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A B S T R A C T

Cloud computing is emerging with growing popularity in workflow scheduling, especially for
scientific workflow. Deploying data-intensive workflows in the cloud brings new factors to be
considered during specification and scheduling. Failure to establish intermediate data security
may cause information leakage or data alteration in the cloud environment. Existing scheduling
algorithms for the cloud disregard the interaction among tasks and its effects on application
security requirements. To address this issue, we design a new systematic method that considers
both tasks security demands and interactions in secure tasks placement in the cloud. In order to
respect security and performance, we formulate a model for task scheduling and propose a
heuristic algorithm which is based on task’s completion time and security requirements. In ad-
dition, we present a new attack response approach to reduce certain security threats in the cloud.
To do so, we introduce task security sensitivity measurement to quantify tasks security re-
quirements. We conduct extensive experiments to quantitatively evaluate the performance of our
approach, using WorkflowSim, a well-known cloud simulation tool. Experimental results based
on real-world workflows show that compared with existing algorithms, our proposed solution can
improved the overall system security in terms of quality of security and security risk under a wide
range of workload characteristics. Additionally, our results demonstrate that the proposed attack
response algorithm can effectively reduce cloud environment threats.

1. Introduction

Cloud computing consists of distributed physical machines providing on-demand services, infrastructure, and a platform to users
over a network. Infrastructure-as-a-Service (IaaS) in the cloud provides efficient and flexible computational resources to users. For
example, Amazon Web Services and Google Compute Engine offer a full range of computing and storage services via virtual machine
(VM) instances. Users can run large-scale workloads on virtual machines hosted by cloud infrastructure. Cloud infrastructure enables
parallel processing of application tasks that improves application completion time [1]. IaaS users fit the needs and gain proper benefit
of resource virtualization with reasonable cost. However, this has also brought many new challenges for workflow execution and
performance optimization [2]. Information leakage and malicious alteration of sensitive data are two of the major obstacles in
deploying applications in a distributed environment such as the cloud. Security and performance are the main goals of users in
migrating to the cloud [3,4]. Therefore, several concerns in this area must be considered, such as secure intermediate data transfer
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and storage.
Cloud technology offers different methods in developing workflow, such as meta-heuristic, heuristic, and hybrid scheduling [5].

Workflow models are widely used for scientific, business, and engineering applications. Recently, the number of scientific workflows
deployed in the cloud is rising [6,7]. Since cloud provides a shared infrastructure for its customers, establishing security for each
application and its sensitive data must be considered during the scheduling process. In addition, transferring sensitive data among
cloud components such as data centers with limited bandwidth is a security challenge. Another challenge is shared infrastructure in
cloud, such that could threaten application security [8,9]. Most of the scheduling algorithms for the cloud infrastructure consider
resource performance and disregard security concerns of workflow execution in cloud. Recently, more attention has been paid to
security requirements in cloud scheduling [10].

Most studies in workflow scheduling have only focused on cost and makespan [11–14]. They usually propose a multi-objective
scheduling scheme that reduces the cost while preserving quality of service (QoS). However, security is one of the QoS dimensions
which they do not consider. Some of the recent work considers security in scheduling workflow in cloud infrastructure [10,15,16].
However, these studies did not investigate the effect of communication among tasks and VMs on the overall security of the cloud.
Motivated by this challenge, in this paper we design a security model using the workflow graph property to measure the security
sensitivity of tasks in the cloud. Scheduling techniques allow us to find the best place for tasks based on the security consideration and
completion time. The impact of task interaction on preserving security is also studied in this paper.

VMs belonging to the same application that may locate on different or the same hosts communicate with each other. VMs establish
a virtual network in order to transfer data between each one. Some reports indicate that host security mechanisms cannot monitor
intra-VM communications, since traffic over virtual networks may not be visible to security protection mechanisms on the physical
network [12,17–19].VM-level protection allows VMs and their running tasks to remain secure in shared and multi-tenant environ-
ments. It can address most of the attacks and make the development of host security services easier. Transferring data between tasks
of an application is inevitable. If the security mechanisms of a VM are not strong enough, malicious tasks running on the VM or
malicious users can alter or delete data for their malicious goal to take control of VMs by transferring infected files and data to them
[20]. Intermediate data alteration or deletion by malicious tasks affect the flawless execution of related tasks. Related tasks are those
which data is transferred between them. Affected tasks could be tasks co-located with the malicious task. Although this issue is
important to cloud security, no previous papers have considered this. Therefore, in the first part of our model we aim to address VM
and task interaction threats in workflow scheduling.

The primary protected elements in the cloud are VMs running on the physical machines in a data center. These VMs contain user’s
sensitive data. In order to secure VMs, different security mechanisms are provided. Due to limited resources and budgets in cloud,
making all the VMs secure is impractical. To address this issue, there are different security mechanisms with different protection
power in VMs as well as different computational resources and costs. Our first objective is to provide a new scheme to assign each task
to a proper VM that minimizes the overall threat to cloud infrastructure, while maintaining a proper completion time. We aim to
address VM and task interaction threats in workflow scheduling. The idea of this work is to assign a task to a part of the cloud so that
its security requirement can be better met, meanwhile, completing promptly. We incorporate tasks communication threats in
scheduling tasks on VMs. This measure reduces the application security risk and threat effectively.

The second part of our model focuses on responding to attacks. Strategies for attack response in computer networks can be
formulated as optimization problems that apply to the rerouting of a network connection, placing VMs, immunizing, and installing
anti-virus software. Currently, no scheduling algorithm exists that can support the cloud with attack response and threat analysis.
When an unpredicted attack occurs in the cloud infrastructure, it is not cost-effective to stop all the tasks or migrate most of the tasks
to more secure VMs. If the cloud provider does not implement a proper response method to the attack, this attack can cause further
damage to the cloud. Response strategies can be formulated as a rescheduling problem. Our second goal is to develop an efficient
response approach to cloud attacks caused by malicious tasks that reduce the threat in the cloud, without incurring too much
overhead to cloud performance. To our knowledge, this is the first paper to address the workflow scheduling problem in response to
malicious task in the cloud.

Our proposed security- and performance-aware scheduling model (MOWS) minimizes security threats in the cloud’s hetero-
geneous environment while maintaining a reasonable workflow response time. In the scientific workflow scheduling, we need to
consider the following questions: (1) how to assign tasks to VMs; (2) in what order the VMs should execute tasks considering the data
dependencies among tasks; (3) what the attack response policy is. The main contributions of this work are:

• To present a security- and performance-aware scheduling algorithm that minimizes the overall security threat from related tasks
based on the heterogeneous infrastructure of the cloud, while maintaining a proper makespan (maximum tasks completion time),
and providing better security for applications in the cloud;
• To provide security for tasks based on three aspects: confidentiality, integrity and availability;
• To respond to malicious tasks by rescheduling tasks to reduce the effect of the attack; and
• To examine proposed schemes by performing experiments with real-world applications and showing that our approach can
provide security and improve performance concurrently for tasks.

The rest of the paper is organized as follows. We explore the background and related work in Section 2. In Section 3, the system
architecture and definition are introduced. Next, in Section 4 we propose MOWS and attack response strategy. Section 5 discusses the
results, and finally, Section 6 concludes the paper.
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2. Background and related work

A considerable amount of literature focuses on designing new methods of workflow scheduling under specific budget constraints
[21,22]. Lin and Wu [23] investigated a new model for minimizing workflow end-to-end delay under user-specified financial con-
straints. Zheng et al. [24] presented another method in a dynamic resource price environments. Byun et al. [25] investigated a
scheduling method to minimize the financial cost on the user’s end and to maximize the resource utilization on the cloud provider’s
end. Fard et al. [26] introduced a multi-objective scheduling algorithm in grid and cloud that optimizes makespan, economic cost,
energy consumption, and reliability. Many researchers now believe that rather than using a performance approach, it might be more
critical to consider security as an important factor in scheduling [10,15,16].

Earlier work has shown that workflow is subjected to security attacks [27]. According to Zhu et al. [20], there are several attack
scenarios that threaten the security of workflow. Malicious users can create or execute illegal tasks that may cause severe damage to
the execution of workflow and the data among them. Malicious tasks may corrupt intermediate data and affect other tasks. Presence
of data dependencies in workflow applications intensifies the security attack threat and the level of damage.

One of the first studies that considered security as a parameter in scheduling tasks in the distributed systems is presented by Xie
and Qin [28]. The closest work to this paper was presented by Xiaoyong et al. [29], which developed an algorithm in distributed
systems. They incorporated security awareness into task scheduling. The dynamic environment of the cloud makes it different from
other distributed systems. In addition to this, our approach considers task interactions as a risk factor for tasks. Liu et al. presented a
novel security constraint model and introduced several meta-heuristic adaptations to the particle swarm optimization algorithm to
deal with the formulation of efficient schedules [30].

There have been several works on scheduling workflow in cloud infrastructure that consider security. To enhance the security of
intermediate data, Liu et al. [15] presented a new data placement strategy in scientific cloud workflows that improved intermediate
data security while ensuring the data transfer time among scientific workflows. SABA [10] presented a new workflow scheduling
strategy that combined security and cost. Their method consisted of three phases. Firstly, a certain priority rank was calculated and
assigned to each task. Secondly, each task was assigned to a VM that minimized the cost. In the last phase, tasks were rescheduled
according to the dynamic demand. Chen et al. focused on data privacy protection in workflow. So they proposed a privacy and cost
aware method based on genetic algorithm for data intensive workflow applications [31]. Chen et al. in their study [32], exploited idle
time slots on resources, resulting from data dependencies among workflow tasks, to mitigate the impact of data encryption time on
workflows’ makespans. They devised a novel security-aware workflow scheduling algorithm including two phases: (1) task sche-
duling with selectively duplicating predecessor tasks to idle time slots; and (2) intermediate data encrypting by exploiting tasks’ laxity
time. FFBAT [33] proposed a security and cost aware scheduling algorithm for heterogeneous tasks in scientific workflow executed in
a cloud. Their algorithm is based on the hybrid optimization approach, which combines Firefly and Bat algorithms. Xie et al. [34]
introduced a novel dynamic security-aware scheduling algorithm, which was capable of achieving high security for real-time tasks
while improving resource utilization. Watson [16] suggested a multi-level security model for scheduling tasks on federated clouds.
Marcon et al. [35] presented workflow scheduling in a hybrid cloud. They considered dependencies among cloud components that
bring new factors during specification, scheduling, and virtual machine provisioning. Sharif et al. offered an algorithm that preserves
privacy in scheduling of workflows, while still considering customers’ deadlines and cost [36]. Jianfang et al. [37] suggests sche-
duling algorithm of the cloud workflow using discrete particle swarm optimization, which achieves better performance in the se-
curity, completion time, cost, and load balancing. Shishido examines the effect of both Particle Swarm Optimization (PSO) and
Genetic-based algorithms (GA) on attempts to optimize workflow scheduling [38]. Recently, Naidu et al. [39] proposed a modified
PSO with scout adaptation algorithm, which uses a cyclic term called mutation operator, to schedule jobs in the cloud environment
securely. A recent study by Wen et al. proposed a multi-objective privacy-aware workflow scheduling algorithm that provides cloud
customers a set of Pareto trade-off solutions [40].

Some preliminary work was carried out recently on rapid response to attacks occurring in computer networks. Goldberg et al.
[41] presented a new formulation to optimally respond to epidemics and cyber attacks. They proposed a decision maker to maximize
network utility, while limiting the probabilities of nodes being infected. Later, Leyffer and Safro [42] developed a new practical
response method to combat cyber attacks on weighted complex networks. Since there has been no detailed investigation about attack
response methodology in cloud computing, we propose a response method when an attack occurs in the cloud while it is running a
workflow.

So, we present the first security- and performance-aware scheduling method in a heterogeneous cloud environment that can
reduce the overall security threat, risk, and also maintain a reasonable completion time.

3. System architecture: model and definitions

In this section, we first enumerate the threats of implementing application workflow on the cloud, and then, introduce the
architecture of the security- and performance-aware scheduling model (MOWS). Finally, we present the scientific workflow model,
system model, and definitions.

3.1. Threat model

Deploying a scientific workflow in the cloud could cause threats to data security [2,15]. Previous researches [43,44] have re-
ported data security breach in the shared infrastructure of the cloud. Table 1 describes some security threats that may affect the
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proper execution of workflows on the cloud. Varadharajan and Tupakula in [19] believed that a malicious user who has obtained
access to the privileged domain can perform different attacks on the co-located tenant virtual machines. Our scheduling model aims
to reduce these threats while maintaining a reasonable response time for tasks. We suppose that an attacker can be a malicious user,
or a cloud insider.

Sensitive tasks are those with sensitive input or output data. The output data for a task will be the input data for other tasks, so the
information is traversing the network. The data, which will be used by more tasks in the future, should be generated, stored, and
transmitted in a secure way. Information leakage or tampering in a data intensive application may cause damage to the application
process. As mentioned before, the information is likely to be changed or leaked by malicious tasks. The tampered data can affect other
tasks that use this data. Then, the threat spreads among more tasks of the application and compromises the application function and
security. If there are any integrity, confidentiality, or authentication mechanisms among the VMs, the probability of these threats
lessens.

As a matter of fact, data centers offer encrypted data storage, security management, and audit services to their customers.
Recorded information about who has performed which actions on the data can be analyzed by the cloud provider to detect malicious
behavior [45]. Since implementing security mechanisms causes overhead and cost in the cloud infrastructure, the level of security
service is not the same for all VMs. The cloud provider knows the tasks’ security demands and the relationship between the tasks, so it
can predict which tasks are more vulnerable or sensitive to attacks. Cloud providers must consider this information in the assignment
of each task to a proper VM.

3.2. MOWS architecture

In this paper, we consider an IaaS cloud system, which consists of several data centers with storage and computing resources that
are presented by VMs. We propose a security-aware scheduling that investigates the effect of task interaction in the security risk of the
cloud. In this section, we provide a high-level overview of MOWS. Fig. 1 illustrates the MOWS architecture, which consists of 5
components:

1. Execution time manager (ETM) is used to accept task information and calculate the complexity of each task. Task complexity
directly affects the task execution time. It can be defined as a number of instructions in the task that should be executed by CPU.

2. Communication time manager (CTM) is responsible for evaluating task communication time with other tasks when transferring
data among each other.

3. Security overhead manager (SM) is used to calculate task security risk in each VM.
4. Attack response (AR) is responsible for measuring the threat level of all tasks after an unusual behavior is detected in the cloud

by a security administrator. The security mechanisms may be used to monitor the behavior of tasks and detect malicious entities.

Table 1
Some security threats in workflow application.

Threat Type Affected Service Definition Scenario

Information
Disclosure

Confidentiality unauthorized disclosure of information, including the
user’s authentication information and intermediate data
among tasks, during task execution;

Malicious user or cloud insider successfully gain
unauthorized access to the data in transmission between
tasks. If the data is sensitive, disclosure of the data causes
irreparable results.

Alteration Integrity modification of data to achieve a malicious goal; Attacker or malicious task change the intermediate data
over a network to affect the task that receives the data or it
may infect the VM which is running the task.

Denial of Service Availability making data and resources unavailable to the tasks that
need data to start; an attempt to make a resource
unavailable to its intended task;

Attacker can create or execute illegal tasks that prevent
relevant task from accessing intermediate data and may
cause severe damage to the execution of the application
and data.

Fig. 1. MOWS architecture.
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The module should determine those tasks which have a high risk of being attacked. This module outputs high-risk tasks to the task
scheduling decision maker module.

5. Task scheduling decision maker (TSDM) accepts inputs from other modules and VMs and assigns each task to a proper VM
based on the information from the other modules to improve the security and performance of the cloud.

Although it is important to respond to attacks in a shared infrastructure environment such as a cloud, no previous architecture
considered an attack response module. Without an attack response module, the security threat will increase in the cloud infra-
structure after the initial attack is detected.

3.3. Scientific workflow model based on DAG

When a client submits his application to a cloud, it will be partitioned into several tasks. The relationship among tasks is de-
termined by the application workflow. If tasks coordinate properly, the workflow will execute correctly. Tasks communicate with
each other by transferring data [20]. Scientific workflows compose and execute a series of computational or data manipulation
phases in a scientific application and can be modeled as a directed acyclic graph (DAG). We want to propose a solution that schedules
scientific workflow as a data and computation-intensive workflow in the cloud. Fig. 2 depicts a scientific workflow DAG called
Montage [46], which consists of nine types of tasks. These tasks cooperate with each other by sending and receiving data. Basic
concepts about our system model are described in the following section.

3.4. System model and definition

Definition 1. A scientific application Wi is a set of tasks T, which are dependent upon each other. Application workflow can be
modeled by DAG. The dependencies among tasks can be represented by the directed edges of the DAG .This connection reflects data
flow DS through tasks. The child list and the parent list are determined for each task in DAG. The depth of the task is also determined
by its location (distance to root) in DAG.

= …T T T T m{ , , , } :number of tasksm1 2 (1)

= < >W T DAG DS, ,i (2)

Fig. 2. Montage workflow.
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The structure of scientific workflow is recognized by the number of inputs, the number of tasks, the data flow dependencies
among tasks, and the execution time for each task. Task security requirements can be divided into several security services such as
data integrity, confidentiality, and availability. Each service can be implemented by several algorithms with different overheads and
strengths [47]. In order to incorporate security requirements into task specification, we assume that the security service demand (i.e.,
confidentiality, integrity and availability) for each task is specified as a set of values: low, medium, and high.

Definition 2. A scientific task consists of IDS and ODS, which are input and output data size, respectively. Each task has one or more
parents, which send data to the task. In addition, tasks can have children send data to them. Task complexity represented by CompC is
determined according to the execution time for each task. Users determine the security demand for each task based on the type of the
task and the importance of the data that is generated by this task. Security demand SD represents the security service requirement of a
task. Users can request different security services according to the sensitivity of a task. Confidentiality, Integrity and Availability are
the three basic requirements. These requirements are specified from low to high by users and then normalized into the range [0,1].
High security demands increase the users’ cost. This fact prevents users to request high security demand for all of the tasks.

= < >T IDS ODS CompC SD, , ,i i i i (3)

= < … > < >SD SD SD e g Conf Int Avail
SD kthsecurityrequirement k

, , . . . , . , .
: , {1, 2, 3}

i
k

k

1

(4)

Definition 3. Task specification is a tuple defined as:

=TaskSpec CompC CommC SS( , , ),i i i i (5)

where CompC represents task complexity, CommC represents task communication cost, and SS represents task security sensitivity.
These components represent task characteristics that can be calculated using the following equations:

=
=

= < … >

= × ×

CompC Numberoftaskinstructions
CommC IDS Size
SS SS SS i Tasknumber k securityrequirement k

SS

.
, , : , : , {1, 2, 3}

i

i

i i i
k

i
k SD Max Depth T Depth T Parent

Max Depth

1

( ( ) . ) # . ()
( )

k i i
(6)

In order to change the value of TaskSpec elements between 0 and 1, all elements are divided by the maximum element among all
tasks. The new vector is called =NormTaskSpec NCompC NCommC NSS( , , ),i i i which has values between 0 and 1.

The security of resources can be measured with appropriate metrics [28]. Different security services provide different capabilities
to prevent attacks. For example, if a VM uses SHA-1 for integrity service and another VM uses MD4, the first VM provides a higher
level of security than the second VM. The security level of a VM is determined by a cloud provider based on the type of security
services implemented in the VM.

Definition 4. VM specification is a tuple defined as:

=VMSpec MIPS BW SeS( , , ),i i i i (7)

where MIPS presents million instructions per seconds (to show the computing speed), BW indicates bandwidth, and SeS represents the
level of security services provided by a cloud provider for virtualized infrastructure, which is a number between 0 and 1. The security
level offered by a VM can be computed based on several capabilities, such as: intrusion detection system (IDS), antivirus, and firewall.
However this is out of the scope of this paper and we assume that in each VM there is a mechanism to aggregate the security
parameters of the VM and normalize it within the range [0, 1]. The greater value of SeS expresses the higher level of security services.
In order to change the vector’s elements to have a value between 0 and 1, all the elements are divided by the maximum element
among all VMs. The new vector is called =NormVMSpec NMIPS NBW NSeS( , , ),i i i which has values between 0 and 1.

3.5. Deficiency degree

In order to consider security in task scheduling, a model is needed to assess the amount of security that must be provided by the
cloud provider for the task. Since a position and interaction of each task in the workflow is important in the task security sensitivity,
we propose a model of task security based on the position of the task in DAG, which is introduced in Section 3.4. In addition to
security concerns, tasks need different levels of computational power. In application workflow, there are different kinds of tasks with
different levels of complexity. Tasks with high complexity have longer execution time in weak VMs. Consequently, other tasks that
are dependent upon these tasks must wait longer and complete later. The cloud provider is aware of the complexity of the task and
computation power of the VMs. Another characteristic of a scientific workflow is data intensity. Generated data in tasks should be
transmitted to other tasks which are running on other VMs. This transmission occurs in the virtual network between VMs. Network
bandwidth will affect the transmission time of intermediate data. To address these issues in scheduling tasks, two vectors (VMSpec)
and (TaskSpec) were presented before. The first vector is related to task specification, and the second is related to VM resource
capacities.

In order to schedule a task Ti in a proper VMj, we propose a metric called Deficiency Degree (DD), which is calculated using
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(NormVMSpec) and (NormTaskSpec). The DD is a weighted sum of Computation Deficiency (CD) (Eq. (8)), Transmission Deficiency
(TD) (Eq. (9)), and Security Deficiency (SD) (Eq. (10)). In Eq. (11), WPer and WSec are determined by the user. This equation shows the
importance of security or performance from the user’s point of view.

=
>

CD
NMIPS NCompC NMIPS NCompC

otherwise
, if

2,i j
j i j i

( , )
(8)

=
>

TD
NBW NCommC NBW NCommC

otherwise
, if

2,i j
j i j i

( , )
(9)

= >SD NSeS NSS NSeS NSS
otherwise

, if
2,i j

k j
k

i
k

j
k

i
k

( , )
(10)

= × +

+ × =

DD W CD TD

W SD

( )T VM Per i j i j

Sec k i j
k

, ( , ) ( , )

1
3

( , )

i j

(11)

+ =W W 1Per Sec (12)

Since a scientific workflow is a collection of dependent tasks, the total deficiency degree for workflow Wi called DDW is defined
as:

=
=

DDW W DD T( ) ( )i
j

m

j
1 (13)

For each task, a small DD value means a high satisfaction degree. Small DD value implies that a task’s security and performance
requirements can be perfectly met by the VM that hosts the task.

4. Proposed approach: MOWS

Data centers in cloud have different architectures, so VMs in these data centers have different resource capacity and security
levels. Some VMs implement SSL to ensure data security, whereas other VMs use a virtual network that is implemented without any
security services. We present a new method to utilize security services in those VMs, which are more secure, and schedule sensitive
tasks on those VMs.

Eq. (14)shows the objective function of MOWS.

Minimize DDW W( )i (14)

In other words, our objective function incorporates computation time and data transmission cost while guaranteeing the data
security:

Minimize ComputationTime
Minimize TransmissionTime
Minimize SecurityRisk

(),
(),

(). (15)

4.1. Problem description

Depending on the type of analytical modeling techniques used in research, various problem-solving solutions are applied to solve
scheduling algorithms [48]. These solutions include greedy algorithms, linear programming, and evolutionary algorithms. We use list
scheduling as a greedy algorithm to solve our scheduling algorithm. List scheduling consists of two phases: a task prioritization phase,
wherein a certain priority is computed and assigned to each task in DAG; and the machine assignment phase, wherein each task (in
order of priority) is assigned to a machine that minimizes the cost function (Eq. (14)). In this section, we focus first on task prior-
itization. After that, we describe the MOWS algorithm in detail.

4.2. Task prioritization

We consider the following assumptions in our scheduling method:

• Several tasks can be scheduled on the same VM; however, they run in a particular order.
• A task cannot start until all input data is received.
• A task cannot start until all predecessor tasks are executed.

Based on these basic assumptions, we assign a rank to each task by bottom-up traversal of the DAG. Unlike other scheduling
methods, we add security to the task rank. In this case, if two tasks have the same complexity and communication cost, the one with
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higher security demand gets higher rank, so it schedules sooner than the other one. As a result, the task with higher security demand
will schedule on a more secure VM.

= + +

+

rank t w max c rank t

SD k

( ) ¯ ( ¯ ( ))

/

u i i
t succ t

i j u j

k i

( )
,

j i

(16)

where succ(ti) is the set of immediate successor tasks of task ti, wi is the average of task ti execution time on all of the VMs, and ci, j

refers to average communication time between ti and tj.

4.3. MOWS algorithm

In this section, we present MOWS algorithm, which incorporates the security and performance requirements into cloud sche-
duling. MOWS pseudo-code is given in the Algorithm 1. In this algorithm, each tasks in PrioritizedList is scheduled on the VM that has
the minimum DD.

4.4. Attack response algorithm

Response to security threats in the cloud is an important issue for cloud providers. If the cloud provider cannot cease the malicious
entity from unauthorized access to resources and data (which is a threat for the whole workflow), it may lead to further damage
through malicious alteration or deletion of sensitive data. In this section, we suppose that a cloud administrator detects malicious
behavior in a VM that is running task [49,50]. In order to respond to this misbehavior, we divide tasks into three groups: completed
tasks, running tasks, and future tasks. There is no strategy for completed tasks. To reduce the threat that a malicious task could have
for other tasks such as intentional data modification to achieve a malicious goal, or making the data unavailable to other tasks, we
reschedule high risk tasks to other VMs. Rescheduling running tasks is done by task migration with overheads on network links of the
data center as well as on the CPU cycles of servers executing the migration. As a consequence, we assign a probability of being
affected to each task and migrate those running tasks with higher probability of being affected to a more secure VM. The future tasks
with higher probability must be rescheduled to reduce the overall threat in the cloud. Accordingly, the security requirement of the
task is updated to make changes in the scheduling parameters. Consequently, these tasks will be located in a more secure VM.

Algorithm 2shows our proposed attack response approach. In this algorithm high risk tasks are detected and reschedule.

4.5. Application security analysis

Since cloud provides computational resources to execute a broad spectrum of applications from different customers, application
vulnerabilities and malicious users can threaten the security of sensitive data. Vulnerability in one of the tasks can be exploited by a
malicious user. This may cause further damage to the cloud infrastructure and other tasks. In other words, an attacker gains access to
intermediate data generated by a task and maliciously change data to affect related tasks and running VMs. Deploying several
security services is critical for preventing malicious entities from unauthorized access to the sensitive data. To evaluate the security of
our approach two metrics are defined. The first one is “Security Risk” which evaluates the application workflow risk probability. The
second one is “Security Threat” that evaluates the average threat for all of the tasks in the workflow after one of them become
malicious.

1: Input : PrioritizedListof Tasks based on Rank (Equation16),
2: V MList, andV MS Pec
3: Output : Allocation Matrix
4: for each taskTi ∈ T do
5: Calculate CompC(Ti) based on Equation 6;
6: Calculate CommC(Ti) based on Equation 6;
7: Calculate SS(Ti) based on Equation 6;
8: end for
9: for each taskTi ∈ PrioritizedList do

10: for each VMV Mj ∈ V MList do
11: Use Equation 11 to calculateDD(Ti ,V Mj)
12: end for
13: SelectV Mk that has the minimumDD(Ti ,V Mj)
14: ScheduleTi on V Mj . (Allocation[i][k] = 1)
15: UpdateV MS peck.MIPS(Decrease it by factor ofα)
16: end for

Algorithm 1. MOWS algorithm.
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4.5.1. Application security risk probability
In order to measure the security risk of the application, we propose a risk probability formula to evaluate the risk of the sche-

duling task Ti on VM VMj. Shameli and Cheriet in [51] proposed an incremental approach which enabled cloud providers to assess
and manage cloud security risks. The first step in this method is to indicate the importance of the asset, vulnerability, and threat.
Importance of the asset can be determined by users via the amount of security demand, but indicating vulnerability of VMs is
complicated. So in order to analyze the security of the workflow, we adopt the same approach as Xiaoyong et al. [29] but we also
consider the effect of tasks communication on the tasks scheduling.

We assume that if security demand SDi
k for task Ti is less than the security service SSj

k (which are offered by a VMj), the risk
probability of scheduling Ti on VMj is zero. On the other hand, risk probability increases exponentially with the difference SS SDi

k
i
k.

The risk probability of scheduling Ti on VMj is calculated using Eq. (18).

=Pr T VM
ifSD SS

e otherwise
( , )

0,

1
k

i
k

j
k i

k
j
k

SD SS( )i
k

j
k

(17)

The task risk probability is a joint probability of all task risk probability for each security service. Pr(Ti, VMj) indicates the
probability that task Ti will be attacked during its execution.

=Pr T VM Pr T VM( , ) 1 (1 ( , ))i j
k

k
i
k

j
k

(18)

The application workflow risk probability is an average of all tasks risk probabilities. Pr(W) determines the average probability of
composed tasks being attacked in a workflow.

=Pr W
Pr T VM

m
( )

( , )T T i ji
(19)

4.5.2. Application security threat
The application security threat is another measurement to evaluate the security preserving of the scheduling algorithm. In order

to calculate the security threat, we implement the following scenario.

• Consider one of the tasks malicious.
• Simulate the attack (alter or delete sensitive data) in the cloud and consider VM security services in controlling the attack and
preventing the spread of malicious behavior among tasks.
• Calculate the number of affected tasks.
• Run the simulation several times. Average the results.
We suppose that, if the overall security demand of a task is higher than the overall VM security services, the task can be affected

by accessing altered or deleted intermediate data (that is generated by malicious parent). Since the performance of each task is totally

1: Input : Detected Malicious Task
2: RunningListandFutureList
3: Output : New Allocation Matrix
4: for each taskTi ∈ T do
5: CalculateS ecurityThreat(Ti);
6: if Ti .S ecurityThreat> Threasholdthen
7: HighRiskList.add(Ti)
8: end if
9: end for

10: for each taskTj ∈ RunningList∩ HighRiskList do
11: U pdate(TaskS pec(Tj).S S)
12: Migrate(Tj) based on the newTaskS pec
13: U pdate(AllocationMatrix)
14: end for
15: for each taskTj ∈ FutureList∩ HighRiskList do
16: U pdate(TaskS pec(Tj).S S)
17: Reschedule(Tj)
18: U pdate(AllocationMatrix)
19: end for

Algorithm 2. Attack response algorithm.
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related to its input data (that is generated by the parent task), the malicious behavior of the parent directly affects on the task trend.
So, the threat spreads among tasks. The total number of affected tasks is calculated and is called AS security threat.

In Section 5, these two metrics are used to evaluate the security of MOWS.

5. Performance evaluation

In this section, we conduct a set of experiments using real world workflows to analyze MOWS. We evaluate the performance in
terms of the makespan, security risk (see Eq. (19)), and security threat (see Section 4.5.2) by comparing with well-known algorithms
HEFT [52] and security-aware HEFT (SAHEFT). HEFT’s nature is non-security aware, it selects a virtual machine for a task without
considering the task’s security demands. HEFT chooses a VM that has the minimum completion time for the given task. In order to
make a fair comparison, we modify the HEFT algorithm by adding security. If a task has the same completion time in two VMs,
SAHEFT will schedule a task on a VM which provides more security services. So SAHEFT provide security in addition to performance
in workflow scheduling. We use WorkflowSim [53] to implement our scheduling algorithm and compare the results.

In this paper, the experiments need to be repeatable in order to compare the algorithm with different parameters. In addition,
implementing experimental environments is expensive and hard to conduct as resource conditions vary from time to time due to the
cloud shared infrastructure. Hence, simulation tools play an important role in cloud area research. WorkflowSim is an extension of
the CloudSim [54], cloud simulation toolkit, which simulates workflow management and scheduling in dynamic cloud environment.
It supports DAG and simulates scientific workflows in distributed environments with better accuracy and wider support than existing
solutions. WorkflowSim is promising in providing an evaluation platform for research areas such as scheduling algorithms and
overhead robustness studies. A series of important planning and scheduling algorithms, such as HEFT, DHEFT, Min-Min, and Max-
Min are implemented by WorkflowSim.

5.1. Data sets

We perform experiments with five real world scientific workflow applications in the Pegasus project:

• CyberShake [55]: used by the Southern California Earthquake Center to classify earthquake alarms.
• Epigenomics [56]: used DNA sequence lanes to generate multiple lanes of DNA sequences.
• Montage [46]: created by NASA/IPAC stitches to gather multiple input images to create custom mosaics of the sky.
• Inspiral [57]: used to generate and analyze gravitational waveforms from data collected during the coalescing of compact binary
systems.
• Sipht [58]: used in bioinformatics to search for small untranslated bacterial regulatory RNAs.

5.2. Experimental results

In order to show the functionality of the method, CyberShake workflows with 30, 50, 100, and 1000 tasks are applied. MOWS
with =W 0.2Sec and =W 0.5Sec (WSec determines the effect of security in the method which is defined in Eq. (12)), HEFT, and SAHEFT
are chosen to schedule these workloads on a heterogeneous cloud infrastructure with 20 physical and 100 virtual machines. To
simulate the heterogeneity of the resources in the cloud, 9 different types of virtual machines in terms of CPU (MIPS), RAM, BW, and
security services are chosen.

Results in Fig. 3 show the performance of the algorithms in terms of makespan, security threat, and security risk. Fig. 3a indicates
that makespan of workloads in all of the algorithms are almost the same. The comparison among algorithms based on the security risk
is illustrated in Fig. 3b. In MOWS the average probability of CyberShake workflow being attacked during its execution is less than
0.15, however this probability is much higher in HEFT and SAHEFT. Fig. 3c highlights that MOWS with =W 0.5Sec provides less
security threat for all of the workloads. For example, security threat for CyberShake_1000 is less than one, that means the average
threat for all of the tasks in the workflow after one of them become malicious is less than one task. However, scheduling with SAHEFT
and HEFT has higher threat for workflow and more than 5 tasks are threatened after one of the tasks become malicious. Thus, our
strategy can guarantee better security risk and threat than the other two strategies.

Fig. 4compares the performance of proposed MOWS with HEFT and the modified HEFT(SAHEFT). We apply MOWS ( =W 0.5Sec ),
HEFT, and SAHEFT to the DAG files of five real world workflows and calculate the makespan, security threat, and security risk. Each
configuration was simulated 10 times to measure confidence interval. Fig. 4a presents the makespan of the three algorithms for
different workflows on a cloud infrastructure with 50 virtual machines and 10 physical machines (considering a 95% confidence
interval). As depicted, MOWS has a better makespan than the other two algorithms in Inspiral and Epigenomics workflows. In the
other workflows they have almost the same makespan. Fig. 4b shows security risk in different workflows. Depending on the type of
the workflows and the relationship between tasks, the security risk is different. MOWS has the best security risks among the algo-
rithms (considering a 95% confidence interval). The results in Fig. 4c illustrate that the security threat in all of the workflows are
minimum when the scheduling algorithm is MOWS (considering a 95% confidence interval). This improvement is due to the fact that
MOWS approach is capable of employing the security attribute to expand the quality of scheduling. Since HEFT’s nature is non-
security aware, it selects a virtual machine for a task without considering the task’s security demands. Always there is a trade-off
between security and performance. We reduce the security threat and risk while maintaining a proper makespan for tasks.

For evaluating the efficiency and overhead of our MOWS attack response algorithm, according to Section 4.4, we define a scenario
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in the cloud environment where it is running Montage workflow (Fig. 2) with 1000 tasks. We assume one of the tasks is detected as a
malicious task. The detected malicious task type is mDiffFit. This task may get malicious files from its parents. The attack response
algorithm finds tasks with high-risk of being malicious via the detected task. Rescheduling high-risk tasks to a more secure VM helps
the cloud environment to have less overall threat. We run a scenario with two conditions: (1) with attack response and (2) without
attack response. Table 2 shows that security threat is reduced after the attack response; whereas, makespan increases (10%). As we
mentioned earlier, after the attack is detected in the cloud, high risk tasks migrate to a more secure VM. Since these tasks restart in a

Fig. 3. Simulation results on CyberShake.
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Fig. 4. Comparison of MOWS, HEFT, and SAHEFT .

Table 2
Attack response algorithm results (detected task with depth = 2).

With attack response Without attack response

Makespan 405 365
Security threat 44 110
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new VM, they complete later. Table 3 represents the same scenario when the detected task has depth equal to five. The depth of the
task is determined by its location. A task with smaller depth can affect more tasks in the application. Results in Table 3 confirm that a
task with lower depth causes a higher security threat to the application. According to this table, the attack response module reduces
the security threat from 72 to 35. Hence, using the attack response module can effectively reduce the security threat in application.

5.3. Complexity analysis

Theorem 1. The time complexity of MOWS is O(m*n), which sets the number of tasks as m and the number of VMs as n.

Proof. The time complexity of computing task’s priority and sorting them based on their rank is +O m m m( log ) (Steps 1). To
compute task’s CompC, CommC, and SS, the time complexity is O(3*m) (Steps 5,6,7). Furthermore, Selecting VM for each task has
time complexity O(n). So, for all tasks, the time complexity is O(m*n) (Steps 11,13). Thus, the total complexity of MOWS is O
(m*n). □

6. Conclusion

In a virtualized cloud environment, transferring data between tasks of an application is inevitable. If the security mechanism of a
VM is not strong enough, the malicious task can affect other tasks by modifying intermediate data. VM-level protection allows VMs
and tasks to stay secure in shared and multi-tenant environments. Although this issue is important to cloud security, none of the
previous works has addressed it. We considered task interaction issues as a security threat, in addition to the completion time in
workflow scheduling and presented MOWS, a security- and performance-aware scheduling method in a heterogeneous cloud en-
vironment that can reduce the overall security threat and risk. We designed a new systematic method that considers both tasks
security demands and interactions in secure tasks placement in the cloud. To do so, we introduced task security sensitivity mea-
surement to quantify tasks security requirements. The experimental results show that our algorithm can effectively reduce the
security risk and threat compared to HEFT and security-aware HEFT, while maintaining a reasonable completion time. This study was
limited by the absence of dynamic scheduling. An interesting future direction is to extend the MOWS algorithm for dynamic workflow
scheduling that takes into account prediction in workflow behavior in the cloud environment. Moreover, a further study could
evaluate the cost of our approach in pay-per-use clouds such as Amazon EC2 and Microsoft Azure.
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