
Expert Systems With Applications 164 (2021) 114002

A
0

Contents lists available at ScienceDirect

Expert Systems With Applications

journal homepage: www.elsevier.com/locate/eswa

Deep reinforcement learning for portfolio management of markets with a
dynamic number of assets
Carlos Betancourt ∗, Wen-Hui Chen
Graduate Institute of Automation Technology, National Taipei University of Technology, Taipei, Taiwan

A R T I C L E I N F O

Keywords:
Reinforcement learning
Deep learning
Portfolio management
Transaction costs
Multiple assets

A B S T R A C T

This work proposes a novel portfolio management method using deep reinforcement learning on markets with
a dynamic number of assets. This problem is especially important in cryptocurrency markets, which already
support the trading of hundreds of assets with new ones being added every month. A novel neural network
architecture is proposed, which is trained using deep reinforcement learning. Our architecture considers all
assets in the market, and automatically adapts when new ones are suddenly introduced, making our method
more general and sample-efficient than previous methods. Further, transaction cost minimization is considered
when formulating the problem. For this purpose, a novel algorithm to compute optimal transactions given a
desired portfolio is integrated into the architecture. The proposed method was tested on a dataset of one of the
largest cryptocurrency markets in the world, outperforming state-of-the-art methods, achieving average daily
returns of over 24%.
1. Introduction

Generating financial profits by trading cryptocurrencies is chal-
lenging due to their price erratic changes. Cryptocurrencies are de-
centralized electronic financial assets that appeared as an alternative
to fiat currencies (Nakamoto, 2008). However, according to Corbet
et al. (2014) the prices of cryptocurrencies are affected by government
announcements, policies and actions, in spite of the fact they are
decentralized assets. Additionally, cryptocurrency prices show higher
volatility than those of traditional assets. For instance, in early 2017,
the price of Bitcoin, the well-known cryptocurrency, reached its maxi-
mum historical peak of approximately 19,000 USD per unit, but during
the subsequent months it plunged to 3000 USD, followed by a strong
bounce to its current price of approximately 8,000 USD per unit. For
this price behavior, formulating cryptocurrency trading strategies is a
non-trivial task.

Reinforcement learning (RL) is a suitable framework to process
complex data and handle difficult decision-making processes such as
asset trading. A trading process can be naturally formulated as an
RL process. In this type of process, an agent takes actions over an
environment based on observations of the states of that environment;
rewards are received by that agent as a consequence of both the states
visited and the actions taken. In the specific case of asset trading, a
state of the environment is equivalent to the recent history of the assets;
actions are the transactions made to get rid of some of the assets held
by the agent and acquire new ones, and the rewards are scalar functions

∗ Corresponding author.

of the earnings or losses seen by the agent for taking those actions. The
vector containing the information of the assets held by an agent at any
moment is called the portfolio, hence this type of process is also known
as portfolio management.

Typically RL algorithms have fixed state and action spaces. How-
ever, new assets are often added to cryptocurrency markets (Narayanan
et al., 2016). Hence, to rapidly incorporate those assets into the process,
adaptable state and action spaces are necessary. Most works on auto-
matic asset trading assume the number of assets is static (Bu & Cho,
2018; Jiang & Liang, 2017; Liang et al., 2018; Pendharkar & Cusatis,
2018). Thereby, convolutional layers of neural networks can extract
useful information about the prices of that specific set of assets. But,
by doing so, a large portion of data is wasted because only a small
number of assets is used for training algorithms while datasets contain
information collected from dozens and even hundreds of assets. This is
an important issue, not only from a sample-efficiency point of view, but
also because critical earnings may be accomplished by trading assets
that are suddenly incorporated into a market. For instance, in Fig. 1,
Dock (coin) reached 2.2 times its original price during the first 20 days
in the market, then it fell and settled at about 1.2 times its original
price on the subsequent days. This behavior has been observed often in
assets recently added to markets; however, we are confident it can be
predicted and exploited.

This work proposes an RL method using a recurrent neural network
(RNN) to perform portfolio management on markets in which the
vailable online 16 September 2020
957-4174/© 2020 Elsevier Ltd. All rights reserved.

E-mail addresses: t104669004@ntut.edu.tw (C. Betancourt), whchen@ntut.edu

https://doi.org/10.1016/j.eswa.2020.114002
Received 1 April 2020; Received in revised form 10 September 2020; Accepted 11
.tw (W.-H. Chen).

September 2020

http://www.elsevier.com/locate/eswa
http://www.elsevier.com/locate/eswa
mailto:t104669004@ntut.edu.tw
mailto:whchen@ntut.edu.tw
https://doi.org/10.1016/j.eswa.2020.114002
https://doi.org/10.1016/j.eswa.2020.114002
http://crossmark.crossref.org/dialog/?doi=10.1016/j.eswa.2020.114002&domain=pdf

Expert Systems With Applications 164 (2021) 114002C. Betancourt and W.-H. Chen
Fig. 1. Price evolution of Dock (cryptocurrency) during the first month after being
released in the Binance website.
Source: binance.com.

number of assets may change over time. Proximal Policy Optimization
(PPO) (Schulman et al., 2017) was adapted for this purpose. PPO is
a popular deep RL algorithm, with an actor–critic architecture, that
has been shown to perform well on difficult tasks such as video-
game playing and dexterous robotics control (OpenAI et al., 2020;
Schulman et al., 2017). PPO has been recently applied to portfolio
management in markets with a fixed number of assets (Liang et al.,
2018). However, to adapt to a dynamic number of assets, we propose
a particular architecture that processes assets individually and uses the
current portfolio entries for weighting. This results in a network able
to effectively process assets that were never even seen during training,
without requiring extra training or memory. The proposed method was
backtested using data of a cryptocurrency market along state-of-the
art baselines in three different setups, which correspond to episodes
with lengths of one day, 30 days and 16 weeks with holding periods
of 30 min, one day and one week, respectively. The performances of
the methods were evaluated using two standard measures for investing
and trading: total return and Sharpe ratio. Our method outperformed
the baselines in all the tested setups.

Keeping the number of transactions as small as possible is an
important issue to consider while doing asset trading. Markets obtain
revenues from their services in the form of transaction costs. Any agent
that buys or sells assets gives a small percentage of those transactions
to the service provider. Cryptocurrency market transaction fees are
typically lower than 1%, which are among the lowest compared to
fees found in other types of financial asset markets. However, these
seemingly negligible fees become important when transactions are
made frequently, for instance in periods of minutes or hours. This
is because the changes in the assets acquired by the agent may not
compensate for the losses suffered by transaction costs. Hence, the
algorithm should aim to keep the number of transactions low. To cope
with this issue, in our design, the current portfolio vector is given to the
network in the output layers, penalizing assets not held by the agent.

Additionally, a novel algorithm to compute the optimal transactions
is given in this work. In a market where transaction costs exist, if
an agent wants to obtain a portfolio vector satisfying certain specific
proportions, the agent needs to perform transactions, thus giving up
some amount for doing that. Ormos and Urbán (2013) proposed an
iterative method to compute the values of the transactions needed to
convert some portfolio into another with minimal cost. However, this
method assumes transaction costs are the same for all assets, and this is
not always the case. We propose a different approach to this problem in
which this assumption is not needed. To do this, the problem of finding
the optimal transactions given some desired portfolio proportions is
converted into a linear program (LP). The main contributions of this
work are:
2

• Formulation of a trading system without the limitation of hav-
ing a market with a fixed number of assets. Our method is
sample-efficient, its implementation is straightforward, and dur-
ing deployment, it is able to integrate assets into the process that
appear suddenly in the market without the need of extra training.

• Transaction costs are considered and managed in our work. A
novel algorithm to compute the optimal transactions is proposed
and integrated into the system.

• Implementation of the proposed method using the dataset of a
cryptocurrency market. The reliability of our method is tested
under three different trading setups to show its adaptability.

The rest of this paper is organized as follows. Section 2 presents re-
lated works in the field. Section 3 describes the mathematical definition
of the portfolio management problem. Section 4 describes the proposed
method. Section 5 describes the transaction optimization process. Sec-
tion 6 explains the experiment setups and metrics used to evaluate
them. In Section 7, the results of the experiments are discussed. Finally,
conclusions and directions for future work are presented in Section 8.

2. Related works

Deep learning approaches for portfolio management can be divided
into two groups: model-based and model-free methods. Model-based
methods, as their name suggests, assume models of the asset behav-
ior exist, and deep neural networks (DNNs) are used to approximate
these models using supervised learning on price datasets. Model-based
methods do not cope with asset trading directly; instead, they require
secondary methods to process the predicted prices, which typically
use conventional heuristics based on human knowledge. Works that
follow this approach include (Heaton et al., 2017; Niaki & Hosein-
zade, 2013). Model-free solutions, on the other hand, compute trading
actions without explicitly predicting prices. This is done by neural net-
works that directly map asset features into portfolio vectors. The train-
ing of these networks is typically formulated using RL, where financial
performance measures such as daily returns, Sharpe ratios, maximum
drawdowns, etc., are optimized to obtain agents that combine both
profit-seeking and risk-aversion behaviors. Works that follow this strat-
egy include (Dempster & Leemans, 2006; Moody & Saffell, 2001; Zhang
& Maringer, 2013), which used RL with recurrent networks for portfolio
management in stock and foreign exchange markets.

In recent years, algorithms such as deep Q-learning (Mnih et al.,
2013) allowed researchers to train deeper neural network architectures
using RL. Since then, deep RL approaches became dominant in portfolio
management research. Jiang and Liang (2017) used a Monte Carlo
policy gradient method to train a convolutional neural network (CNN)
for cryptocurrency trading. They reported high returns, however they
also stated to test their method in a real market, it had to be modified
to include real life constraints. Bu and Cho (2018) trained a deep
long–short-term-memory network using double Q-learning (Van Hasselt
et al., 2016), obtaining positive rewards in a cryptocurrency market
with a decreasing tendency. Pendharkar and Cusatis (2018) compared
Q-learning and other value-based RL methods for asset trading in stock
markets. Liang et al. (2018) proposed an adversarial training method
that improves the performance of deep RL methods including actor–
critic and policy-gradient based methods. They used a deep residual
network (He et al., 2016) in their designs, and tested them on a
Chinese stock market reporting positive returns. Jeong and Kim (2019)
proposed a transfer learning method to pre-train neural networks when
data amounts are not sufficiently large. They applied this technique
along with Q-learning to trade financial indexes, such as the S&P500
and KOSPI, by augmenting an index dataset with data of stocks that
have statistical similarities to the index. Aboussalah and Lee (2020)
proposed a Gaussian process that searches for good neural network
topologies for stock market trading. Wu et al. (2020) compared Q-
learning and policy-gradient methods for stock market trading, finding

Expert Systems With Applications 164 (2021) 114002C. Betancourt and W.-H. Chen
policy gradient methods give better results. Park et al. (2020) proposed
a two-part network trained with Q-learning. The first part extracts
features using a set of recurrent layers to process each asset separately.
The second part, named the DNN regressor, is a small dense neural
network that processes the extracted features and returns the portfolio.
This work uses a similar strategy because this type of architecture saves
memory resources. However, the second part of our design is different.
The DNN regressor is fixed; hence, if new assets are suddenly added
to the process, the second part has to be modified and retrained. Our
architecture does not have this limitation. Lei et al. (2020) proposed
a design similar to that of Park et al. (2020), but they used attention
layers (Vaswani et al., 2017) along with recurrent layers for feature
extraction.

The approach presented in this work falls into the model-free cat-
egory, but is distinct from previous works in some key respects. The
aforementioned approaches assume a fixed number of assets during
training and testing. Therefore, adding new assets to those methods
requires a change in design, since the input and output layers of those
networks are a function of that fixed number. Additionally, if the
number of assets in the market is large, the size of those networks may
become inconveniently large as well. To make our design independent
of the number of assets, the input layers of the network separately pro-
cess each of them and the results are combined using weighting layers
in the network output. These changes make our approach sample-
efficient because the entire dataset is used instead of a segment of some
specific number of assets. Additionally, the network does not need to
be adjusted or retrained if new assets are suddenly introduced into the
market.

3. Problem definition

This section introduces the concepts of market, investor and trading
session, as well as the mathematical definition of portfolio manage-
ment.

3.1. Market

A financial market is an environment where investors trade assets
to obtain profit. The prices of assets change over time. Hence, by
predicting these changes, investors can purchase assets which may
increase in value and generate profit from those assets.

In all markets, there is at least one asset which is considered to
keep its value constant over time. Prices of all assets are measured
with respect to this special asset, and it can be used to purchase any
asset in the market. Hence, it is referred to as cash. In stock and
fiat currency markets, the most common cash asset is the U.S. Dollar
(USD). In cryptocurrency markets, on the other hand, the most popular
is the Tether1 (USDT). This is because the USDT was designed to
keep its exchange rate constant with respect to the USD (Berentsen &
Schär, 2019); hence, cryptocurrency investors who want to close their
positions or halt their trading sessions can rapidly exchange their assets
for this risk-free asset.

3.2. Portfolio

In stock markets, the specific amounts of assets held by an investor
are named shares. Thus, we termed the vector containing the specific
amounts of assets held by an investor the share vector. The share vector
is denoted by 𝒒 and its entries are denoted as 𝑞𝑖, where 𝑖 ∈ {0, 1,… , 𝑛−
1} in a market with n assets. The entries are measured in cash units, and
the index 0 is used for the cash asset. The sum of the entries of 𝒒 is the
‘total portfolio value’; it represents the money an investor would make
by selling all the assets at that moment (without counting transaction

1 https://tether.to.
3

Fig. 2. Trading process diagram.

costs), and it is denoted by 𝑄. A vector containing the proportional
contributions of each asset to the total portfolio value is named the
portfolio vector, denoted by 𝒑, and it is computed by taking the share
vector divided by the total portfolio value, i.e. 𝒒∕𝑄. The entries of 𝒑
are computed using Eq. (1).

𝑝𝑖 = 𝑞𝑖∕𝑄 (1)

Only long trading is considered in this formulation. Investors begin
a trading session with some capital, and all profits are obtained by pur-
chasing assets that gain value during that session. Further, borrowing
is not allowed, and neither is short selling nor margin trading. Hence,
the entries of both 𝒑 and 𝒒 at every moment are non-negative, and the
sum of the entries of 𝒑 adds up to 1. Therefore, there must be at least
one 𝑝𝑘 and 𝑞𝑘 strictly positive at every moment.

3.3. Trading session

In stock markets, trading sessions are specific hours during working
days in which investors are allowed to exchange stocks. However,
cryptocurrency markets do not have this limitation, since they are
open 24 h. Nonetheless, we use the term trading session for the time in
which the implemented algorithms are allowed to perform transactions
in a simulated environment. In our experiments, trading sessions are
subdivided in periods of equal length, which are named holding periods,
since transactions are only allowed at the end of each of them.

The asset prices changing at every moment due to the interactions
between investors and market is called market dynamics. Hence, portfo-
lio vectors at the beginning and end of each period generally differ; let
us denote these vectors by 𝒑[𝑡] and 𝒑′[𝑡], respectively, for some period
𝑡 during a trading session. The entries of these vectors are related by
Eq. (2), where 𝑐𝑖[𝑡] and 𝑐𝑖′[𝑡] are the prices of each asset at the beginning
and end of period 𝑡, respectively. Eq. (2) states the change in the value
of some asset 𝑖 during period 𝑡 is proportional to the amount held by
the investor and the ratio between the prices at the beginning and the
end of that period.

𝑞𝑖
′
[𝑡] =

𝑞𝑖[𝑡]𝑐𝑖
′
[𝑡]

𝑐𝑖[𝑡]
(2)

At the end of each period, the recent history of the market is ana-
lyzed to propose a portfolio vector that is likely to increase its value in
the subsequent period. The market history consists of prices, volumes,
market capitalizations and other features of the assets recorded in the
latest periods of the trading session. Fig. 2 depicts the steps of a trading
session. In this study, the analysis of the market history and proposition
of portfolio vectors is carried out by a deep neural network, which is
trained using RL. The design of our network and the training process
are described in Section 4.

In general, the portfolio vector chosen by the network for period 𝑡+1
and the portfolio held by the agent at the end of period 𝑡 differ, because
the purpose of the network is to propose assets that have the potential
to increase their value in the near future, which are not necessarily
those assets held by the agent at that moment. Therefore, some assets
need to be exchanged to obtain the portfolio proposed by the network.
The exchange is made in two steps. First, shares of some assets are sold,

https://tether.to

Expert Systems With Applications 164 (2021) 114002C. Betancourt and W.-H. Chen
and the earnings from those transactions are added to the cash. Then,
new assets are purchased using the accumulated cash.

However, all transactions have costs proportional to the traded
amounts, and those costs decrease the total portfolio value. Thus, it is
important to trade efficiently. The problem of finding a set of transac-
tions that yield a desired portfolio, in this case the one proposed by the
network, has multiple solutions in general, and different solutions give
different decrements in portfolio value. Hence, the use of optimization
techniques is necessary to obtain a set of optimal transactions. The ratio
between the portfolio values, before and after the transactions, gives a
measure of the loss due to those transactions; this ratio is shown in
Eq. (3). The best set of transactions is the one leading to the maximum
value of 𝜇. The steps to obtain those optimal transactions are described
in Section 5.

𝜇[𝑡+1] =
𝑄[𝑡+1]

𝑄′
[𝑡]

(3)

Finally, the performances of investors are evaluated using the earn-
ings and losses obtained during trading sessions. The main objective of
investors is to obtain net increments in total portfolio value, i.e. profits
from the invested capital. However, profit is not the only way to
analyze the performance of a set of investments. The oscillations of the
earning and losses seen by an investor during a trading session are used
to measure the risk of those investments. Thus, our trading methods are
evaluated using both profit-seeking and risk-aversion metrics, which
are described in Section 6.2.

In short, due to the market dynamics, it is possible to obtain
profits by trading assets. To do this, appropriate portfolios have to be
periodically selected, and optimal transactions have to be computed
and implemented to satisfy the selected portfolios. The details of our
solutions to these problems are described below.

4. Proposed method

A trading session can be naturally formulated in the RL framework.
In an RL process, an agent visits the states of an environment and takes
actions in each visited state. In return, the environment gives rewards
to the agent for taking those actions. After the agent executes an action,
the environment evolves into a new state due to both the environmental
dynamics and the action itself. An episode is the set of interactions
between the agent and environment from its initialization until a final
state is visited. The environmental dynamics are the set of rules by
which the environment changes over time, which are not necessarily
known by the agent, but can be indirectly measured using the data
generated in the process, i.e. states, actions and rewards. These data
are also used to improve the performances of agents in future episodes.
This is typically done by optimizing a policy function which depends on
the rewards received in previous episodes. This framework is suitable
for asset trading because the concepts of the environment, agents and
rewards are analogous to those of markets, investors and profits. A state
consists of the market history at some specific point in time in which
the investor is allowed to perform transactions. The action is the set
of transactions made by the investor, guided by market history. The
transition between states is a waiting period of time in which prices
change due to the market dynamics. The rewards are the actual profits
or losses obtained by the investor at the end of the period due to the
transactions made. States, actions and rewards are represented by 𝑠,
𝑎 and 𝑟, respectively. The trading process in the framework or RL is
depicted in Fig. 3.

4.1. Portfolio management as an RL process

The iteration 𝑡 of the trading process begins when the agent arrives
at state 𝑠[𝑡]; this is depicted in the upper part of Fig. 3. State 𝑠[𝑡] is the
market history at that specific time, which is represented by a tensor
with dimensions 𝑛 × 𝑓 × 𝑘, where 𝑛 is the number of available assets
4

Fig. 3. Block diagram of the trading environment.

in the market, 𝑓 is the number of features per asset, and 𝑘 represents
the latest steps of the process that the agent is allowed to observe. The
chosen features 𝑓 are: open, close, maximum and minimum prices in
the period, volume, quote-asset volume and the entry of the portfolio
corresponding to that asset, a total of 7 features.

The state 𝑠[𝑡] is analyzed by the agent to decide on the best possible
action 𝑎[𝑡] to take. The action 𝑎[𝑡] is a vector containing the shares of
the assets to be sold and acquired for the next period. These values
are computed by the policy. A policy is any map taking states as inputs
and assigning actions as outputs. This map is typically implemented
using neural networks. In this work, the policy has two parts: policy
network and transaction optimizer. Our policy network has two gated-
recurrent-unit layers (GRU) (Cho et al., 2014). The policy network is
denoted by 𝜋𝜃 , where the subindex 𝜃 represents the weights of the
network that need to be optimized. The output of the policy network is
the proposed portfolio vector 𝒑[𝑡]. The action 𝑎[𝑡] is computed using the
desired portfolio 𝒑[𝑡], the portfolio in that moment 𝒑′[𝑡−1], and the fees
for trading the assets. This process is described in Section 5.

The action 𝑎[𝑡], which carries the desired amounts to be sold and
acquired, is executed in the asset exchange of the environment, resulting
in a new set of assets satisfying the portfolio vector proposed by the
network. The following step in the process is a waiting time, in which
the state 𝑠[𝑡] evolves into 𝑠[𝑡+1], and consequently 𝒒[𝑡] evolves into 𝒒′[𝑡]
due to the market dynamics. The entries of 𝒒′[𝑡] are passed through the
reward function which gives the reward for step 𝑡. Finally, once the
new state 𝑠[𝑡+1] is reached, the reward 𝑟[𝑡] is given to the agent and a
new cycle begins.

The reward 𝑟[𝑡] is a scalar value representing the performance of the
agent in the current period. The reward is computed using a reward
function, which in a trading environment depends on the earnings
and losses received by the agent in recent periods. In this work, two
financial measures are used for this purpose: the period return and the
differential Sharpe ratio (Moody et al., 1998). Reward functions are
analogous to overall performance measures, but they are computed for
individual periods instead of the entire process. Hence, both reward
functions and overall performance measures are described together in
Section 6.

The process finishes when a maximum allowed number of states
have been visited. When this happens, the rewards are used to compute
the total discounted reward (𝑅), shown in Eq. (4). This is a performance
measure used to train the policy. The variable 𝛾 in the equation is
named the discount factor, and it lies in the open interval (0, 1], 𝑡 is
the index of each step in the process, and 𝑇 is the index of the terminal
state. The interpretation of Eq. (4) is agents value earlier rewards more
than later ones. From a financial point of view, this means if large
earnings are obtained early, the potential to obtain large final profits

Expert Systems With Applications 164 (2021) 114002C. Betancourt and W.-H. Chen
increases, because profit depends on both the initial capital and enough
time for the assets to gain value.

𝑅 =
𝑇
∑

𝑡=1
𝛾 𝑡−1𝑟[𝑡] (4)

4.2. Policy optimization

A policy is considered optimal if it maximizes the total expected
discounted reward of the process. The problem of finding optimal
policies is generally hard, but reasonable approximations are obtained
using RL algorithms. Since our architecture uses an RNN, we chose
Proximal Policy Optimization (PPO) (Schulman et al., 2017) to train
our policies, which is an RL algorithm compatible with this type of
architecture. PPO is an actor–critic algorithm, meaning it not only
retrieves a policy 𝜋 (actor), but it also retrieves a value-function 𝑣𝜋 (𝑠)
(critic), which estimates the value of the discounted reward the agent
will receive at the end of the process following policy 𝜋 starting from
any state 𝑠.

On each iteration cycle of PPO, a specific number of copies of
the policy (named workers) are created and assigned to copies of
the environment. Workers interact with their environments during a
specific number of steps, and data of those interactions are stored in
the memory. These data are named rollouts, and are used to improve
the policy at each iteration. Even though the workers are identical,
the data collected by them differs because PPO uses stochastic policies
during training. This means noise is added to the outputs of workers;
consequently, when they land in the same state, they will take slightly
different actions. Thus, adding variations to the generated data, which
leads to training robust policies. Once the rollouts are complete, the
data generated are mixed and divided into mini-batches, which are
used to improve the policy by applying the Adam-optimizer (Kingma
& Ba, 2014) to the PPO objective function, which is shown in Eq. (5).
This objective function is equal to the clip objective function minus a
constant coefficient multiplied by the value-function loss.

𝐿𝑃𝑃𝑂(𝜃) = 𝐿𝑐𝑙𝑖𝑝(𝜃) −𝑤𝑣𝐿𝑣(𝜃) (5)

The key feature of PPO is its clip objective function, shown in
Eq. (6). In this formula, 𝑢(𝜃) represents the probability ratio between
new and all policies. This ratio is computed dividing the likelihood of
the action taken by the current policy at a state 𝑠 by the likelihood
of the previous policy choosing the same action at the same state; this
is shown in Eq. (7). 𝐴̂[𝑡] in Eq. (6) is the generalized advantage (GA),
introduced by Schulman et al. (2015), computed using Eqs. (8) and (9).
The idea behind the PPO objective function is small differences between
consecutive policies result in stable training processes. The clip function
and hyper-parameter 𝜖 in Eq. (6) ensure that the difference between the
actions of policies before and after an iteration cycle are enclosed in a
small range.

𝐿clip(𝜃) = E
[

min
(

𝑢(𝜃)𝐴̂[𝑡], clip (𝑢(𝜃), 1 − 𝜖, 1 + 𝜖) 𝐴̂[𝑡]
)]

(6)

𝑢(𝜃) =
𝜋𝜃(𝑎|𝑠)
𝜋𝜃′ (𝑎|𝑠)

(7)

𝐴̂[𝑡] =
𝑇−𝑡−1
∑

𝑖=0
(𝛾𝜆)𝑖𝛿[𝑡+𝑖] (8)

𝛿[𝑡] = 𝑟[𝑡] − 𝑣𝜋
(

𝑠[𝑡]
)

+ 𝛾𝑣𝜋
(

𝑠[𝑡+1]
)

(9)

The value-function loss, shown in Eq. (10), is the squared error
between the predictions of the value function and the real discounted
returns obtained by the agents in the rollouts. The variable 𝑅[𝑡] in the
equation is the discounted reward computed from state 𝑡, and 𝑤𝑣 is
weight of the value-function loss. The expectations in these formulas
are averages over the samples stored in the rollouts.

𝐿𝑣(𝜃) = E
[

(

𝑣𝜋
(

𝑠[𝑡]
)

− 𝑅[𝑡]
)2
]

(10)
5

Fig. 4. Actor–Critic neural network architecture.

4.3. Market with a dynamic number of assets

Several changes were made to the original PPO architecture to make
the process independent of the number of assets in the market. The
schematic of our actor–critic architecture is shown in Fig. 4. The archi-
tecture allows both the observation space and action space to change
dynamically depending on the number of assets. Note, the values of
the inputs are normalized before being passed to the recurrent layers.
The normalization is done for each asset individually, and it is done
separating the features into two groups: price features (open, close,
maximum and minimum) and volume features (volume and quote-asset
volume). In both groups, features are mapped to values in the interval
[0, 1]. This is done by a linear mapping which transforms the minimum
and maximum values of each group to zero and one, respectively. The
normalization map is shown in Eq. (11), where 𝐹 represents a group
of features and 𝑓 an individual feature.

𝑓𝑛𝑜𝑟𝑚𝑒𝑑 =
𝑓 − 𝑚𝑖𝑛(𝐹)

𝑚𝑎𝑥(𝐹) − 𝑚𝑖𝑛(𝐹)
(11)

The feature tensor of each asset is passed through the network
separately and independently. This is equivalent to cloning the network
for each asset. In this way an independent evaluation of the potential to
increase the value of each asset is obtained. Additionally, an artificial
feature tensor is used for the cash-asset as well. In this case, the price
features were set to 1 and the volume features to 0. This is done to give
the network a reference point to evaluate the rest of the assets. Hence,
a measure of potential growth is given to each asset as an output of
the recurrent layers. These outputs are concatenated to the portfolio
vector entries of each asset. These new features are passed through a
linear layer and a softmax layer that retrieves the desired output vector.
The reason for having these final layers is to penalize assets that are not
held by the agent. This is done to avoid unnecessary transactions, since
they reduce total portfolio value.

Note, the information is passed separately through the network for
each asset, and it is only combined before the output layers; this makes

Expert Systems With Applications 164 (2021) 114002C. Betancourt and W.-H. Chen

b
s
t
a
a
𝑦
t
t
t
I
m
h
t

𝑞

a
a
E
a
E
b
a
c

N
t

𝑞

a
p
t
i
w
a
e
s

the network independent of the number of assets in the market. This
architecture differs in several key respects to those designed for a fixed
number of assets. Our design uses all the available data of the market,
instead of only using the data of a small subset of assets. This makes
the resulting network more robust at processing assets that were never
seen by the network. Additionally, our network requires less memory
because the input does not depend on the number of assets but only on
the number of features. A possible disadvantage of our design is cor-
relations between assets may not be found. However, our architecture
is able to process higher amounts of data during training; therefore, a
more general space of solutions is explored obtaining higher robustness
than other approaches. The method used to train our agents is summa-
rized in Algorithm 1. The values of all hyper-parameters are listed in
Table A.1.

Algorithm 1 Trading with dynamic number of assets (DNA)
Inputs:  (# of environment steps) ,  (# of parallel environments),
 (# of rollouts per epoch),  (# of mini-batches, 𝒃 and 𝒔 (fee vectors).
Outputs: 𝜋𝜃 ⊳ Policy network
1: Initialize action-state-reward buffer.
2: Reset all environments at random states.
3: for epoch 𝑖 = 1, 2, ...,  do ⊳  = ∕( × )
4: for worker 𝑗 = 1, 2, ..., do
5: for rollout 𝑘 = 1, 2, ..., do
6: 𝒑[𝑡+1] ← 𝜋𝜃(𝑠[𝑡])
7: 𝑎[𝑡] ← Trans-Opt(𝒑′[𝑡], 𝒑[𝑡+1], 𝒃, 𝒔) ⊳ LP (1)
8: Save to buffer: 𝑠[𝑡], 𝑎[𝑡], 𝑟[𝑡] and 𝑠[𝑡+1]
9: if 𝑡 + 1 = 𝑇 then ⊳ Terminal state

10: Reset environment at a random state.
11: Shuffle samples in buffer.
12: for Mini-batch 𝑗 = 1, 2, ..., do
13: 𝑠[𝑗], 𝑎[𝑗], 𝑟[𝑗], 𝑠[𝑗+1] ← draw samples from buffer.
14: 𝐴̂[𝑗] ← compute GA from samples.
15: 𝐿𝑃𝑃𝑂 ← compute using Eq. (10).
16: 𝜋𝜃 ← 𝐴𝑑𝑎𝑚(𝐿𝑃𝑃𝑂 , 𝛼, 𝛽1, 𝛽2) ⊳ Optimize 𝜋𝜃

5. Transaction optimization problem

The outputs of the policy network are the entries of the portfolio
vector 𝑝𝑖[𝑡]. In general 𝑝𝑖[𝑡] ≠ 𝑝𝑖′[𝑡−1], consequently some assets have to
e sold and others purchased to satisfy the desired portfolio vector. For
implicity, let us drop the time dependency of the expressions, since
his is understood by context, for instance 𝑝𝑖[𝑡] and 𝑝𝑖′[𝑡−1] are written
s 𝑝𝑖 and 𝑝′𝑖 , respectively. Let us also represent the shares acquired
nd sold per asset at some period by the non-negative variables 𝑥̂𝑖 and
̂𝑖, respectively. Then, the resulting amounts for non-cash assets due
o the transactions at that period are given by Eq. (12). This formula
ells the shares of any asset after the transactions are the shares before
hose transactions minus the sold amount plus the acquired amount.
ntuitively, either 𝑥̂𝑖 or 𝑦̂𝑖 should be exactly zero because it does not
ake sense to sell an asset and then buy it again in the same period;
owever, the optimization algorithm described at the end of this section
akes care of this issue.

𝑖 = 𝑞′𝑖 − 𝑦̂𝑖 + 𝑥̂𝑖, 𝑖 ∈ {1, 2,… , 𝑛 − 1} (12)

The shares sold for each asset are added to the cash, and that
mount is used to buy new assets. However, both buying and selling
ssets reduce total portfolio value. These conditions are represented in
q. (13), where 𝑏𝑖 and 𝑠𝑖 are the buying and selling fees for the 𝑖th
sset, and lie in the open interval [0, 1). Similar to the previous formula,
q. (13) states the amount of cash after transactions is the amount
efore transactions plus the cash obtained by selling the undesired
ssets minus the cash used to purchase new assets. In addition, it
ontains the amounts subtracted from the cash due to transaction costs.
6

a

ote, the losses due to transaction costs are proportional to both the
raded shares and the fees for each asset.

0 = 𝑞′0 +
𝑛−1
∑

𝑗=1
𝑦̂𝑗 −

𝑛−1
∑

𝑗=1
𝑥̂𝑗 −

𝑛−1
∑

𝑗=1
𝑠𝑗 𝑦̂𝑗 −

𝑛−1
∑

𝑗=1
𝑏𝑗 𝑥̂𝑗 (13)

Eqs. (12) and (13) need to be modified to incorporate the vari-
ble 𝜇 defined in Eq. (3), which represents the decrement in total
ortfolio value that needs to be maximized to obtain a set of optimal
ransactions. Additionally, the entries of the vector 𝒑 also have to be
ncorporated because this is the vector computed by the neural net-
ork. To obtain explicit expressions for 𝜇 and the entries of 𝒑, Eqs. (1)
nd (3) were substituted into Eqs. (12) and (13), and the resulting
xpressions were divided by 𝑄′. The results of these operations are
hown in Eqs. (14) and (15), where 𝑥𝑖 and 𝑦𝑖 are a new set of variables

defined by 𝑥𝑖 = 𝑥̂𝑖∕𝑄′ and 𝑦𝑖 = 𝑦̂𝑖∕𝑄′.

𝜇𝑝𝑖 = 𝑝′𝑖 − 𝑦𝑖 + 𝑥𝑖, 𝑖 ∈ {1, 2,… , 𝑛 − 1} (14)

𝜇𝑝0 = 𝑝′0 +
𝑛−1
∑

𝑗=1
(1 − 𝑠𝑗)𝑦𝑗 −

𝑛−1
∑

𝑗=1
(1 + 𝑏𝑗)𝑥𝑗 (15)

To optimize 𝜇, an explicit function for this variable was obtained
by adding the 𝑛 − 1 expressions represented by Eqs. (14) and (15), the
resulting expression is shown in Eq. (16).

𝜇 = 1 −
𝑛−1
∑

𝑗=1
𝑠𝑗𝑦𝑗 −

𝑛−1
∑

𝑗=1
𝑏𝑗𝑥𝑗 (16)

Note, Eqs. (14)–(16) are linear functions of 𝜇, 𝑥𝑖 and 𝑦𝑖; hence, using
these equations the transaction optimization problem can be formu-
lated as an LP. If a feasible solution exists for some LP, then the optimal
solution to that LP can always be written as a closed-form expression
using Dantzig’s Simplex Method (Dantzig, 1998), or approximated up to
any desired accuracy using other convex optimization techniques (Boyd
& Vandenberghe, 2004).2

To reduce one decision variable in the problem, Eq. (16) is substi-
tuted into Eq. (14), resulting in Eq. (17), and in this way 𝜇 only appears
explicitly in the objective function. Note, Eq. (15) is implicit in Eqs. (16)
and (17), so it is omitted in the formulation.
(

1 −
𝑛−1
∑

𝑗=1
𝑠𝑗𝑦𝑗 −

𝑛−1
∑

𝑗=1
𝑏𝑗𝑥𝑗

)

𝑝𝑖 = 𝑝′𝑖 − 𝑦𝑖 + 𝑥𝑖 (17)

Additionally, no more than the available shares held by the investor
can be sold. This condition is explicitly shown in Eq. (18). Similarly, the
amount expended purchasing assets and paying transaction fees has to
be at most the cash before the transactions plus the amount obtained
by selling shares, therefore, Eq. (19) has to be satisfied as well.

𝑞′𝑖 ≥ 𝑦̂𝑖 (18)

𝑞′0 +
𝑛−1
∑

𝑗=1
𝑦̂𝑗 ≥

𝑛−1
∑

𝑗=1
𝑥̂𝑗 +

𝑛−1
∑

𝑗=1
𝑏𝑗 𝑥̂𝑗 +

𝑛−1
∑

𝑗=1
𝑠𝑗 𝑦̂𝑗 (19)

Dividing Eqs. (18) and (19) by 𝑄′ and rearranging terms result in
Eqs. (20) and (21) that are equivalent to Eqs. (18) and (19), but contain
𝑥𝑖 and 𝑦𝑖, which are the decision variables of the LP described below.

𝑝′𝑖 ≥ 𝑦𝑖 (20)

𝑝′0 ≥ −
𝑛−1
∑

𝑗=1
(1 − 𝑠𝑗)𝑦𝑗 +

𝑛−1
∑

𝑗=1
(1 + 𝑏𝑗)𝑥𝑗 (21)

The LP shown in Eq. (22) was stated using Eq. (16) as the objective
function, Eq. (17) as the set of equality constraints and Eqs. (20) and
(21) as the set of inequality constraints. This LP is always feasible; thus,

2 There are plenty of LP solvers written in C++, Python and other languages
vailable on internet at no cost.

Expert Systems With Applications 164 (2021) 114002C. Betancourt and W.-H. Chen
an optimal solution for it can always be found efficiently using convex
optimization techniques. A proof of this fact is given in Appendix B.

𝐋𝐢𝐧𝐞𝐚𝐫𝐏𝐫𝐨𝐠𝐫𝐚𝐦 ∶

𝐌𝐚𝐱𝐢𝐦𝐢𝐳𝐞 ∶𝜇 = 1 −
𝑛−1
∑

𝑗=1
𝑠𝑗𝑦𝑗 −

𝑛−1
∑

𝑗=1
𝑏𝑗𝑥𝑗

𝐒𝐮𝐛𝐣𝐞𝐜𝐭𝐭𝐨 ∶

𝟏.𝑦𝑖 − 𝑥𝑖 +

(𝑛−1
∑

𝑗=1
𝑠𝑗𝑦𝑗 +

𝑛−1
∑

𝑗=1
𝑏𝑗𝑥𝑗

)

𝑝𝑖 = 𝑝′𝑖 − 𝑝𝑖

𝟐.𝑦𝑖 ≤ 𝑝′𝑖

𝟑. −
𝑛−1
∑

𝑗=1
(1 − 𝑠𝑗)𝑦𝑗 +

𝑛−1
∑

𝑗=1
(1 + 𝑏𝑗)𝑥𝑗 ≤ 𝑝′0

𝟒.𝑦𝑖, 𝑥𝑖 ≥ 0, for 𝑖 ∈ {1, 2,… , 𝑛 − 1}

(22)

6. Experiments

This section describes the setups of our experiments. These in-
clude dataset features, metrics for evaluating the algorithms and im-
plementation details. We assume the amounts traded by our agents
are sufficiently small that the prices of assets are not affected by these
transactions, and the available shares in the market are large enough
that transactions are executed immediately.

6.1. Dataset

The dataset of Binance3 was used in all our experiments. Binance
is one of the largest cryptocurrency markets in the world,4 and its
dataset can be accessed at no cost through the website’s API. The data
used in this work corresponds to the market history from 2017-08-17
to 2019-11-01. Only assets that can be directly exchanged for USDT
were considered, these include Bitcoin, Ethereum, Litecoin and others.
Binance market has grown rapidly since its creation in 2017. Note,
during the selected period, the number of active assets that can be
exchanged for USDT incremented from three to 85, as shown in Fig. 5.
The dataset consists of asset features recorded in equal-length sampling
periods. The dataset has multiple available sampling periods; three of
them were chosen for our experiments: 30 min, six hours and one day.
There are nine features available for each asset at each sampled period,
which include four price features: open, high, low, and close prices;
four volume features: standard, quote-asset, taker-buy asset and taker-
buy-quote-asset volumes; and the number of trades in the sampled
period. The first six features were used as inputs for our network. The
data was divided chronologically into two parts. The first 60% of the
data was used for training and the rest for testing. This type of division
was chosen because investors use past price behavior of assets to predict
future tendencies or repetition of patterns. The test dataset corresponds
to 11 months of asset history. Hence, the results can give a general idea
of the expected average performances of our methods at any point of
the year. Missing data were completed using linear interpolation. Fees
were set as in the Binance exchange website, 0.1% for all assets except
BNB (coin), which has a tax of 0.05%.5 Table 1 summarizes the main
properties of the dataset.

6.2. Metrics

Two metrics were used in this study for evaluating the profit-seeking
and risk-aversion behaviors of the implemented algorithms: the total
return (TR) and the Sharpe ratio (SR) (Sharpe, 1994). The total return is
the total profit or loss obtained by the investor in a trading session, and

3 www.binance.com.
4 According to Coin Market Cap (www.coinmarketcap.com).
5

7

This discount changes after the first 12 months of use of the platform.
Fig. 5. Number of active assets in Binance market in the period: 2017-08-17 to
2019-11-01 (only assets directly exchangeable for USDT were counted).

Table 1
Dataset properties.

Feature Value

Total days 806
Training days 484 (60%)
Test days 322 (40%)
of assets 3-85
of features 9
Fees (except BNB) 0.1%
Fees BNB 0.05%

of entries per sampling period

30 minutes 38688
six hours 3224
one day 806

it is computed using Eq. (23). This measure only considers the portfolio
values at the beginning and end of a session. Thus, it gives high scores
to trading strategies that seek high profits.

𝑇𝑅 =
𝑄[𝑇] −𝑄′

[0]

𝑄′
[0]

(23)

On the other hand, the SR was used to evaluate the risks taken by
the algorithms during the trading sessions. The SP is computed using
Eq. (24), where the mean and standard deviation are taken for the
period returns (PR) of all steps in the trading session. PRs are computed
using Eq. (25). The risk of an investment is the uncertainty the investor
has about the future price of an asset that he or she intends to buy
or sell, which is hard to evaluate. Instead, the SR measures the risk
of a set of investments after observing the outcome of them. This is
done by computing the statistical measures of the earnings and losses
at each period, which are represented by PR. Note, PR and TR are
similar expressions; the difference between them is PR is computed
for each individual step and TR is computed for the entire process.
The SP and the TR favor algorithms which seek high returns; however,
the difference between them is SR penalizes portfolios that experiment
large oscillations in gain in the trading sessions.

𝑆𝑅 =
mean

𝑡
(𝑃𝑅[𝑡])

std
𝑡
(𝑃𝑅[𝑡])

(24)

𝑃𝑅[𝑡] =
𝑄[𝑡] −𝑄′

[𝑡−1]

𝑄′
[𝑡−1]

(25)

6.3. Reward functions

The value of 𝑟[𝑡] is a measure of performance of an agent at period
𝑡. Any real scalar function that maps good performances to high values
can be used to compute rewards. In trading environments, the most

http://www.coinmarketcap.com

Expert Systems With Applications 164 (2021) 114002C. Betancourt and W.-H. Chen

T
S
3

.

Table 2
Trading session lengths and holding periods.

Session length Holding period # of periods

1 day 30 min 48
14 days 6 h 56
30 days 1 day 30

Table 3
Summary of the implemented algorithms.

Algorithm # of # of Description
assets features

TD(𝜆) (Pendharkar & Cusatis, 2018) 2 2 Value function
CNN (Jiang & Liang, 2017) 12 14 Policy gradient
DQN (Bu & Cho, 2018) 8 8 Double-Q learning

DNA-R (ours) 3 - 85 6 PPO, period return
DNA-S (ours) 3 - 85 6 PPO, Diff. Sharpe ratio

natural choice for this purpose is the PR (Eq. (25)), which is the profit
or loss in each period. However, this function does not consider risks.
The issue of finding a risk function that can be computed at each
step, and can be used as reward function in RL processes, was first
studied by Moody et al. (1998). They derived an approximation for the
contributions to the SP at each step, termed the differential Sharpe ratio
(DSR), which is computed using Eq. (26). They reported agents trained
with the DSR performed better than those trained with measures that
do not consider risks. Both PR and DSR were used to train our agents.
We named our agents DNA for the dynamic number of assets. The agent
trained with the PR is named DNA-R, and the one trained with the DSR
is named DNA-S.

𝐷𝑆𝑅[𝑡] =
𝐵[𝑡−1]𝛥𝐴[𝑡] − 0.5𝐴[𝑡−1]𝛥𝐵[𝑡]

(

𝐵[𝑡−1] − 𝐴2
[𝑡−1]

)3∕2

𝐴[𝑡] = 𝐴[𝑡−1] + 𝜂
(

𝑟[𝑡] − 𝐴[𝑡−1]
)

𝐵[𝑡] = 𝐵[𝑡−1] + 𝜂
(

𝑟2[𝑡] − 𝐵[𝑡−1]

)

(26)

6.4. Experiment setups

Three different trading session lengths were chosen for our backtest
experiments: 24 h, 14 days and 30 days, each of them with holding
periods: 30 min, six hours and one day, respectively. These setups were
chosen to test the robustness of our methods to changes in holding
periods and trading session lengths. The setups are summarized in
Table 2.

During training, episodes were drawn randomly across the train
dataset. For testing, the algorithms were run through all the episodes of
the test dataset; the performances shown in this work are the average
TR and SR obtained by each algorithm during testing.

6.5. Baselines

Our agents were compared to methods presented in (Bu & Cho,
2018; Jiang & Liang, 2017; Pendharkar & Cusatis, 2018); these base-
lines were described in the Section 2. The main features of our agents
and baselines are summarized in Table 3. All baselines trade a fixed
number of assets, which are the cash asset and those assets with the
highest capitalizations in the market.

7. Results

In the first experiment, which corresponds to trading sessions of
1 day and holding periods of 30 min, DNA-S obtained the highest
results; these are shown in Table 4. DNA-S obtained an average TR of
0.224, which is more than double the score of the closest competitor
8

CNN, which obtained 0.088. DNA-R obtained the third best results with
able 4
core summary for the trading sessions with length: one day and holding periods:
0 min.
Algorithm Total Return Sharpe Ratio

TD(𝜆) (Pendharkar & Cusatis, 2018) 0.014 ± 0.021 0.064 ± 0.107
CNN (Jiang & Liang, 2017) 0.088 ± 0.086 0.274 ± 0.127
DQN (Bu & Cho, 2018) −0.019 ± 0.024 −0.180 ± 0.176

DNA-R (ours) 0.041 ± 0.042 0.166 ± 0.153
DNA-S (ours) 𝟎.𝟐𝟒𝟒 ± 𝟎.𝟏𝟓𝟒 𝟎.𝟒𝟔𝟖 ± 𝟎.𝟐𝟎𝟎

Table 5
Score summary for the trading sessions with length: 14 days and holding periods: 6 h

Algorithm Total Return Sharpe Ratio

TD(𝜆) (Pendharkar & Cusatis, 2018) 0.224 ± 0.183 0.317 ± 0.125
CNN (Jiang & Liang, 2017) 0.680 ± 0.257 0.411 ± 0.088
DQN (Bu & Cho, 2018) 1.108 ± 0.503 𝟎.𝟔𝟏𝟖 ± 𝟎.𝟎𝟖𝟖

DNA-R (ours) 𝟐.𝟐𝟖𝟑 ± 𝟏.𝟑𝟕𝟏 0.533 ± 0.095
DNA-S (ours) 0.468 ± 0.314 0.336 ± 0.150

Table 6
Score summary for the trading sessions with length: 30 days and holding periods: one
day.

Algorithm Total Return Sharpe Ratio

TD(𝜆) (Pendharkar & Cusatis, 2018) 0.329 ± 0.265 0.404 ± 0.126
CNN (Jiang & Liang, 2017) 1.012 ± 0.495 0.527 ± 0.143
DQN (Bu & Cho, 2018) 1.151 ± 0.521 0.661 ± 0.158

DNA-R (ours) 𝟕.𝟏𝟏𝟔 ± 𝟒.𝟓𝟔𝟔 𝟎.𝟕𝟓𝟖 ± 𝟎.𝟏𝟖𝟔
DNA-S (ours) 2.798 ± 2.065 0.609 ± 0.201

an average TR of 0.041. The other two approaches: DQN and TD(𝜆)
obtained the lowest scores, with average TRs close to zero. The average
SRs obtained by all the algorithms correlate to their TRs, for instance
DNA-S has the best average SR among the competing algorithms, which
is 0.468. Hence, in this setup, DNA-S not only sought high profits, but
also managed investment risks better than its competing approaches.

The results of the second experiment (trading sessions of 14 h
and holding periods of 6 h) show important contrasts with respect to
the previous experiment. DNA-R obtained the best average TR in this
setup, as shown in Table 5, but it did not obtain the best average SR.
The average TR of DNA-R in this setup was 2.283, but the standard
deviation was 1.371. This indicates the performances of this algorithm
over the course of a year could have large variations. The SR obtained
by this algorithm supports this observation. The best average SR in
this setup belong to DQN (0.618). Hence, DQN had higher stability in
the increments in portfolio value in the trading sessions. However, this
approach only obtained half as much average profit (1.08) as that of
DNA-R. CNN and DNA-S have the next best scores, which is surprising,
since these two approaches obtained the best results in the previous
experiment. Again, TD(𝜆) had the lowest performance. Nonetheless, its
results are better in this setup than in the previous one.

In the third setup (trading sessions of 30 days and holding periods
of one day), our agents obtained significantly higher scores than those
obtained by the baselines. These results are shown in Table 6. DNA-R
and DNA-S obtained the highest average TRs: 7.116 and 2.798, respec-
tively. On the other hand, the results of the baselines are actually very
similar to those of the previous experiment, even though the trading
session was twice as long. The SR scores correlate to those of the TR,
except for DQN, which obtained a higher score than DNA-S.

In general, our methods adapted better than the baselines to changes
in holding periods and trading session lengths. Our experiments show
DNA-R is the most robust approach for both profit-seeking and risk-
aversion. The TRs and SRs obtained by this agent are good throughout
all setups, even though DNA-S had the best performance in the setup
with the shortest holding period. We also found being able to analyze
a large pool of assets is beneficial for the agent. Tables 4–6 show the

Expert Systems With Applications 164 (2021) 114002C. Betancourt and W.-H. Chen
Fig. 6. Examples of tests on the three setups: (a) Trading session with length: one day
and holding periods: 30 min (January, 2019). (b) Trading session with length: 14 days
and holding periods: 6 h (September, 2019). (c) Trading session with length: 30 days
and holding periods: one day (June and July, 2019).

correlation between the number of assets processed by the competing
approaches and their overall performances, for instance, the agent
that performed worst in all setups was TD(𝜆), which processed only
two assets. Fig. 6 depicts the evolution of the portfolio values of all
competing approaches in the three setups.

Based on these results, we believe our method is a step forward in
the automatic trading of cryptocurrencies. In this work, we included
transaction costs to make our simulations as close to real markets as
possible. Trading assets is risky, especially cryptocurrencies which are
extremely volatile. Our recommendation for institutional investors is to
use these methods along with loss limiting functions, such as stop-loss,
9

Table A.1
List of hyperparameters.

Hyperparameter Value

of environments () 10
of mini-batches () 10
of environment Steps () 100000
of Rollouts per epoch () 10
of optimization steps 10000
PPO decay rate (𝛾) 0.99
PPO value-loss coefficient (𝑤𝑣) 0.99
PPO clip parameter (𝜖) 0.2
PPO noise distribution  (𝜇, 𝜎2) 0, 0.01
GA parameter (𝜆) 0.95
of recurrent layers 2
Recurrent layers length 10
Adam-Optimizer (𝛼, 𝛽1, 𝛽2) 7e−4, 0.9, 0.999
DSR parameter (𝜂) 0.01

to mitigate the volatility of assets. Additionally, since it was assumed
the traded amounts have to be sufficiently small that prices of assets
are not affected, we recommend trading only small amounts. Further
research is necessary to assess the impact of the size of the investments
in automatic trading with RL.

8. Conclusions and future work

We introduced a method that performs portfolio management on
markets with transaction costs in which the number of assets is dy-
namic. Even though our method is able to integrate new assets into
the process during deployment, it does not require extra training or
memory and its implementation is straightforward. Our method was
tested on a cryptocurrency market outperforming state-of-the-art meth-
ods under three distinct setups. Additionally, a novel algorithm to
compute transactions with minimal costs, formulated as an LP, was
given in this work.

Future works include the implementation of the proposed method
into traditional markets such as stocks and fiat currency markets.
Additionally, due to its straightforward implementation, our method
is compatible with advanced trading strategies such as limit, trailing
and stop-loss; hence, future directions can also include the integration
of the mentioned mechanisms to the method.

CRediT authorship contribution statement

Carlos Betancourt: Conceptualization, Methodology, Software, Val-
idation, Formal analysis, Investigation, Data curation, Writing - origi-
nal draft, Writing - review & editing, Visualization. Wen-Hui Chen:
Resources, Writing - review & editing, Supervision.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Appendix A. Hyperparameters

See Table A.1.

Appendix B. Supplementary data

Supplementary material related to this article can be found online
at https://doi.org/10.1016/j.eswa.2020.114002.

https://doi.org/10.1016/j.eswa.2020.114002

Expert Systems With Applications 164 (2021) 114002C. Betancourt and W.-H. Chen

B

B

References

Aboussalah, A. M., & Lee, C.-G. (2020). Continuous control with stacked deep dynamic
recurrent reinforcement learning for portfolio optimization. Expert Systems with
Applications, 140, Article 112891.

erentsen, A., & Schär, F. (2019). Stablecoins: The quest for a low-volatility cryp-
tocurrency. In The economics of fintech and digital currencies (pp. 65–71). CEPR
Press.

oyd, S., & Vandenberghe, L. (2004). Convex Optimization. Cambridge university press.
Bu, S.-J., & Cho, S.-B. (2018). Learning optimal q-function using deep boltzmann

machine for reliable trading of cryptocurrency. In International conference on
intelligent data engineering and automated learning (pp. 468–480). Springer.

Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H.,
& Bengio, Y. (2014). Learning phrase representations using rnn encoder–decoder
for statistical machine translation. In Conference on empirical methods in natural
language processing (EMNLP 2014).

Corbet, S., McHugh, G., & Meegan, A. (2014). The influence of central bank monetary
policy announcements on cryptocurrency return volatility. In Investment management
and financial innovations 14, Iss. 4 (pp. 60–72). Business Perspectives, Publishing
Company.

Dantzig, G. B. (1998). Linear programming and extensions. Princeton university press.
Dempster, M. A., & Leemans, V. (2006). An automated fx trading system using adaptive

reinforcement learning. Expert Systems with Applications, 30, 543–552.
He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image

recognition. In Proceedings of the IEEE conference on computer vision and pattern
recognition (pp. 770–778). IEEE.

Heaton, J., Polson, N., & Witte, J. H. (2017). Deep learning for finance: Deep portfolios.
Applied Stochastic Models in Business and Industry, 33, 3–12.

Jeong, G., & Kim, H. Y. (2019). Improving financial trading decisions using deep q-
learning: Predicting the number of shares, action strategies, and transfer learning.
Expert Systems with Applications, 117, 125–138.

Jiang, Z., & Liang, J. (2017). Cryptocurrency portfolio management with deep rein-
forcement learning. In 2017 Intelligent systems conference (IntelliSys) (pp. 905–913).
IEEE.

Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. CoRR,
abs/1412.6980.

Lei, K., Zhang, B., Li, Y., Yang, M., & Shen, Y. (2020). Time-driven feature-aware jointly
deep reinforcement learning for financial signal representation and algorithmic
trading. Expert Systems with Applications, 140, Article 112872.

Liang, Z., Chen, H., Zhu, J., Jiang, K., & Li, Y. (2018). Adversarial deep reinforcement
learning in portfolio management. arXiv preprint arXiv:1808.09940.
10
Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D., &
Riedmiller, M. (2013). Playing atari with deep reinforcement learning. arXiv
preprint arXiv:1312.5602.

Moody, J., & Saffell, M. (2001). Learning to trade via direct reinforcement. IEEE
transactions on neural Networks, 12, 875–889.

Moody, J., Wu, L., Liao, Y., & Saffell, M. (1998). Performance functions and rein-
forcement learning for trading systems and portfolios. Journal of Forecasting, 17,
441–470.

Nakamoto, S. (2008). Bitcoin: A peer-to-peer electronic cash system.
Narayanan, A., Bonneau, J., Felten, E., Miller, A., & Goldfeder, S. (2016). Bitcoin and

cryptocurrency technologies: A comprehensive introduction. Princeton University Press.
Niaki, S. T. A., & Hoseinzade, S. (2013). Forecasting s&p 500 index using artifi-

cial neural networks and design of experiments. Journal of Industrial Engineering
International, 9(1).

OpenAI, Andrychowicz, M., Baker, B., Chociej, M., Józefowicz, R., McGrew, B.,
Pachocki, J., Petron, A., Plappert, M., Powell, G., Ray, A., Schneider, J., Sidor, S.,
Tobin, J., Welinder, P., Weng, L., & Zaremba, W. (2020). Learning dexterous
in-hand manipulation. International Journal of Robotics Research, 39, 3–20.

Ormos, M., & Urbán, A. (2013). Performance analysis of log-optimal portfolio strategies
with transaction costs. Quantitative Finance, 13, 1587–1597.

Park, H., Sim, M. K., & Choi, D. G. (2020). An intelligent financial portfolio trading
strategy using deep q-learning. Expert Systems with Applications, Article 113573.

Pendharkar, P. C., & Cusatis, P. (2018). Trading financial indices with reinforcement
learning agents. Expert Systems with Applications, 103, 1–13.

Schulman, J., Moritz, P., Levine, S., Jordan, M., & Abbeel, P. (2015). High-dimensional
continuous control using generalized advantage estimation. arXiv preprint arXiv:
1506.02438.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., & Klimov, O. (2017). Proximal
policy optimization algorithms. arXiv preprint arXiv:1707.06347.

Sharpe, W. F. (1994). The sharpe ratio. Journal of portfolio management, 21, 49–58.
Van Hasselt, H., Guez, A., & Silver, D. (2016). Deep reinforcement learning with double

q-learning. In Thirtieth AAAI conference on artificial intelligence.
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł.,

& Polosukhin, I. (2017). Attention is all you need. In Advances in neural information
processing systems (pp. 5998–6008).

Wu, X., Chen, H., Wang, J., Troiano, L., Loia, V., & Fujita, H. (2020). Adaptive stock
trading strategies with deep reinforcement learning methods. Information Sciences.

Zhang, J., & Maringer, D. (2013) Indicator selection for daily equity trading with
recurrent reinforcement learning. In Proceedings of the 15th annual conference
companion on Genetic and evolutionary computation (pp. 1757–1758).

http://refhub.elsevier.com/S0957-4174(20)30777-6/sb1
http://refhub.elsevier.com/S0957-4174(20)30777-6/sb1
http://refhub.elsevier.com/S0957-4174(20)30777-6/sb1
http://refhub.elsevier.com/S0957-4174(20)30777-6/sb1
http://refhub.elsevier.com/S0957-4174(20)30777-6/sb1
http://refhub.elsevier.com/S0957-4174(20)30777-6/sb2
http://refhub.elsevier.com/S0957-4174(20)30777-6/sb2
http://refhub.elsevier.com/S0957-4174(20)30777-6/sb2
http://refhub.elsevier.com/S0957-4174(20)30777-6/sb2
http://refhub.elsevier.com/S0957-4174(20)30777-6/sb2
http://refhub.elsevier.com/S0957-4174(20)30777-6/sb3
http://refhub.elsevier.com/S0957-4174(20)30777-6/sb4
http://refhub.elsevier.com/S0957-4174(20)30777-6/sb4
http://refhub.elsevier.com/S0957-4174(20)30777-6/sb4
http://refhub.elsevier.com/S0957-4174(20)30777-6/sb4
http://refhub.elsevier.com/S0957-4174(20)30777-6/sb4
http://refhub.elsevier.com/S0957-4174(20)30777-6/sb6
http://refhub.elsevier.com/S0957-4174(20)30777-6/sb6
http://refhub.elsevier.com/S0957-4174(20)30777-6/sb6
http://refhub.elsevier.com/S0957-4174(20)30777-6/sb6
http://refhub.elsevier.com/S0957-4174(20)30777-6/sb6
http://refhub.elsevier.com/S0957-4174(20)30777-6/sb6
http://refhub.elsevier.com/S0957-4174(20)30777-6/sb6
http://refhub.elsevier.com/S0957-4174(20)30777-6/sb7
http://refhub.elsevier.com/S0957-4174(20)30777-6/sb8
http://refhub.elsevier.com/S0957-4174(20)30777-6/sb8
http://refhub.elsevier.com/S0957-4174(20)30777-6/sb8
http://refhub.elsevier.com/S0957-4174(20)30777-6/sb9
http://refhub.elsevier.com/S0957-4174(20)30777-6/sb9
http://refhub.elsevier.com/S0957-4174(20)30777-6/sb9
http://refhub.elsevier.com/S0957-4174(20)30777-6/sb9
http://refhub.elsevier.com/S0957-4174(20)30777-6/sb9
http://refhub.elsevier.com/S0957-4174(20)30777-6/sb10
http://refhub.elsevier.com/S0957-4174(20)30777-6/sb10
http://refhub.elsevier.com/S0957-4174(20)30777-6/sb10
http://refhub.elsevier.com/S0957-4174(20)30777-6/sb11
http://refhub.elsevier.com/S0957-4174(20)30777-6/sb11
http://refhub.elsevier.com/S0957-4174(20)30777-6/sb11
http://refhub.elsevier.com/S0957-4174(20)30777-6/sb11
http://refhub.elsevier.com/S0957-4174(20)30777-6/sb11
http://refhub.elsevier.com/S0957-4174(20)30777-6/sb12
http://refhub.elsevier.com/S0957-4174(20)30777-6/sb12
http://refhub.elsevier.com/S0957-4174(20)30777-6/sb12
http://refhub.elsevier.com/S0957-4174(20)30777-6/sb12
http://refhub.elsevier.com/S0957-4174(20)30777-6/sb12
http://refhub.elsevier.com/S0957-4174(20)30777-6/sb13
http://refhub.elsevier.com/S0957-4174(20)30777-6/sb13
http://refhub.elsevier.com/S0957-4174(20)30777-6/sb13
http://refhub.elsevier.com/S0957-4174(20)30777-6/sb14
http://refhub.elsevier.com/S0957-4174(20)30777-6/sb14
http://refhub.elsevier.com/S0957-4174(20)30777-6/sb14
http://refhub.elsevier.com/S0957-4174(20)30777-6/sb14
http://refhub.elsevier.com/S0957-4174(20)30777-6/sb14
http://arxiv.org/abs/1808.09940
http://arxiv.org/abs/1312.5602
http://refhub.elsevier.com/S0957-4174(20)30777-6/sb17
http://refhub.elsevier.com/S0957-4174(20)30777-6/sb17
http://refhub.elsevier.com/S0957-4174(20)30777-6/sb17
http://refhub.elsevier.com/S0957-4174(20)30777-6/sb18
http://refhub.elsevier.com/S0957-4174(20)30777-6/sb18
http://refhub.elsevier.com/S0957-4174(20)30777-6/sb18
http://refhub.elsevier.com/S0957-4174(20)30777-6/sb18
http://refhub.elsevier.com/S0957-4174(20)30777-6/sb18
http://refhub.elsevier.com/S0957-4174(20)30777-6/sb19
http://refhub.elsevier.com/S0957-4174(20)30777-6/sb20
http://refhub.elsevier.com/S0957-4174(20)30777-6/sb20
http://refhub.elsevier.com/S0957-4174(20)30777-6/sb20
http://refhub.elsevier.com/S0957-4174(20)30777-6/sb21
http://refhub.elsevier.com/S0957-4174(20)30777-6/sb21
http://refhub.elsevier.com/S0957-4174(20)30777-6/sb21
http://refhub.elsevier.com/S0957-4174(20)30777-6/sb21
http://refhub.elsevier.com/S0957-4174(20)30777-6/sb21
http://refhub.elsevier.com/S0957-4174(20)30777-6/sb22
http://refhub.elsevier.com/S0957-4174(20)30777-6/sb22
http://refhub.elsevier.com/S0957-4174(20)30777-6/sb22
http://refhub.elsevier.com/S0957-4174(20)30777-6/sb22
http://refhub.elsevier.com/S0957-4174(20)30777-6/sb22
http://refhub.elsevier.com/S0957-4174(20)30777-6/sb22
http://refhub.elsevier.com/S0957-4174(20)30777-6/sb22
http://refhub.elsevier.com/S0957-4174(20)30777-6/sb23
http://refhub.elsevier.com/S0957-4174(20)30777-6/sb23
http://refhub.elsevier.com/S0957-4174(20)30777-6/sb23
http://refhub.elsevier.com/S0957-4174(20)30777-6/sb24
http://refhub.elsevier.com/S0957-4174(20)30777-6/sb24
http://refhub.elsevier.com/S0957-4174(20)30777-6/sb24
http://refhub.elsevier.com/S0957-4174(20)30777-6/sb25
http://refhub.elsevier.com/S0957-4174(20)30777-6/sb25
http://refhub.elsevier.com/S0957-4174(20)30777-6/sb25
http://arxiv.org/abs/1506.02438
http://arxiv.org/abs/1506.02438
http://arxiv.org/abs/1506.02438
http://arxiv.org/abs/1707.06347
http://refhub.elsevier.com/S0957-4174(20)30777-6/sb28
http://refhub.elsevier.com/S0957-4174(20)30777-6/sb30
http://refhub.elsevier.com/S0957-4174(20)30777-6/sb30
http://refhub.elsevier.com/S0957-4174(20)30777-6/sb30
http://refhub.elsevier.com/S0957-4174(20)30777-6/sb30
http://refhub.elsevier.com/S0957-4174(20)30777-6/sb30
http://refhub.elsevier.com/S0957-4174(20)30777-6/sb31
http://refhub.elsevier.com/S0957-4174(20)30777-6/sb31
http://refhub.elsevier.com/S0957-4174(20)30777-6/sb31

	Deep reinforcement learning for portfolio management of markets with a dynamic number of assets
	Introduction
	Related works
	Problem definition
	Market
	Portfolio
	Trading session

	Proposed method
	Portfolio management as an RL process
	Policy optimization
	Market with a dynamic number of assets

	Transaction optimization problem
	Experiments
	Dataset
	Metrics
	Reward functions
	Experiment setups
	Baselines

	Results
	Conclusions and future work
	CRediT authorship contribution statement
	Declaration of competing interest
	Appendix A. Hyperparameters
	Appendix B. Supplementary data
	References

