2015 10th International Conference on Availability, Reliability and Security

A Time Series Approach for Inferring Orchestrated
Probing Campaigns by Analyzing Darknet Traffic

Elias Bou-Harb, Mourad Debbabi, Chadi Assi
NCFTA Canada & Concordia University
Montreal, Quebec, Canada
(e_bouh, debbabi, assi)@encs.concordia.ca

Abstract—This paper aims at inferring probing campaigns
by investigating darknet traffic. The latter probing events refer
to a new phenomenon of reconnaissance activities that are
distinguished by their orchestration patterns. The objective is
to provide a systematic methodology to infer, in a prompt
manner, whether or not the perceived probing packets belong to
an orchestrated campaign. Additionally, the methodology could
be easily leveraged to generate network traffic signatures to
facilitate capturing incoming packets as belonging to the same
inferred campaign. Indeed, this would be utilized for early
cyber attack warning and notification as well as for simplified
analysis and tracking of such events. To realize such goals, the
proposed approach models such challenging task as a problem of
interpolating and predicting time series with missing values. By
initially employing trigonometric interpolation and subsequently
executing state space modeling in conjunction with a time-
varying window algorithm, the proposed approach is able to
pinpoint orchestrated probing campaigns by only monitoring
few orchestrated flows. We empirically evaluate the effectiveness
of the proposed model using 330 GB of real darknet data. By
comparing the outcome with a previously validated work, the
results indeed demonstrate the promptness and accuracy of the
proposed approach.

I. INTRODUCTION

Probing activities continue to be a growing cyber security
concern due to the fact that they are the primary stage of an
intrusion attempt that enables an attacker to remotely locate,
target, and subsequently exploit vulnerable systems [1]. Such
activities could be defined by the task of scanning enterprise
networks or Internet wide services, searching for vulnerabil-
ities or ways to infiltrate IT assets. Basically, they render a
core technique and a main facilitator of the above mentioned
and other cyber attacks. For instance, hackers have employed
probing techniques to identify numerous misconfigured proxy
servers at the New York Times to access a sensitive database
that disclosed more than 3,000 social security numbers. More
alarming, a recent incident reported that attackers had esca-
lated a series of “surveillance missions” against cyber-physical
infrastructure operating various energy firms that permitted
the hackers to infiltrate the control-system software and sub-
sequently manipulate oil and gas pipelines. Hence, it is not
surprising that Panjwani et al. [2] concluded that a staggering
50% of attacks against cyber systems are preceded by some
form of probing activity. Therefore, the capability to infer and
attribute probing activities is a very important task to achieve,
as this will aid in preventing cyber attacks from occurring or
vulnerabilities from being exploited. Indeed, this paper tackles
a very recent phenomenon of probing events dubbed as probing
campaigns. Such orchestrated malicious probing events are
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postulated to be ominously leveraged to cause drastic Internet-
wide and enterprise impacts as precursors of various amplified,
debilitating and disrupting cyber attacks including, but not
limited to, distributed and reflective denial of service attacks,
advanced persistent threats and spamming campaigns. Thus,
motivated by the imperative requirement to infer such probing
campaigns, we frame the paper’s contribution as follows:

e  Proposing an approach that models the complex prob-
lem of inferring probing campaigns as the task of
interpolating and predicting time series in the presence
of missing values. The model allows the pinpointing of
orchestrated campaigns by observing just few probing
packets, rendering it very prompt. Further, by only
keeping a record of the probing time series, the model
is efficient and lightweight in terms of memory and
processing requirements, which makes it applicable
to be implemented in real-time on operational data
streams. To the best of our knowledge, this is the first
systematic model that is specifically tailored towards
the goal of inferring probing campaigns by observing
the dark Internet Protocol (IP) space.

e Uniquely employing time series interpolation and
prediction approaches based on trigonometric and
state space modeling techniques, namely, the discrete
Fourier transform and kalman filter, to tackle this
problem.

e Evaluating the promptness and accuracy of the pro-
posed model using 330 GB of real darknet data
in addition to validating the model’s outcome and
advantages by comparing it with a previous work.

The remainder of this paper is organized as follows. In the next
section, we provide relevant background information related
to darknets and probing campaigns. The problem formulation
coupled with the proposed model are presented in Section
III. Section IV empirically evaluates the proposed approach,
compares its advantages with previous work and validates its
inferences. In Section V, we review the related work on various
concerned topics. Finally, Section VI summarizes the paper
and paves the way for future work.

II. BACKGROUND

In this section, we provide relevant background information
related to darknets and probing campaigns.
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A. Darknets

A darknet, also commonly referred to as a network tele-
scope or an Internet sink, is a set of routable and allocated
yet unused IP addresses [3]. It represents a partial view of
the entire Internet address space. From a design perceptive,
darknets are transparent and indistinguishable compared with
the rest of the Internet space. From a deployment perspec-
tive, it is rendered by network sensors that are implemented
and dispersed on numerous strategic points throughout the
Internet. Such sensors are often distributed and are typically
hosted by various global entities, including Internet Service
Provides (ISPs), academic and research facilities and backbone
networks. The aim of a darknet is to provide a lens on Internet-
wide malicious traffic; since darknet IP addresses are unused,
any traffic targeting them represents a view of anomalous
unsolicited traffic. A network telescope is indeed an effective
approach to infer various Internet-scale probing activities [4].

B. Probing Campaigns

Lately, there has been a noteworthy shift towards a new
phenomenon of probing events which, throughout this paper,
is referred to as probing campaigns. These are distinguished
from previous probing incidents as (1) the population of the
participating bots is several orders of magnitude larger, (2) the
target scope is generally the entire IP address space, and (3)
the bots adopt well-orchestrated, often botmaster-coordinated,
stealth scan strategies that maximize targets’ coverage while
minimizing redundancy and overlap. Very recently, Dainotti et
al. from the Cooperative Association for Internet Data Analysis
(CAIDA) presented a pioneering measurement and analysis
study of a 12-day Internet-wide probing campaign targeting
VoIP (SIP) servers. In another work [5], the same authors
admitted that they have detected the reported SIP campaign,
including the malware responsible for its actions (i.e., Sality
malware), “serendipitously” (i.e., luckily and accidentally)
while analyzing a totally unrelated phenomenon. They also
stated that since currently there exist no cyber security capa-
bility to discover such large-scale probing campaigns, other
similar events targeting diverse Internet and organizational
infrastructure are going undetected. In another inquisitive,
well executed work, an “anonymous” presented and published
online [6] what they dubbed as the “Carna Botnet”. The author
exploited poorly protected Internet devices, developed and
distributed a custom binary, to generate one of the largest
and most comprehensive IPv4 census ever. The aforementioned
two campaign studies differ on various key observations. The
work by Dainotti et al. disclosed that the bots were recruited
into the probing botnet by means of a new-generation malware
while the Carna Botnet was augmented using a custom code
binary. Moreover, Dainotti et al. discovered that the bots were
coordinated by a botmaster in a command-and-control infras-
tructure where the bots used a reverse IP-sequential strategy to
perform their probing, while the Carna Botnet was C&C-less
and its bots used an interleaving permutation method to scan
its targets. Further, the work by Dainotti et al. documented
a horizontal scan that targeted world-wide SIP servers, while
the Carna Botnet did not focus on one specific service but
rather attempted to retrieve any available information that was
associated with any host and/or service. In this work, we aim at
devising a prompt and a lightweight systematic methodology
that exploits probing time series to infer orchestrated probing
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campaigns by observing the darknet IP space. It might be
beneficial to mention at this point of the paper that, for the
past three years, we have been receiving, on a daily basis,
raw darknet data from a trusted third party, namely, Farsight
Security [7]. Such traffic originates from the Internet and is
destined to numerous /13 network sensors. The data mostly
consists of unsolicited TCP, UDP and ICMP traffic. In this
work, we will be leveraging a portion of such data to validate
our proposed model.

III. PROPOSED APPROACH

In this work, we uniquely model the task of inferring
orchestrated probing campaigns as the problem of interpolating
and predicting time series in the presence of missing values.
The core rationale behind this approach stems from the idea
that if the probing flow time series demonstrates positive pre-
dictability features, thus identifying certain probing patterns,
then it might be part of an orchestrated event. To realize such
rationale, the proposed approach (1) fingerprints independent
probing flows as perceived by the telescope, (2) clusters
and builds the probing flow time series, (3) interpolates the
time series for data completion purposes and (4) predicts the
time series in order to infer orchestrated flows and eliminate
independent (i.e., non-orchestrated) ones. In the sequel, we
elaborate on the latter four steps.

A. Fingerprinting Independent Flows

In [8], we proposed a new approach, specifically tailored
to operate on telescope data, in order to fingerprint probing
activities. The approach aimed at detecting the probing activity
and identifying the exact technique that was employed in the
activity. When empirically evaluated using a significant amount
of real telescope data, the approach yielded O false negative
in compassion with two leading network intrusion detection
systems, namely, Snort and Bro. Readers that are interested in
more details related to the approach are kindly referred to [8].
In this work, and to successfully extract independent probing
flows as perceived by the network telescope, we adopt and
leverage the previously proposed approach.

B. Flow Clustering & Time Series Generation

Probing flow packets targeting the darknet have the follow-
ing 8-tuple form

(t, srcip, dstip, sTCp, dsty, prot, ttl, flags)

representing the timestamp, the source and destination IP
addresses and ports, the transport protocol used, the time-
to-live (ttl) value and the packet flags. From recent probing
campaign incidents, it was observed that orchestrated probes
possess similar values for dst_p, prot and flags. Thus, we
first amalgamate all the probing flows into different clusters
sharing similar values for those packet features. Additionally,
based on those reported events, it was demonstrated that a
particular campaign has been generated by the same type of
operating system; in one work, it was inferred that 97% of
the orchestrated probing flows were originating from windows
machines while in another, it was revealed that all the flows
were generated from Unix environments. Thus, it is desirable
that we further cluster the previous groups by the same
originating operating system. To achieve this, we investigate
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the ttl value of the probing packets as perceived by the network
telescope. According to [9], most modern operating systems
use only a few selected initial ¢t/ values, particularly, 30, 64,
128, and 255. It is evident that most of these initial ¢¢/ values
are far apart. Moreover, since Internet traces have shown that
few Internet hosts are apart by more than 30 hops, which is also
confirmed by our own recent observations, one can determine
the initial ¢t/ value of a probing packet that is received at the
telescope by selecting the smallest initial value in the set that
is larger than its final ¢¢l. For example, if the observed final ¢t]
value is 112, the initial ¢¢l value would be 128. Thus, based
on this heuristical approach, we further refine the clusters by
subdividing the probing flows according to similar ¢t/ values.
Recall that the latter aims at further clustering the groups based
on similar originating operating system. It is important to note
that probing sources/attackers can use, in theory, certain tools
that can explicitly modify the ¢¢/ value in an attempt to evade
being correctly clustered. For example, traceroute is a
common application which can set the IP ¢t/ to any random
number, independent of the operating systems’ kernel’s default.
However, a probing source who overrides IP ttl to avoid
detection should enforce a stable mapping of IP source to
IP ttl, in order to prevent us from seeing a noisy IP t¢¢l
originating from its IP address, and thus subsequently flagging
his IP source as ttl spoofing. In practice, in our experiments,
we did not notice any ttl spoofing, where all the inferred ttl
values were from those 4 default categories. Please recall, in a
nutshell, that the output of the above are independent probing
flows clustered based on similar dst_p, prot, flags and ttl
values. For each of the above independent probing flows within
those clusters, we generate their corresponding time series of
the form < ¢,dst_ip >.

Note that due to the simplicity of such time series, the
approach is able to generate around 200 thousand of those in
under 5 seconds. Further, since the time series is composed
of just two packet features, namely, the timestamp and the
destination darknet IP address, the storage requirements are
minimal; less than 300 MB to save those 200 thousand time
series. It is also noteworthy to mention that such storage
requirement will not augment by time, since the approach
discards the previously extracted time series after processing.

C. Time Series Interpolation

The above time series could be referred to as a time series
with missing values in which some of its rows are not captured.
This is because (1) the network telescope only covers a portion
of the Internet space and thus is not able to perceive all the
probes at all times and (2) some probing packets arriving at the
telescope could be distorted and thus are filtered out before the
generation of the time series. Indeed, without a complete view
of the probing time series, it is very difficult, if not impossible,
to devise approaches to infer orchestration. To deal with this
issue, we resort to time series interpolation. This refers to nu-
merical analysis techniques that aim at constructing new data
points from and within a range of a discrete set of known data
points. Although there exists several interpolation techniques in
the literature, in this work, we employ and tailor, for accuracy
and efficiency reasons, trigonometric interpolation, namely, the
discrete Fourier transform (dFt) [10]. We omit the theory of
the dFt that could be found in [10]. Given a set of (n+1) data
points in the probing time series, dFt provides an interpolating
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function that is composed of finite sum of cosines and sine
that connects all (n + 1) data points, including any missing
values in between. However, for the previous function to be
directly applicable to the extracted probing time series, we
modify the dst;, packet feature in the time series from the
typical IPv4 CIDR notation to a discrete numeric by using a
simple developed mechanism.

Algorithm 1: A time-varying window algorithm to dis-
tinguish between orchestrated and independent probing
flows by leveraging kalman’s error covariance

Data: Probing Clusters, PC,
Probing Time Series, PT'S
Result: List of Orchestrated Flows, OF
for PT'S in PC do
Processingwindow, PW=5;
Comparisonw indow, CW=1;
while PT'S in PW do
while PT'S in CW do
vl=kalman.execute(PT'S);
CW++;
v2=kalman.execute(PT'S);
if v1 > v2 then
flag((CW - -).FirstElement();

‘ OF .add(CW - -).OtherElements();
end
if v1 < v2 then

flag(CW).LastElement());

‘ OF .add(C'W).OtherElements();
end
CW++;

end
end
PW+=5;

end

D. Time Series Prediction

After interpolating the probing time series within the clus-
ters, the next step would be to verify if such series indicate any
signs of predictability. If confirmed, this would provide evi-
dence that the probing flows indeed possess some orchestration
logic. To achieve that task, we tailor and employ a recursive
optimal stochastic estimator, namely, the kalman filter [11].
Although we have selected to leverage this specific theoretical-
based technique because of various reasons, including, (1) its
superior results in practice due to optimality and structure, (2)
its convenient form that permits online real-time processing,
(3) its ease to formulate and implement and (4) its efficiency
when calculating the measurement equations and the error
covariances, the main reason, however, would be due to its
significant applicability to the problem in-hand; the kalman
filter infers parameters of interest from indirect, inaccurate
and uncertain observations. This is coherent with our problem
since the time series under predictability verification has been
interpolated and thus might contain some uncertain records.
The inner workings of the kalman filter could be found in [11].
Going back to our probing time series, recall that the aim is
to infer whether or not the probes demonstrate any signs of
predictability and thus orchestration. We exploit the kalman
filtering error covariance in conjunction with a time-varying



[ Cluster 1 [ Cluster 2 [ Cluster 3 | Cluster 4 [ Cluster 5 |

Probed Destination Port 5060 23 80 1433 443

Transport Protocol UDbP TCP TCP TCP TCP
Probing Flags UDP TCP SYN | TCP SYN | TCP ACK | TCP FIN

TTL 128 128 64 64 128

Number of Probing Flows 2698 3067 913 2983 939

TABLE I: Summary of the clustered probing flows

window algorithm to achieve the latter. The pseudocode of
the algorithm is presented next. Algorithm 1 operates on the
basis of two time windows. The first is used to load the
probing time series within each cluster into volatile memory
for processing while the second is used to compare the
probing time series. The comparison is based on kalman’s
error covariance; the algorithm flags those flows that increase
the error as demonstrating non-predictability while inferring
orchestrated ones by monitoring a decrease in the error metric.
From a complexity perceptive, the algorithm requires O(m)
space complexity where m is the size of the probing time
series within each cluster and O(m + n + p) time complexity
where n is the size of the probing time series related to the
comparison window and p is the required time for the kalman
filter to process the time series within ¢ fixed iterations. It
is noteworthy to mention that in this work, we have chosen
a q value of 10 iterations for the kalman filter in order to
measure and compare the error covariance. Note that the choice
of the value per say is not an issue; rather, its systematic
application for all the probing time series for effective and
accurate comparison. Further, as mentioned in Section III-B,
recall that since the probing time series is very simple, there
is no compelling reason (i.e., from a memory or processing
requirements) to optimize the values of the window sizes. In
practice, the algorithm can process and decide upon a time
series with 1 thousand records in less than 10 seconds and
require, on average, around 10 MB in volatile storage.

IV. EMPIRICAL EVALUATION

As mentioned in Section II-B, we possess raw dark-
net/telescope data that we receive from a trusted third party,
namely, Farsight Security [7]. Such traffic originates from the
Internet and is destined to numerous /13 network sensors.
In this section, we leverage 330 GB of such data extracted
from the month of April 2014 to validate the promptness
and accuracy of the proposed model. Consistent with Section
III-A, we infer 30 thousand unique independent probing flows.
Further, coherent with Section III-B, around 35% of the latter
were successfully clustered into 5 groups. The details of those
clusters are summarized in Table I. It can be noted that
the majority of the probing flows have been generated by
Windows machines. For each probing flow within each of the
5 clusters, we generate their probing time series in accordance
with Section III-B. Figure 1 shows the CDF of the probed
destinations within the first three clusters. From the Figures,
we can infer that cluster 2 is the most dispersed; 50% of the
sources probed more than 1300 destinations. Further, we can
extract that clusters 3 is more focused in which most of its
sources probed a small number of destinations. We proceed
by executing the discrete-time Fourier transform interpolation
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approach on the time series within each of the 5 clusters as
indicated in Section III-C. Figure 2 corroborates the fact that
the probing flows of cluster 2 are indeed dispersed; not only
they target a significant amount of destinations as was inferred
from Figure 1, but also most of them were not captured
by our leveraged /13 darkspace, which is indicated by the
large percentage of interpolated multiple missing value time
series. Subsequently, consistent with Section III-D, we invoke
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Fig. 2: Distribution of the Types of the Interpolated Values

the kalman filter coupled with Algorithm 1 to distinguish
between orchestrated and non-orchestrated flows. By executing
Algorithm 1, the first four clusters of Table I demonstrated
positive orchestration behavior. Cluster 5 was eliminated as it
revealed negative coordinated behavior. By employing simple
tcpdump signatures on the data derived from the features (i.e.,
destination port, protocol, flags, ttl) of the first four clusters,
Table I could be re-represented as orchestrated flow clusters
as summarized in Table II. By comparing Tables I and II, one
can note the drop between clustered independent flows (Table
I) and orchestrated flows (Table II) as achieved by Algorithm
1.

A. Comparison with Previous Work

The first attempt to tackle the problem of inferring large-
scale probing campaigns by observing network telescopes was
rendered in [12]. In that work, the authors proposed a set of
big data behavioral analytics to scrutinize probes as received
by the darkspace. The analytics were based on statistical,
heuristical and fuzzy hashing approaches that aim at generating
feature vectors for each of the perceived probing flows. The
rationale is to automatically cluster the probing sources pos-
sessing similar feature vectors using data mining techniques
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Fig. 1: CDF of the probed destinations within the first three clusters

[ Cluster 1 | Cluster 2 [ Cluster 3 | Cluster 4 |

Probed Destination Port 5060 23 80 1433
Transport Protocol UDP TCP TCP TCP
Probing Flags UDP TCP SYN | TCP SYN | TCP ACK
TTL 128 128 64 64
Number of Orchestrated Probing Flows 1567 1863 858 587
TABLE II: Summary of the inferred orchestrated probing campaigns
C1 C2 C3
Employed probing technique: UDP TCP SYN ACK
Probing traffic: Random Random Pattern
Employed pattern: Null Null [19.17-21.23]
Adopted probing strategy: Reverse IP-sequential | Uniform Permutation | Forward IP-Sequential
Nature of probing source: Bot Bot Tool
Type of probing: Dispersed Dispersed Targeted
Signs of malware infection: Yes Yes No
Exact malware type/variant: Virus.Win32.Sality.bh | Trojan.Win32.Jorik Null
Probing rate (in pps): 12 118 71
Target port: 5060 80 1433
Number of Probing Bots/Sources: 846 817 438

TABLE III: The Automatically inferred patterns capturing three large-scale orchestrated probing campaigns by employing the

approach in [12]

in order to infer the probing campaigns. The outcome of
that approach was validated using a third party publically
available data set, namely, Dshield’s repository. Readers that
are interested in more details related to that work, are kindly
referred to [12]. To compare and contrast the advantages of
the presently proposed work, in this section, we compare
its outcome with that previous work. To achieve that, we
implemented the previously proposed approach in [12] on the
same dataset of this work. The outcome is illustrated in Table
III. By comparing Tables II and III, we can pinpoint that
both approaches were able to infer orchestrated clusters 1,
3 and 4 of Table II. One difference that is related to those
campaigns is concerning the number of identified orchestrated
flows; the number of inferred orchestrated probing sources
using the proposed approach exceeded those inferred using
[12]. We semi-automatically investigated the additional flows
as identified using the proposed approach, and we confirmed
that they are indeed part of the campaign. Hence, we assert
that the approach in [12] missed some flows as belonging to
the same campaign. Further, that approach completely missed
a fourth campaign, which was pinpointed by our proposed
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approach as cluster 2 of Table II. Additionally, our proposed
approach is not only more accurate but is also more prompt
than the previous approach; our proposed approach can flag
a campaign by observing only few orchestrated flows while
the approach in [12] requires the creation of the complete
feature pattern (i.e., processing of all the perceived data) to
cluster the sources into well-defined campaigns. Moreover, our
proposed approach is more efficient as it only records and
process lightweight time series (recall Section III-B) while
the approach in [12] needs to maintain, in memory, the entire
darknet data flows. Last but not least, the presently proposed
approach is more systematic and formal compared with the
approach in [12] as it deals with time series, trigonometric
interpolation and state space modeling as apposed to relying on
the output of statistical tests and heuristics. Since the approach
in [12] attributes the campaign to a certain malware family
using correlation techniques between probing and malware
samples [12], we may port this capability to the our proposed
approach, which currently lacks that feature.



V. RELATED WORK

In this section, we briefly highlight on some related work
in various concerned topics. In the area of extracting probing
events, Li et al. [13] extracted such events from darknet traffic
using time series analysis. They further executed manual analy-
sis and visualization techniques to extract the rough boundaries
of such events. In the context of analyzing probing events, the
same authors presented an analysis that drew upon extensive
honeynet data to explore the prevalence of different types of
scanning activities. Additionally, they designed mathematical
and observational schemes to extrapolate the global properties
of scanning events including total population and target scope.
In the area of probing measurement studies, in addition to [6],
Benoit et al. [14] presented the world’s first Web census while
Heidemann et al. [15] were among the first to survey edge hosts
in the visible Internet. Further, Cui and Stolfo [16] presented
a quantitative analysis of the insecurity of embedded network
devices obtained from a wide-area scan. Last but not least, a
number of botnet detection systems have been proposed in the
literature. Some of those investigates specific channels, others
might require deep packet inspection or training periods, while
the majority depends on malware infections and/or attack life-
cycles. To the best of our knowledge and as stated in [5], the
capability to infer large-scale orchestrated probing events by
solely analyzing the dark IP space does not exist, rendering
the proposed approach as a novel contribution.

VI. CONCLUSION

In this paper, we approached the problem of inferring
orchestrated probing campaigns from a time series perspective.
The motivation behind that was two-folds. First, from an
efficiency perspective, we thought it would be desirable to
work with the artifact of the data rather than the data itself.
Second, scientifically, it is typically more sound to generate
inferences and insights using formal methods and approaches
rather than depending on statistical inferences or heuristics.
Thus, in this paper, we uniquely modeled the challenging
task of inferring probing campaigns as a problem of inter-
polating and predicting time series in the presence of miss-
ing values. Initially, the model extracts independent probing
flows as perceived by the telescope. Subsequently, the model
builds numerous time series clusters sharing similar traffic
features. For data completion purposes, the model employs
trigonometric interpolation on such probing time series. To
infer possible orchestration behavior, the model executes state
space modeling in conjunction with a time-varying window
algorithm. Empirical evaluations with significant amount of
darknet data indeed demonstrated the promptness and accuracy
of the proposed model in comparison with a previous work. As
for future work, we plan to perform probing campaign intent
analysis; the ability to infer what the probing sources will
eventually execute after finalizing their probing activities. We
aim to achieve the latter by correlating the generated inferences
from this work with other data sources, including but not
limited to, passive dns and public intrusion and firewall logs.
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