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A B S T R A C T   

In this paper, we consider a class of multi-objective optimization (MOP) problems where the objective holders 
are independent humans or human-based entities. These problems are indeed game problems, which we call non- 
cooperative multi-objective optimization problems (NC-MOP). We discuss that for such problems, the Pareto- 
Optimal (PO) solutions are not necessarily valid as they primarily require Nash equilibrium (NE) solutions. 
Instead, we suggest that a new solution concept of the Pareto-optimal Equilibrium (POE) point could be adopted. 
Such a solution is, in particular, important in engineering design and articulation of new rules and protocols 
among independent entities. 

This paper reviews all relevant works that approach the POE concept and investigates the interplay between 
game problems and multi-objective optimization problems. We present illustrative examples to deepen our 
understanding of where a POE solution is achievable, as this is not always the case.   

1. Introduction 

The two disciplines of game theory and multi-objective optimization 
have so far little in common. Game theory is a mathematical tool for the 
analysis of decision problems related to cooperative and non- 
cooperative players. In a non-cooperative framework, which is of in
terest to us, any player seeks to maximize his payoff. In this case, the 
solution concept is Nash equilibrium (NE), which is a solution in which 
no player may improve their expected payoff by changing his strategy 
profile as long as the other players do the same. However, there might 
exist better solutions where both players obtain better-expected payoffs 
than those found at the Nash equilibrium points, called the Pareto- 
optimal (PO) solutions. Still, the PO solutions belong to the discipline 
of multi-objective optimization theory where NE has no role to play. 
However, practitioners in both disciplines have been engaged in solving 
a lot of common problems in various areas such as in design, engi
neering, economics, management, and social sciences (Aumann, 1987; 
Binmore, 2007; Ehrgott, 2006; Finus, 2002; Hwang & Masud, 1979; 
Ignizio, 1976; Jahn, 2011; Luce & Raiffa, 2012; Roger, 1991; Nash, 
1951; Osborne & Rubinstein, 1994; Schelling, 1980; Starr & Zeleny, 
1977; Von & Morgenstern, 1944; Zeleny, 1982). 

The question is whether a multi-player decision problem is different 

from a multi-objective decision problem. True is that the conflicts 
among goals are similar to the conflicts among players, but how is that 
the solution concepts are essentially different. It has been recognized 
that a solution to a multi-objective optimization problem seeks a balance 
between several conflicting objectives, and a solution to a multi-player 
non-cooperative game problem seeks a balance between conflicting 
parties. Still, the two solution concepts of NE and PO are different due to 
the nature of interactions between goal holders or players. Whether the 
type of interaction is cooperative or non-cooperative, the solution 
concept is different, i.e., PO and NE, respectively. What is the problem 
then? 

Among the general class of multi-objective optimization problems 
(MOP), one can see cases where goal holders are humans or human- 
based entities. However, these problems are, in fact, game problems 
rather than optimization problems. These problems, more accurately, 
can be called non-cooperative MOP (NC-MOP), as such that players’ 
strategies can be picked from the common feasible zone, i.e., the coupled 
feasible set. Hence, NC-MOP problems are distinguished from their 
classical counterpart of MOP problems. 

There are a lot of examples of NC-MOPs. Consider, for instance, the 
Caspian Sea, which is a multi-purpose reservoir with shared resources 
(e.g., oil resources, hydropower, and fisheries) among five independent 
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Table 1 
Review of past papers on POE concept in NC-MOP problems.  

1. (Vincent, 1983), Mechanical Engineering (Journal type) 
Considering MOP as a game? Yes 

Introducing a new solution concept? No. But both Pareto-minimum and Nash equilibrium solutions are proposed to be used together, i.e., conceptually similar to our POE 
concept. 

Proposing a new solution method for 
finding POE? 

No 

(Notes) The paper intends to bring to the attention of design engineers that the so-called design optimization problem is indeed a game problem. 
Though it is more desirable to have a solution that is Pareto-optimal and Nash equilibrium together. To achieve such solutions, it has been 
argued that additional information or intervention by a third player might be needed still, how to organize a design team to ensure such 
solutions is an open problem.  

2. (Rao, 1987; Rao & Freiheit, 1991; Rao et al., 1997; Lewis & Mistree, 1998), Structural Engineering (Journal type) 
Considering MOP as a game? Yes 

Introducing a new solution concept? No. The standard compromised solution concept is used for solving MOPs. However, the importance of the NE solution is also recognized. 
Proposing a new solution method for 

finding POE? 
No 

(Notes) Considering MOP problems as game problems are defined graphically. However, stress is not put on non-cooperative games. The 
importance of the POE solution is recognized. For instance, in (Rao et al., 1997) we read that a good solution is the one that is both 
individually and collectively stable. That is POE!  

3. (Lewis & Mistree, 2001), Mechanical Engineering (Journal type) 
Considering MOP as a game? Yes. It is called a vector game problem. 

Introducing a new solution concept? No 
Proposing a new solution method for 

finding POE? 
Using control theory, an iterative-based algorithm is proposed to estimate the rational reaction set (RRS). However, such an RRS does not 
always intersect to find a NE solution. The convergence of the algorithm is not guaranteed.  

4. (Chanron et al., 2005), Systems design (Journal type) 
Considering MOP as a game? Yes 

Introducing a new solution concept? No 
Proposing a new solution method for 

finding POE? 
Same as (Lewis & Mistree, 2001)An approximation algorithm  

5. (Gurnani & Lewis, 2008), Mechanical Engineering (Journal type) 
Considering MOP as a game? No 

Introducing a new solution concept? No 
Proposing a new solution method for 

finding POE? 
Same as (Lewis & Mistree, 2001) 

(Notes) The importance of the POE concept is fully appreciated, but has attributed only to the case of full cooperation among players through full 
sharing of information, i.e., objectives, constraints, gradients, etc.  

6. (Facchinei & Kanzow, 2010), Operations Research (Journal type) 
Considering MOP as a game? Yes, in a sense depicted in Fig. 1 

Introducing a new solution concept? Generalized Nash Equilibrium (GNE) 
Proposing a new solution method for 

finding POE? 
An optimality conditions-based algorithm is adopted. 

(Notes) The study of GNE is still in its infancy both on the theoretical ground and on the algorithmic side.  

7. (Ciucci et al., 2012), Research Engineering Design (Journal type) 
Considering MOP as a game? Yes 

Introducing a new solution concept? No 
Proposing a new solution method for 

finding POE? 
A Nash solution is sought by improving the (Lewis & Mistree, 2001 & Lewis & Mistree, 1998) method 

(Notes) It is not fully characterized that how the solution will approach the Pareto-optimal front when information is shared among the players.  

8. (Lee, 2012), Chemical Engineering (Journal type) 
Considering MOP as a game? Yes 

Introducing a new solution concept? No 
Proposing a new solution method for 

finding POE? 
NE solution is adopted as a compromised solution for a MOP problem. 

(Notes) A trial and error method is devised to find the NE point.  

9. (Ghotbi et al., 2014), Mathematical Modelling(Journal type) 
Considering MOP as a game? Yes 

Introducing a new solution concept? No 
Proposing a new solution method for 

finding POE? 
A sensitivity analysis based method is developed for finding Stackelberg NE solutions. 

(Notes) The method helps to approximate the nonlinear RRS equations.  

10. (Xiao et al., 2015), Engineering & Management (Journal type) 
Considering MOP as a game? No, but a game between two players is incorporated into a MOP problem, which makes it interesting to our line of inquiry. 

Introducing a new solution concept? No 
Proposing a new solution method for 

finding POE? 
No 

(Notes) Some constraints and objective functions are defined reflecting the players’ game within a MOP structure and where a weighted function 
generates the compromised solution.  

11. (Rezaei & Kalantar, 2015), Mechanical Engineering (Journal type) 
Considering MOP as a game? Yes 

Introducing a new solution concept? The optimized Nash equilibrium point is defined exactly in the same sense as POE in our work to act as a compromised solution in a multi- 
objective optimization problem. 

(continued on next page) 
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member states. The truth is that the objectives are conflicting, but it is 
important to find whether they need a compromised PO solution within 
a multi-objective framework or a stable equilibrium solution within a 
game framework. If there is a Pareto-optimal equilibrium (POE) solution 
for the member states, this would have eased up the long and troubled 
negotiations they have had for more than four decades (Yusifzade, 2000; 
Kucera, 2012; Contessi, 2015; RFE/RL, 2018a; RFE/RL, 2018b). 

Other NC-MOPs can also be found in the stakeholder at a corporate 
level; two farmers who share a water resource from the same aquifer; 
two neighboring countries who are in conflicts due to shared resources 
(e.g., water, timber, agriculture, recreational activities, etc.), engineers 
in a multi-disciplinary design project where the designers have to make 
decisions in private due to organizational barriers or geographical 
constraints (See Table 1). 

The problems mentioned here are examples of NC-MOPs for which 
PO solutions are not necessarily valid solutions. The basic reason is that 
NC-MOP problems should be classified under a non-cooperative game 
framework where the Nash equilibrium solution is relevant. We consider 
a new alternative solution concept called POE that is different from the 
Pareto-optimal solution, PO, equilibrium solution, NE, and Pareto- 
equilibrium solution, PE. 

Notice that different solutions may sometimes coincide, but this does 
not mean that those solution concepts are not distinct. For instance, in 
zero-sum games, a Nash equilibrium is identical with Pareto-optimal or 
the maximin solution (Jagannatha Rao, Badhrinath, Pakala, & Mistree, 
1997). Further, bargaining Nash solutions are also identical with Pareto- 
optimal solutions as players are practically cooperating to reach a 
compromised solution, e.g., in bargaining games (Young & Zamir, 
2014). Using a similar argument is that a POE solution, as we considered 
here, is a distinctive solution concept that we think is valid for a class of 
non-cooperating MOP problems. 

In this paper, we investigate the interplay between NC-MOPs and 
MOPs by reviewing the history and by delving into solution concepts of 
relevance, i.e., Nash equilibrium and Pareto-optimality. We present 
some illustrative examples to find out where a Pareto-optimal equilib
rium solution is achievable. 

Our main goal here is to show that NC-MOPs are a distinct class of 
problems. The analysis of mathematical structure that could entail at 
least a single POE point is of immense importance, which remains to be 
studied in future works. The paper is organized into the following sec
tions. Section 2 reviews past works from the new perspective of POE. 

Section 3 considers some theoretical backgrounds for modeling and 
solving NC-MOP problems. Section 4 explores POE solution for different 
linear and non-linear problems. Section 5 concludes and presents ways 
for further studies. 

2. Past works 

Facchinei and Kanzow (2010) have reviewed generalized Nash 
equilibrium problems (GNEP) that contain our NC-MOP problems as a 
sub-class as shown in Fig. 1(a). 

GNEP can have many different forms spread between two different 
structures shown in Fig. 1. On one hand, Fig. 1(a) illustrates a two-player 
game where strategies are picked from a common feasible area, i.e., a 
coupled feasible set. Indeed, this is a MOP problem where the objective 
holders are independent humans or human-based entities. We call these 
problems non-cooperative multi-objective optimization problems or NC- 
MOPs. On the other hand, Fig. 1(b) illustrates a two-player game 
problem where players’ feasible sets are fully decoupled, i.e., each 
player has its domain of strategies. Problems with partial couplings have 
been also considered where its structures lie between Fig. 1(a) and Fig. 1 
(b). For instance, in a leader–follower or Stackelberg game, some con
straints might be shared between two players to form the partial 
coupling of shared information. Still, there might be other constraints 
that solely belong to each player. Each player can then pick a strategy 
profile that is feasible in both shared and not shared constraint sets. 

GNEP in the literature, which have been called differently, e.g., 
distributed design problems, continuous static games (Vincent, 1983), 
distributed decision-making (Lewis & Mistree, 1998), pseudo-game, 
social equilibrium problem, equilibrium programming, coupled 
constraint equilibrium problem, abstract economy, Facchinei and Kan
zow (2010). It is worth noting that GNEP was first introduced by Debreu 
in (Debreu, 1952), though it was earlier termed “an abstract economy” 
defined as “In a game, the payoff to each player depends upon the 
strategies chosen by all, but the domain from which strategies are to be 
chosen is given to each player independently of the strategies chosen by 
other players. An abstract economy, then, maybe characterized as a 
generalization of a game in which the choice of an action by one agent 
affects both the payoff and the domain of actions of other agents” (Arrow 
& Debreu, 1954). Such a definition fits the game structure depicted in 
Fig. 1(b). Our focus, however, in this paper is in Fig. 1(a) where a multi- 
objective optimization problem is converted into a game problem, i.e., a 

Table 1 (continued ) 

Proposing a new solution method for 
finding POE? 

The method is a trial and error method. 

(Notes) The solution obtained is not necessarily a Nash equilibrium solution as mentioned in the conclusion of the paper. It is a Nash inspired 
solution point.  

12. (Konak et al., 2017), Computer Engineering (Journal type) 
Considering MOP as a game? Yes 

Introducing a new solution concept? No. The problem solved is a bi-objective mixed integer programming problem. 
Proposing a new solution method for 

finding POE? 
A genetic algorithm is used to approximate the NE and PO solutions 

(Notes) Although the NE solution is not located on the PO front finding a POE solution is advocated as a desirable solution.  

13. (Ji et al., 2018), Computer Engineering (Journal type) 
Considering MOP as a game? Yes, a game problem is considered while each player faces a multi-objective utility function 

Introducing a new solution concept? The Pareto Equilibrium (PE) solution concept is sought, here which is a concept that has already being investigated in game theory circles. 
Proposing a new solution method for 

finding POE? 
Two methods are considered: A duality approach and a KKT based approach 

(Notes) Each player has a PO front where points from those fronts are engaged in a non-cooperative game to achieve an NE solution. This solution 
is not a POE solution. The paper does not deal with the NC-MOP problem.  

14. (Monfared et al., 2020), Operations Research (Journal type) 
Considering MOP as a game? Yes, the MOP problem converts to a game by considering the z-space as a payoff space of a bi-matrix game. 

Introducing a new solution concept? The notion of “induced games”, “most preferred solution”, and the POE solution is introduced. 
Proposing a new solution method for 

finding POE? 
An algorithm is proposed for finding the POE solution for linear bi-objective optimization problems 

(Notes) The definition of POE is a refinement of the PO front or its neighborhood for finding the most preferred solution. This definition is 
completely different from our approach in this paper.  
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MOP problem is converted into an NC-MOP problem. Handling these 
problems, however, surfaced since the late nineties by scholars in the 
engineering field. 

Still, our line of inquiry is different from that of the engineering field. 
Our work looks for POE solutions in NC-MOP problems, which is the 
class of problems illustrated in Fig. 1(a). In Table 1, we have gathered all 
the papers of relevance. 

We noted here that any works that did not pay attention to the POE 
concept, whether implicit or explicit have not been reported. Our review 
starts with the work of Vincent in 1983 (Vincent, 1983). Table 1 is or
dered chronologically from 1983 to 2018 and reviews 19 papers We 
intend to find out whether a MOP has ever be seen or treated as an NC- 
MOP problem or not. Vincent (1983) here is Nobel in a sense that he has 
vividly defined an NC-MOP problem and a POE solution concept, named 
Pareto-minimum Nash Equilibrium. Still, Vincent assumed that a POE 
solution always exists, which is overlooked as we will show in Section 3. 
Later researchers have almost neglected the importance of POE solu
tions, focusing mainly on Nash equilibrium solutions. What we called 
POE has resurfaced almost two decades later through GNE literature as 
indicated in row 11 of Table 1. 

We think the POE solution is also important to serve as a quality 
measure to assess organizational efficiency. For instance, consider a 
design problem where independent experts from different organizations 
located in different areas are involved in developing a multi-component 
system. Here, a Nash equilibrium (NE) solution is a valid solution to 
represent the interactions of independent players; but it might not be an 
efficient solution. A POE solution, on the other hand, guarantees that 
such a solution is efficient for all players. A POE solution is both indi
vidually and collectively stable. However, finding an efficient POE so
lution poses new theoretical and methodological challenges as will be 
considered in the next section. 

Now that we have finished reviewing the relevant papers, we may 
make the following important comments which shall pave the way for 
future investigations:  

1. Most problems dealt with in current literature are of engineering 
nature.  

2. All methods used to solve these problems are essential for a trial and 
error nature.  

3. More theoretically sound methods used, which are KKT-based 
methods are merely simple heuristic, e.g., the non-linear Jacobi- 
type method, non-linear Gauss–Seidel-type method, and penalty- 
type method. These methods suffer from not being globally conver
gent under reasonable assumptions such as convexity and differen
tiability. See further details in Facchinei and Kanzow (2010), Dreves, 
Facchinei, Kanzow, and Sagratella (2011) and Hintermueller and 
Surowiec (2013).  

4. The POE solution concept has been pointed out by only a few papers, 
i.e., # 1, 11. 

Upon such a background of past literature, we now delve into the 
interplay of a non-cooperative game problem and a multi-objective 
optimization problem to see where a POE solution is achievable, a 
high profile quality solution that is both Nash and Pareto. 

3. Theoretical backgrounds 

To develop our understanding of a POE solution, we start by 
considering some necessary definitions. 

Definition 1. (Ehrgott, 2006) A multi-objective optimization prob
lem with p objective functions is formally defined as follows 

max z(x) = (f1(x), f2(x),⋯, fp(x))
s.t. x ∈ X (1)  

where X⊆Rn is the feasible space or x-space, and, fi, i = 1,⋯,p, is an n- 
variable function. The image of X under map z as denoted by Y is called 
the objective space or z-space, i.e. 

Y = z(X) = {y ∈ Rp | y = z(x)forsomex ∈ X}

When X is a polyhedron and objective functions are linear, the 
problem is called a linear multi-objective optimization problem. In a 
linear multi-objective optimization problem, if there are two objective 
functions, i.e. p = 2, then the problem is called linear bi-objective 
optimization (BO) problem. 

A feasible point x̂ ∈ X is called efficient or Pareto-optimal if there is 
no other x in X such that fi(x)⩾fi(x̂) for all i = 1,⋯,p. 

Definition 2. If the objective holders in problem (1) are human en
tities or organizations, one can consider each objective holder as a 
player. Indeed, we have p players. Suppose each player i controls ni 

decision variables so that n =
∑p

i=1ni. For decision vector x we denote 
the variables of player i by xi. Let x− i denotes the vector formed by de
cision variables of all players except those of player i. We use (xi, x− i) as 
the alternative notation for decision variables vector x = (x1, ⋯, xn). 
Given a fixed decision variable x̂ − i the payoff function Pi : Rni →R of 
player i is defined as Pi(xi) = fi(xi, x̂− i

). As well as the player i’s payoff 
function, the strategy set of player i depends on the strategies taken by 
other players. In fact, given a fixed decision variable x̂− i, the strategy set 
of player i is defined as follows 

Xi = Xi(x̂− i
) = {x ∈ Rni : (x, x̂ − i

) ∈ X}.

Recall that X is the feasible space of problem (1). Now, the non- 
cooperative game corresponding to problem (1) is defined as the triple 
G = (X,{Xi}

p
i=1,{Pi}

p
i=1). This game is a special case of generalized Nash 

equilibrium problems defined in (Facchinei & Kanzow, 2010). 

Definition 3. Consider the game G defined in Definition 2. A point x ∈

X is called a generalized Nash equilibrium of G if for each player i, xi 

Fig. 1. Two different structure for the generalized Nash equilibrium problems (GNEP): (a) fully coupled games, our NC-MOP problems, and (b) fully decou
pled games. 
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maximizes the payoff function Pi(xi) = fi(xi,x− i), i.e. 

Pi(xi) = maxxi∈Xi(x− i
)fi(xi, x− i), i = 1,⋯, p.

A generalized Nash equilibrium point x ∈ X is called a Pareto- 
optimal equilibrium (POE) solution if it is a Pareto-optimal solution of 
problem (1). 

3.1. POE categories 

In Fig. 2, we show the interplay between a PO solution set and a NE 
solution set for NC-MOP problems to categorize when a POE solution 
can be exploited, i.e., cases 1, 2, 3, and 4. Altogether we have considered 
5 cases of the interplay between the Pareto-optimal solution set and the 
Nash equilibrium set. This may be seen as an important contribution as 
future works can be directed toward these categories. 

Later in the sequel, we provide examples for each case. It should be 
noted here that case 4 in Fig. 2 is hypothetically possible, and we could 
not find an example that lies in this class in our numerical experiments. 

Note that solving NC-MOP problems requires novel developments 
both in theoretical and algorithmic aspects as both are still in their in
fancy. The solution of the NC-MOP problem can be characterized as the 
stationary points of a set of ordinary differential equations (ODEs). 
Where it is difficult to find out under which conditions such a point is 
asymptotically stable (Facchinei & Kanzow, 2010). One missing criteria 
in the current literature appear to be that how can one establish a given 
solution as a valid or even a preferable solution (Facchinei & Kanzow, 

2010)? We have contributed to this aim, in this paper, saying that the 
POE solution concept is going to be a way out. 

Note that at present time for finding a POE solution, the NC-MOP 
problem should be solved twice, i.e., once as a MOP problem to find 
the PO solution set and once as a game problem to find out the NE so
lution set. 

It is, however, possible to solve an NC-MOP problem directly using 
methods such as procedures based on Karush-Kahn-Tucker (KKT) opti
mality conditions as illustrated in Table 1. But, these solutions can not be 
verified for being POE solutions unless the theory is advanced further to 
add the necessary and sufficient conditions to the KKT based equations. 
In the following section, we consider some illustrative examples 
showing that the existence of POE is dependent upon (1) the mathe
matical structure of the NC-MOP problem, (2) the choice of variables 
controlled by the players. 

4. Illustrative examples 

Our proposal, in this section, is to illustrate how the POE solutions 
can be found and interpreted considering the four categories considered 
in Fig. 2. To solve an NC-MOP problem we have to follow three steps:  

1. Find the NE solution set by solving the NC-MOP problem as a game,  
2. Find the PO solution set by solving the NC-MOP problem as a multi- 

objective optimization problem,  
3. Intersect these two solution sets to find POE solutions if there exist 

any, i.e. 1, 2, or 3 in Fig. 2. 

Fig. 2. Exploring the relationship between Pareto-optimal solution set and Nash equilibria set in a NC-MOP in two main cases.  

Fig. 3. The best response sets of players for problem (2) (left), and, the Pareto-optimal front of problem (2) (right).  
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To illustrate these three steps, we consider some different problems 
with linear and non-linear objective functions. 

4.1. A linear bi-objective problem 

Consider the following linear bi-objective optimization problem 

max f1(x1, x2) = 5x1 − 2x2,

max f2(x1, x2) = x1 + 4x2,

s.t. (x1, x2) ∈ X,
(2)  

where X = {x ∈ R2 : − x1 +x2⩽3, x1 +x2⩽8, 0⩽x1⩽6,0⩽x2⩽4} and 
each objective is hold by a player in a non-cooperative game framework 
so that player 1 controls variable x1, and player 2 controls variable x2. 
Fig. 3 (left) shows the best response sets for both players P1 and P2. In 
this figure, the best response set for P1 and P2 which have been esti
mated using the KKT-based method are denoted by unfilled black 
squares and filled blue circles. As we can see, the intersection of these 
two best response sets leads to the NE set, which is the line joining 
vertices E and F in Fig. 3 (left). Also, in Fig. 3 (right), the Pareto-optimal 
front of problem (2) is shown in red line, which has been solved using 
the standard method of ∊-constraint (Ehrgott, 2006). The intersection of 
the NE set and the Pareto front is the line segment EF. That is, EF is the 
set of POEs. In this example, the POE set belongs to case 2 in Fig. 2. 

Now, let us modify the parameters of the objective functions in 
problem (2) as shown in the following 

max f1(x1, x2) = 5x1 − 2x2,

max f2(x1, x2) = x1 − 4x2,

s.t. (x1, x2) ∈ X
(3) 

In Fig. 4 (left), the corresponding best response sets for player 1 (P1) 
and player 2 (P2), are shown. In Fig. 4 (right) the Pareto front is shown. 

Here, we witness that the NE set contains only a single point of C = (30,
6), which is identical to the Pareto front (case 1 in Fig. 2). 

4.2. The thin-walled pressure vessel design 

Consider the design of a pressure vessel described in Fig. 5 (Xiao, 
Shao, Gao, & Luo, 2015) with design variables of radius, r, length l and 
thickness, t. We define a NC-MOP problem with two objective holders 
such that one objective holder tries to minimize the weight 
w(r, l, t) = ρ(4/3π(r + t)3

+π(r + t)2l − 4/3πr3 − πr2l) by controlling the 
design variables t and l, and, the second objective holder seeks to 
minimize the negative of the volume v(r, l) = 4/3πr3 +πr2l by control
ling the design variable r. The pressure vessel should be satisfied with 
geometry and stress constraints. The problem can now be written as 

Fig. 4. The best response sets of players for problem (3) (left), and, the Pareto-optimal front of problem (3) (right).  

Fig. 5. A thin-walled pressure vessel design problem and design variables.  

Fig. 6. The z-space and the Pareto-optimal front and the NE set for pressure 
vessel design problem. It can be seen that Pareto-front and NE set intersect in a 
single POE point. 
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min w(r, l, t) = ρ[4/3π(r + t)3
+ π(r + t)2l − 4

/
3πr3 − πr2l]

min v(r, l) = − (4/3πr3 + πr2l)

s.t.
pr
t

⩽st

5t − r⩽0

r + t − 40⩽0

l + 2r + 2t − 150⩽0

0.1⩽r⩽36, 0.1⩽l⩽140, 0.5⩽t⩽6  

where ρ=0.283 lbs/in3 is the density of the vessel material, p = 4klb is 
the pressure inside the vessel, and, st = 35klb is the allowable tensile 
strength of the vessel material. The z-space, the Pareto-optimal, and the 
NE is shown in Fig. 6. As we can see in this figure, the NE set intersects 
the Pareto-optimal front in a singleton set, i.e. a POE (case 3 in Fig. 2) 

4.3. Four bar truss design 

We consider the Four bar truss design problem (Ray, Tai, & Seow, 
2001) here in which we have four design variables x1, x2, x3 and x4. The 
problem is to minimize structural volume (f1) and the displacement (f2) 
at joint point 2 shown in Fig. 7, subject to the stress constraints: 

min f1(x) = L(2x1 +
̅̅̅
2

√
x2 +

̅̅̅
2

√
x3 + x4),

min f2(x) =
FL
E

(
2
x1

+
2

̅̅̅
2

√

x2
+

2
̅̅̅
2

√

x3
+

2
x4

)

,

s.t.
F
σ⩽x1, x4⩽3

F
σ ,

̅̅̅
2

√ F
σ⩽x2, x3⩽3

F
σ ,

(4)  

where F = 10kN,E = 2 × 105kN/cm2, L = 200cm and σ = 10kN/cm2. 
Now, we suppose that player 1 (P1) controls design variables x1 and x2, 
that is x1 = (x1,x2), and player 2 (P2) controls design variables x3 and 
x4, i.e., x2 = (x3,x4). Then, to find the NE solution we need to solve a 
nonlinear equation system that can be obtained by writing down the 
optimality conditions for both players P1 and P2. Let λ−i and λ+i be KKT 
multipliers for lower and upper bound constraints on variable xi, 
respectively. Then the optimality conditions for both players can be 
written as follows 

Optimality conditions for P1 Optimality conditions for P2

2L − λ−1 +λ+1 = 0

̅̅̅
2

√
L − λ−2 +λ+2 = 0

λ−1 (
F
σ − x1)= 0, λ−2 (

̅̅̅
2

√ F
σ − x2)= 0

λ+1 (3
F
σ − x1)= 0, λ+2 (3

F
σ − x2)= 0

F
σ⩽x1⩽3

F
σ ,

̅̅̅
2

√ F
σ⩽x2⩽3

F
σ

λ−1 ,λ
+
1 ,λ

−
2 ,λ

+
2 ⩾0

−
2

̅̅̅
2

√
FL

Ex2
3

− λ−3 +λ+3 = 0

− 2
FL
Ex2

4
− λ−4 +λ+4 = 0

λ−3 (
̅̅̅
2

√ F
σ − x3)= 0, λ+3 (3

F
σ − x3)= 0

λ−4 (
F
σ − x4)= 0, λ+4 (3

F
σ − x4)= 0

̅̅̅
2

√ F
σ⩽x3⩽3

F
σ ,

F
σ⩽x4⩽3

F
σ ,

λ−3 ,λ
+
3 ,λ

−
4 ,λ

+
4 ⩾0 

This system can be solved using different methods. Here, we use the 
symbolic solver in Mathematica software, and obtain the unique solu
tion of x1 =(x1,x2)= (1,

̅̅̅
2

√
) and x2 = (x3, x4) = (3, 3). It is easy to see 

that this solution is not a Pareto-optimal solution for the original 
problem which is case 5 in Fig. 2 as we have shown in Fig. 8. 

Fig. 8. The z-space and the NE point of four bar truss design problem when the 
design variables of player 1 are x1 and x2 (red), and, when the design variable 
of player 1 is x1 (green). 

Fig. 9. The z-space of the four bar truss design problem with all cases possible 
for assigning design variables to the players. The NE point of each assignment is 
denoted by a green square as well as the corresponding number in Table 2. 

Fig. 7. Four bar truss problem (Ray et al., 2001).  
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Now, let us assume that P1 has only x1 as his design variable under 
control, i.e., x1 = x1, and other variables are controlled by P2, i.e., x2 =

(x2,x3,x4). In this case, the NE solution is again the unique solution x1 =

x1 = 1 and x2 = (x2, x3, x4) = (3, 3, 3), which is shown in Fig. 8. This 
problem has no POE solution, which is case 5 in Fig. 2. 

Furthermore, we have computed all possible cases for assigning 
design variables to the players, which are 14 cases. In all cases, the NE 
set consists of only a single point that does not belong to the Pareto- 
optimal front, i.e. there is no POE point. In Fig. 9 we depicted all such 
NE points. Details are shown in Table 2. 

The above version of the four-bar truss design problem has no POE, 
still, we may organize a unique version of the problem that has a POE. 
Indeed, we consider the NC-MOP with objective functions − f1(x) and 
− f2(x). Table 3 shows unique NE solutions corresponding to all possible 
choices of assigning design variables to players. As we can see in Fig. 10 
there are six choices of splitting control variables that produce three 
different POE solutions, while the other choices do not lead to a POE. 

5. Conclusion 

A subclass of traditional multi-objective optimization problems was 

found to illustrate the property of non-cooperative games, i.e. when 
their objective holders are independent entities. We discussed that for 
such problems, which we called non-cooperative multi-objective opti
mization (NC-MOP) problems, a feasible solution must be a Nash equi
librium (NE) and not necessarily a Pareto-optimal (PO) solution. Still, 
we advocate that an effective solution is a Pareto-optimal equilibrium 
(POE) solution, and we presented illustrative examples to see how the 
existence of a POE solution is dependent on the structure and the choice 
of variables controlled by each player. The main innovation of this paper 
is our analysis of the interplay between the Nash equilibrium solutions 
in a non-cooperative game model, and the Pareto-optimal solutions in a 
multi-objective optimization model. Also, the other contributions are:  

• the definition of NC-MOP problems, as a major class of GNEP 
problem,  

• the characterization of POE solutions, as the main solution concept in 
NC-MOPs, and  

• the division of NC-MOP problems into 5 subclasses. 

Further researches could be followed to delve deeper into the theory 
of NC-MOPs, i.e., by finding out how an NC-MOP problem could be 
structured to have a unique POE solution, i.e., to find out how the 
problem structure could influence the POE solutions, whether this is 
unique, many or any. We think when we find that association between 
structure and solution, we may take advantage of it in organizing 
collaborative and competitive teams, in particular in engineering de
signs where the diverse teams should get together from different 
branches of the same company or different companies. Efficient solution 
methods are also needed to be developed for every 5 cases of problems, 
which we have characterized. The managerial implication of this 
research is appeared to be that practitioners will soon find out that most 
of the PO solutions they have adopted so far needed to be revised to 
become POEs. 
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Table 2 
All possible cases for distributing design variables between two players in the 
four bar truss design problem.  

# x1  x2  NE solution 

1 x1  (x2, x3, x4)  x1 = 1, x2 = (3,3,3)
2 x2  (x1, x3, x4)  x1 = 3, x2 = (

̅̅̅
2

√
,3,3)

3 x3  (x1, x2, x4)  x1 = 3, x2 = (3,
̅̅̅
2

√
,3)

4 x4  (x1, x2, x3)  x1 = 3, x2 = (3,3,1)
5 (x1,x2)  (x3, x4)  x1 = (1,

̅̅̅
2

√
), x2 = (3,3)

6 (x1,x3)  (x2, x4)  x1 = (1,3), x2 = (
̅̅̅
2

√
,3)

7 (x1,x4)  (x2, x3)  x1 = (1,3), x2 = (3,1)
8 (x2,x3)  (x1, x4)  x1 = (3,

̅̅̅
2

√
), x2 = (

̅̅̅
2

√
,3)

9 (x2,x4)  (x1, x3)  x1 = (3,
̅̅̅
2

√
), x2 = (3,1)

10 (x3,x4)  (x1, x2)  x1 = (3,3), x2 = (
̅̅̅
2

√
,1)

11 (x1,x2,x3)  x4  x1 = (1,
̅̅̅
2

√
,

̅̅̅
2

√
), x2 = 3  

12 (x1,x2,x4)  x3  x1 = (1,
̅̅̅
2

√
,3), x2 = 1  

13 (x1,x3,x4)  x2  x1 = (1,3,
̅̅̅
2

√
), x2 = 1  

14 (x2,x3,x4)  x1  x1 = (3,
̅̅̅
2

√
,

̅̅̅
2

√
), x2 = 1   

Table 3 
All possible cases for distributing design variables between two players in the 
max version of the four bar truss design problem. Note that the objective func
tions have been negated.  

# x1  x2  NE solution 

1 x1  (x2, x3, x4)  x1 = 3, x2 = (3,
̅̅̅
2

√
,1)

2 x2  (x1, x3, x4)  x1 = 1, x2 = (3,
̅̅̅
2

√
,1)

3 x3  (x1, x2, x4)  x1 = 1, x2 = (
̅̅̅
2

√
,3,1)

4 x4  (x1, x2, x3)  x1 = 1, x2 = (
̅̅̅
2

√
,

̅̅̅
2

√
,3)

5 (x1,x2)  (x3, x4)  x1 = (3,3), x2 = (
̅̅̅
2

√
,1)

6 (x1,x3)  (x2, x4)  x1 = (3,
̅̅̅
2

√
), x2 = (3,1)

7 (x1,x4)  (x2, x3)  x1 = (3,
̅̅̅
2

√
), x2 = (

̅̅̅
2

√
,3)

8 (x2,x3)  (x1, x4)  x1 = (1,3), x2 = (3,1)
9 (x2,x4)  (x1, x3)  x1 = (1,3), x2 = (

̅̅̅
2

√
,3)

10 (x3,x4)  (x1, x2)  x1 = (1,
̅̅̅
2

√
), x2 = (3,3)

11 (x1,x2,x3)  x4  x1 = (3,3,3), x2 = 1  
12 (x1,x2,x4)  x3  x1 = (3,3,

̅̅̅
2

√
), x2 = 3  

13 (x1,x3,x4)  x2  x1 = (3,
̅̅̅
2

√
,3), x2 = 3  

14 (x2,x3,x4)  x1  x1 = (1,3,3), x2 = 3   

Fig. 10. The z-space of the max version of the four bar truss design problem (i. 
e. the objective functions have been negated), with all cases possible for 
assigning design variables to the players. The NE point of each assignment is 
denoted by a green square as well as the corresponding number in Table 3. 
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