specific controller application, only the ARP 
and IP packets (including specific IP protocols) are processed; any 
other packets are simply not processed and therefore dropped.

Once the original packet has been processed, it reaches its fi-
nal stage in the application, where two options exist: the original 
packet is dropped, i.e. it is not needed anymore (e.g. ARP Request 
which the controller replied to), or the original packet is simply 
sent out to its original destination.

This last option is also divided in two, depending on whether 
the application knows how to reach the destination of the packet. 
If the application does not know where to send the packet, it 
floods the packet in the network; otherwise, it sends it to its desti-
nation and, in that case, it also adds the required flows on the SDN 
switch so that the next packet of that type can simply go through 
the switch to its destination. This whole process repeats itself any-
time a new packet arrives at the SDN controller.

5.1.2. Handling ARP packets
When processing ARP packets, our application only checks each 

ARP packet to see if it is an ARP Request for any registered OBU. 
If that is not the case, then this processing step is over and the 
packet is simply sent out as explained in section 5.1.1. When the 
ARP packet is indeed an ARP Request for a registered OBU, the 
application processes it further.

Anytime there is an ARP Request for a registered OBU, since 
there is never a flow that will match that packet on the SDN 
switch, the controller will always get and process that packet. 
When it receives such a packet, it is responsible for checking if it 
is indeed an ARP Request for a registered OBU; if that is the case, 
then it creates and sends an ARP Reply to the requesting node. In 
this reply, the sender’s MAC address will be the RSU’s MAC ad-
dress to which the OBU is connected at the moment, instead of 
the OBU’s MAC address, so that any traffic sent from the request-
ing node to the OBU will now be sent via the RSU to which it is 
currently connected.

5.1.3. Handling IP packets
When the controller application receives any IP packet, the first 

step it does is to check if this packet came from any OBU; this 
is done by checking if the source IP address of the packet is an 
address that belongs to the sub network that enables the com-
munication between the RSUs and OBUs (this is possible due to 
the fact that this information as well as information about all the 
RSUs is pre-registered in the controller application). If this packet 
is originated from an OBU, the controller registers the OBU using 
the required information, then it is also possible to detect which 
RSU the OBU is connected to. For that, the controller application 
checks if the MAC source address of the packet belongs to any of 
the known RSUs; this way, it is possible to create a logical link 
in the application between the OBU and the RSU which it is cur-
rently connected to. Once the application knows about this logical 
link, this process is no longer carried out, and only the existence of 
the link itself is verified. This information will be important when 
detecting if a handover has happened.

The last two main processing steps of the IP packets happen 
on two specific situations, which are: checking for a handover and 
checking for packets sent via a wrong RSU. These situations are ex-
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Fig. 4. Simplified SDN controller application architecture.
plained next, starting by the handover detection process, and then 
by the handover process itself when it is detected.

5.1.4. Handover detection
The handover detection in the SDN architecture 1 is straight-

forward, as mentioned in 4.1. This process begins by first checking 
if the packet came from a registered OBU (via its source address): 
if that is the case, then the source MAC address of the packet is 
extracted and compared against the MAC address of the RSU to 
which the OBU is currently connected to. If the MAC addresses are 
not the same, a handover has occurred, since the packet arrived 
from a different RSU; on the other hand, if they are the same, no 
handover has occurred and the handover checking process is over. 
Once a handover is detected, the logical link is updated, mean-
ing that the application updates the RSU to which the OBU is now 
connected to, and removes any flows on the SDN switch matching 
the OBU and the old RSU. Once this step is complete, the handover 
is now finished.

In the architecture 2, the handover detection can take advan-
tage of the fact that the RSUs are part of the SDN plane, which 
allows the controller to know about changes in the topology of the 
VANET at the RSU level, such as the disconnection or connection of 
an OBU. In a simulated software environment, such as Mininet, the 
handover can be detected when it happens, since the port change 
in a RSU means that a OBU was connected and disconnected. How-
ever, in a real situation, this is not viable in a hardware scenario, 
where wireless communications are used.

This means that architecture 2 is not proactive, but a step to-
wards a proactive solution. Using a set of custom messages - for 
example extending the OpenFlow symmetric experiment messages 
that allow the creation of custom messages, or the usage of CAMs 
(Cooperative Awareness Messages defined by ETSI for ITS aware-
ness services) - would allow RSUs - part of the SDN environment 
of the network only in architecture 2 - to inform the controller 
about changes in the OBUs, therefore achieving a proactive solu-
tion.

5.1.5. Rerouting packets
The last main processing step is to check for packets that were 

sent to an OBU via a wrong RSU (i.e. RSU to which an OBU was 
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previously connected to) and re-route them. This problem can hap-
pen anytime a handover occurs while a packet from an OBU is 
outside the vehicular network; when that packet returns, the gate-
way might still not know that a handover has occurred, meaning 
that it can send the packet via the wrong RSU. Thus, this process 
was introduced to mitigate this problem, and consequently, reduce 
packet loss.

This process begins by checking if the packet is for a registered 
OBU (via its destination address); if this is the case, then the pack-
et’s destination MAC address is extracted and compared against the 
MAC address of the RSU to which the destination OBU is currently 
connected to. If the MAC addresses are the same, this means that 
the packet was sent via the correct RSU and the processing is over, 
and therefore, the packet can move on to the next processing step. 
On the other hand, if the MAC addresses are different, we are in 
the presence of a packet sent via a wrong RSU. When that hap-
pens, a copy of the original packet is created, the destination MAC 
address is changed to the MAC address of the correct RSU, and fi-
nally the packet is sent out to the destination. Before finishing this 
processing step, a gratuitous ARP packet is also created on behalf 
of the OBU and sent to the network, in order to update the ARP 
mappings (mainly of the gateway) and avoid this problem in the 
future.

Once the packet has been through all the IP processing stages, 
it moves on to the final processing stage mentioned previously 
in 5.1.1.

6. Evaluation setup

This section presents the setup and tested scenarios carried out 
to evaluate the performance of both SDN architectures against the 
N-PMIPv6 solution in a vehicular network environment.

6.1. Evaluation scenario

In order to test the performance of both solutions, IP and SDN 
based, a custom topology, as shown in Fig. 5, is designed and 
deployed. This topology, implemented in a laboratory, using real 
vehicular equipment (OBUs and RSUs), allowed to emulate two real 
life scenarios.
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Fig. 5. Illustration of the topology used in the test scenarios. In this topology, a 
vehicle - represented by an OBU - passes through several RSUs, and the handover 
detection and processing systems, based on N-PMIPv6 or SDN, ensure that mobile 
users can keep using the Internet, for example to watch a video or downloading a 
file.

The emulated real life scenario consists of a vehicle equipped 
with the OBU (in this instance only the OBU is present given the 
laboratory topology) passing by three distinct RSUs. Each time the 
vehicle moves closer to a new RSU, it changes the RSU with which 
it is communicating, thus performing a handover. In this work we 
assume disjoint RSUs radio coverage, which means that it is not 
possible for one OBU to be in the range of communication of two 
RSUs simultaneously. As the vehicle moves, the end users which 
are connected to the vehicle’s OBU might be streaming a video or 
downloading a file.

Since the topology emulates a real life scenario in a labora-
tory setup, the handover itself was forced by developing a script 
to control the behavior of the connection manager, as described in 
Section 6.2. The equipment used in the experiments is later de-
tailed in Section 6.3.

6.1.1. Scenario 1: video streaming
In this scenario, to emulate a video stream reaching the vehicle 

through its OBU, the end user equipment will make a connection 
to a server running outside the network and start receiving data 
according to a set of specific parameters. To simulate Variable Bit 
Rate (VBR) video traffic, the following set of parameters were con-
sidered [32]:

• Constant inter-departure time of 24 packets/s;
• Packet size which follows normal distribution of mean 27791 

bytes and standard deviation of 6254 bytes.

6.1.2. Scenario 2: file transfer
To emulate a scenario where a file is downloaded to the vehicle, 

the end user equipment will also make a connection to a server 
outside of the network and start the download according to a set 
of specific parameters:

• Constant inter-departure time of 700 packets/s;
• Packet size of a constant size of 1000 bytes.
7

Table 1
Evaluated metrics.

Metric Evaluation process

Average delay Measured using D-ITGa

Jitter Measured using D-ITG
Time per handover By comparing the packet timestamps traveled in the 

old and new paths
Overhead N-PMIPv6: Number and size of RS and RA messagesb

SDN: Number and size of OpenFlow messages
Packet loss Measured using D-ITG

a http://traffic .comics .unina .it /software /ITG/.
b Router solicitation and router advertisement messages.

6.2. Evaluation methodology

To understand the performance of both solutions, a set of per-
formance metrics are considered. Having in mind the great differ-
ences between the previous IP based mobility and the SDN mobil-
ity, these indicators are as general as possible, while also allowing 
the direct comparison of both approaches. Table 1 lists the consid-
ered metrics and how they were evaluated in N-PMIPv6 and SDN 
approaches.

A set of tests were executed for both scenarios and network ar-
chitectures. Real network hardware is used during the evaluation 
process, but the mobility profile is emulated in the laboratory en-
vironment. To be more precise, a script was developed to control 
the behavior of the connection manager, i.e. we decided the exact 
moment for the handover to occur. Although such behavior does 
not represent the uncertainty of a real vehicular environment, it is 
a fair mechanism in order to guarantee the same conditions among 
all network architectures and respective tests.

For each scenario, several tests are conducted where different 
numbers of handovers are performed (0, 1 or 2), for a total test 
duration of 90 seconds. Each test is executed 10 times, using both 
UDP and TCP traffic with the help of the D-ITG software [33], and 
between a server located outside the network and the end user 
equipment, connected to the OBU. The final results represent the 
average values and their 95% confidence interval.

It is important to note that the tests for the video streaming 
scenario using TCP are considered as important as the ones in 
UDP, to understand the overall performance of the developed ap-
proaches, even if most video streaming solutions rely heavily on 
UDP or other protocols. The same applies for the file transfer sce-
nario when using UDP.

6.3. Equipment

To run all the required tests, two topologies, like the one illus-
trated in Fig. 5, are deployed: one to test the SDN architectures, 
and another one to test the N-PMIPv6 solution.

In terms of equipment, for the N-PMIPv6 deployment, the 
LMA is deployed on a dedicated machine running Ubuntu as its 
Operating System (OS), whereas the RSUs and OBUs are imple-
mented in Single Board Computers (SBCs) denoted as NetRiders 
running a custom OS,3 and with both IEEE 802.11/WiFi and IEEE 
802.11p/WAVE (V2V technology).

As for both SDN architectures, the SDN controller is deployed 
on a dedicated machine running Ubuntu as its OS, and for the 
SDN framework, the controller application is running on Ryu.4 This 
framework was chosen given the fact that it is an open-source 
SDN controller that supports the OpenFlow protocol and, since it 
is based on Python, it allows for quick and effective development, 

3 http://veniam .com.
4 http://ryu -sdn .org/.

http://traffic.comics.unina.it/software/ITG/
http://veniam.com
http://ryu-sdn.org/
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Table 2
Equipment specifications.

Equipment CPU [MHz] Memory 
[MB]

Linux 
Kernel

OS

LMA 1400 (2 cores) 2048 4.14.3 Ubuntu 16
NetRiders 680 64 3.7.4 VeniamOS 19.2
SDN controller 3600 (2 cores) 4096 4.15.0 Ubuntu 18.04
APU 1000 (4 cores) 4096 5.7.10 Debian 8
RPi 3 Model B 1200 (4 cores) 1024 4.4.38-v7+ Ubuntu 16.04.6

Table 3
Control packet overhead [number of packets].

Number of handovers

0 1 2

Video streaming emulation - UDP
N-PMIP 72 ± 1 79 ± 1 89 ± 1
SDN Arch 1 18 ± 1 97 ± 4 155 ± 15
SDN Arch 2 69 ± 4 225 ± 13 268 ± 12

Video streaming emulation - TCP
N-PMIP 71 ± 1 80 ± 1 91 ± 1
SDN Arch 1 17 ± 1 65 ± 10 96 ± 18
SDN Arch 2 62 ± 3 150 ± 14 194 ± 19

File transfer emulation - UDP
N-PMIP 72 ± 1 78 ± 2 90 ± 1
SDN Arch 1 13 ± 1 36 ± 3 60 ± 8
SDN Arch 2 67 ± 3 126 ± 5 162 ± 4

File transfer emulation - TCP
N-PMIP 73 ± 1 81 ± 2 90 ± 2
SDN Arch 1 16 ± 1 35 ± 2 71 ± 8
SDN Arch 2 58 ± 1 109 ± 7 167 ± 11

while also providing good performance for small network topolo-
gies [34]. As for the RSUs and OBUs, these are implemented in 
APU platforms which are SBCs produced by PC Engines,5 contain-
ing both IEEE 802.11/WiFi and IEEE 802.11p/WAVE interfaces.

Finally, when it comes to the end user equipment, these are 
simulated using RPis connected directly to the OBUs through 
their Ethernet interfaces. Table 2 presents the specifications of the 
equipment used.

7. Results

This section presents and discusses the most important results 
for both scenarios and for all the network architectures. First we 
will analyze the results related to the network characteristics, such 
as packet overhead, packet loss and time per handover. Then, we 
will extend the discussion by analyzing the impact of the han-
dovers on each of the two scenarios, the video streaming and file 
transfer, when it comes to the average delay time and jitter.

7.1. Packet overhead

Table 3 presents the overhead in terms of the number of con-
trol packets observed during the tests on all the mobility solutions 
when performing, zero, one or two handovers. Similarly, Table 4
presents results about the network overhead, but in this case it is 
represented in terms of size (in kbytes). The control packet over-
head should be seen as an indicator to understand the complexity 
and cost of each mobility solution.

When comparing the results between the SDN approaches and 
the baseline N-PMIPv6, it is not possible to get a clear conclusion 
on which is the best when it comes to the overhead. The SDN 
architecture 1 has the least amount of overhead in almost every 

5 http://pcengines .ch.
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Table 4
Control packet overhead [kbytes].

Number of handovers

0 1 2

Video streaming emulation - UDP
N-PMIP 13.0 ± 0.93 13.3 ± 0.19 15.0 ± 0.20
SDN Arch 1 1.9 ± 0.09 20.3 ± 0.97 30.5 ± 3.08
SDN Arch 2 12.3 ± 0.97 41.1 ± 2.58 48.6 ± 2.79

Video streaming emulation - TCP
N-PMIP 12.8 ± 0.88 13.5 ± 0.16 15.3 ± 0.31
SDN Arch 1 1.97 ± 0.14 12.04 ± 2.02 17.9 ± 2.8
SDN Arch 2 6.4 ± 0.34 26.4 ± 2.84 33.6 ± 3.81

File transfer emulation - UDP
N-PMIP 12.9 ± 0.85 13.1 ± 0.27 15.2 ± 0.37
SDN Arch 1 1.3 ± 0.11 10.4 ± 1.44 21.7 ± 3.22
SDN Arch 2 9.5 ± 1.13 33.2 ± 1.79 44.5 ± 1.56

File transfer emulation - TCP
N-PMIP 13.1 ± 0.88 13.2 ± 0.33 15.1 ± 0.44
SDN Arch 1 2 ± 0.28 6.2 ± 0.36 13.3 ± 1.63
SDN Arch 2 6.3 ± 0.29 17.3 ± 1.49 27.6 ± 2.41

scenario with the exception of UDP video streaming. On the other 
hand, the SDN architecture 2 has the highest overhead values out 
of all solutions (mainly in the cases of one or more handovers). 
Finally, the N-PMIPv6 solution is better in terms of overhead than 
the SDN architecture 2 in the cases where handovers occurred, but 
loses out to SDN architecture 1 on almost all scenarios.

Results show a clear difference between the SDN architectures, 
with the second architecture, where the RSUs are part of the SDN 
network, being the solution with larger overhead, but also with 
a larger variability. This is explained by the fact that, since in the 
second SDN architecture, the RSUs are also SDN switches, the over-
head - counted as the number of OpenFlow packets - increases 
substantially. This happens because the OpenFlow messages are 
now sent to and from three SDN switches (one on each RSU), thus 
increasing the control overhead to around three times when com-
pared with architecture 1.

In addition, some of the OpenFlow messages that translate into 
the additional overhead are messages sent by the switches and are 
not processed fast enough by the controller, especially in specific 
test scenarios like UDP video streaming: when a handover occurs, 
there a lot of packets sent by the SDN switch to the controller in 
a short period of time.

The fact that the SDN controller is centralized and without re-
dundancy, means that it might be a source of such processing 
delays. This is not a big problem when the SDN controller is only 
responsible for one SDN switch, but this proved to increase the 
control overhead when more SDN switches are present. While both 
SDN architectures are feasible in terms of the costs that they mean 
to the network, when it comes to packet overhead, special caution 
is required when scaling the number of SDN switches.

Possible solutions to mitigate this problem would be adding 
more SDN controllers in a distributed way, or migrating the con-
troller application to a more professional one. Considering the SDN 
switches, these could also be upgraded to real SDN switches as 
opposed to the software SDN switches used in both SDN architec-
tures.

Another disadvantage of the N-PMIPv6 that should be taken 
into consideration, and not visible in the presented results of con-
trol overhead, is that this solution, because of the tunnels it re-
quires (as described in Section 3), also introduces a significant data 
overhead, non-existent in the SDN solutions. This data overhead 
results from the existence of the IPv4-to-IPv6 tunnel between the 
LMA and the OBUs, and the IPv6-to-IPv6 tunnel between the LMA 
and the RSUs. Such mechanisms result in the addition of two IPv6 

http://pcengines.ch
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Table 5
Time per handover [ms].

Video streaming emulation

N-PMIPv6 8307.6 ± 57.15
SDN Arch 1 12.9 ± 0.32
SDN Arch 2 13.4 ± 0.30

File transfer emulation
N-PMIPv6 6804.9 ± 94.08
SDN Arch 1 9.4 ± 0.48
SDN Arch 2 8.2 ± 0.58

Table 6
Packet loss [%].

No Handover Per Handover

Video streaming emulation [UDP]
N-PMIPv6 0.002 ± 0.00 6.673 ± 0.66
SDN Arch 1 0 0
SDN Arch 2 0 0.0 ± 0.04

File transfer emulation [UDP]
N-PMIPv6 0 7.298 ± 0.51
SDN Arch 1 0 0.0 ± 0.01
SDN Arch 2 0 0

Both scenarios [TCP]
All 0 0

headers over the original IPv4 data packet, increasing its size and 
data overhead by 80 bytes in total per data packet transmitted.

7.2. Handover time

Table 5 presents the handover time, i.e. the time for the han-
dover process to be completed, which is a great indicator of the 
complexity of the handover process and its impact in the user 
experience - the increase in the handover time also means an in-
crease in the average delay of the packets, and potentially, a worse 
user experience.

Results show consistently that the SDN architectures have han-
dover times within tens of milliseconds, while the N-PMIPv6 
shows consistent results within 6-8 seconds. This can be explained 
by the large complexity of the handover process in the N-PMIPv6 
solution, specially the deletion and creation of tunnels as described 
in Section 3 whenever the OBU connects itself to a new RSU. On 
the other hand, the simpler handover process in the SDN architec-
tures - which is the result of the fast packet processing and flow 
changes by the SDN controller application, as explained in Sec-
tion 5.1.4 - enables fast and efficient handovers, which results in 
significantly lower times when compared with the N-PMIPv6 solu-
tion.

7.3. Packet loss

Table 6 presents the packet loss percentage of the different 
solutions. This metric is evaluated considering two distinct situ-
ations: measuring the packets lost in a period without handovers, 
and when handovers are observed. An important conclusion can 
immediately be taken from the results: the TCP based tests showed 
no packet loss. This was the theoretically expected result since TCP 
recovers from losses of packets, at the cost of greater complexity 
when compared with UDP. In addition, it confirms that both SDN 
architectures work without packet losses in TCP scenarios.

In the UDP tests, some packet loss was to be expected in sit-
uations where handovers occurred, given the fact that communi-
cation is suspended for a brief period of time while the handover 
is processed. In this case the results show the clear advantage of 
the SDN architectures in terms of robustness. The SDN approaches 
9

Fig. 6. Average delay time.

Fig. 7. Average jitter.

have only marginal packet losses (0.01% or less), while the N-
PMIPv6 has losses of around 6-8% per handover. This is a clear 
consequence of the time it takes to perform a handover, where 
the longer the handover takes to complete, the more packets are 
dropped. As seen in Table 5, the N-PMIPv6 solution has a signifi-
cantly higher time per handover, which justifies its higher packet 
loss values.

7.4. Average delay time and jitter

Figs. 6 and 7 present the average delay and the jitter of the data 
packets, respectively, for both services and network solutions.

The average delay results show that the N-PMIPv6 solution 
presents significantly worse values in almost all tested scenarios 
when compared with the SDN solutions, with the exception of 
the video streaming scenario in UDP, where the results are sim-
ilar between all solutions. This means that, in most scenarios, the 
N-PMIPv6 solution has a greater impact on the time it takes for 
packets to get to the end user, which in turn means a worse over-
all experience for the user. As for the SDN solutions, they present 
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very similar values in all of the tested scenarios, with a slight dif-
ference between the two in the file transfer scenario in UDP.

In the TCP scenarios, it is possible to observe the impact that 
the handover time has on the average delay. It is clear that the N-
PMIPv6 solution presents significantly higher average delay values 
when compared with both SDN solutions. This can be explained 
by the way TCP itself works. Since TCP recovers from losses, any-
time a packet is dropped (in this case due to the handovers), it has 
to be re-transmitted, which increases the packet delay. This means 
that, the longer the handover process takes, the longer it takes for 
packets to be re-transmitted, which in turn means an increase to 
the average packet delay. This explains why the values are higher 
for the N-PMIPv6 solution, as it takes significantly longer time to 
perform a handover when compared with the SDN solutions. An-
other important aspect to remark is that the number of handovers 
seems to affect the average delay in the N-PMIPv6 solution: the 
more handovers are performed, the higher is the delay. This fact is 
not observed in the SDN solutions.

In both UDP scenarios, it is possible to observe that the han-
dover time has no impact on the average packet delay for the video 
streaming scenario. In this scenario, the N-PMIPv6 solution does 
not suffer from the higher handover time when compared with 
the SDN solutions, regarding the average delays.

Another important conclusion that can be drawn from the re-
sults is that both SDN architectures present, for all the scenarios, 
around the same average delay. This shows that the fact that RSUs 
are or not a part of the SDN topology has little to no influence in 
this metric.

The average jitter, i.e. the variation in the time between data 
packets received, the first evident conclusion is that the N-PMIPv6 
presents significantly worse values in TCP video streaming emu-
lation. However, and unlike in the average delay, the N-PMIPv6 
presents slightly better results in the video streaming emulation 
in UDP, and for download scenarios both in TCP and UDP. This can 
be a consequence of the single centralized controller architecture. 
As described in Section 7.1, this means that the controller might 
be a source of processing delays, therefore introducing some vari-
ability to the time it takes for packets to be processed by the SDN 
controller.

8. Conclusions

This article explored the use of the SDN concept to optimize 
the handover times in vehicular communications. In this article, 
two SDN based approaches were proposed, with different levels of 
SDN support, in the core or in the edge. The support of SDN in 
the edge enables the communication of the topology changes from 
the RSUs to the controller, providing the support towards a more 
proactive handover.

These approaches were compared to an existent N-PMIPv6 so-
lution. The results of SDN based approaches show that they are 
able to provide much lower handover times (around 10 ms), aver-
age delays, more robustness thanks to the lower packet loss, and 
higher flexibility thanks to the programmability of the SDN con-
troller.

Future improvements concern the evolution towards a fully 
proactive solution, inter network communication and eventual 
scalability issues as a result of the addition of more SDN-capable 
entities or fast changing VANETs. The proactive operation mode 
can be provided through the usage of information from the con-
nection manager of an OBU, or through the usage of CAMs ITS 
messages to inform the controller about changes in the OBUs, and 
providing the information for predictive handovers. Other topics of 
future research include the integration of other technologies, such 
as cellular, including C-V2X, and the extension to provide and en-
able multihoming. Such integration leads to new challenges such 
10
as the inter domain handovers, which may involve multi-SDN con-
troller environments where the communication between the SDN 
controllers will be critical for the seamless handover operation. 
Hypothetical scalability issues could be solved by instructing the 
SDN controller to proactively notify all the SDN switches involved 
in a new flow after the first notification arrives at the controller. Fi-
nally, understanding how SDVN environments behave when there 
is no connectivity between the OBU and the infrastructure is also 
a topic of future research.
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