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Abstract—Unmanned aerial vehicle (UAV) swarms have at-
tracted great interests in numerous civil and military scenarios
due to their flexible deployment and mobility. The increased
network size poses a challenge for the network scalability.
Clustering as an effective scheme, is able to provide efficient
communication and network performance. In order to adapt to
the change of network topology, the link subsistence probability is
used to evaluate the mobility of UAVs. However, the UAVs usually
perform tasks collaboratively, which leads to their movements are
typically group-based. To this end, a coalition game theoretic
framework is proposed to cluster UAVs into coalitions in a
distributed autonomous manner, based on the group and the
mobility information. The proposed game allows the UAVs with
the same group, as much as possible, into one coalition under
some constraints, such as cluster size and cluster diameter. To
solve the game, each UAV makes its decision whether to switch
based on the coalition value. Finally, some comparisons are
provided to illustrate the efficiency of the proposed algorithm.

Index Terms—Unmanned aerial vehicles, Clustering, Coali-
tion game, Link subsistence probability, Switch operation.

I. INTRODUCTION

RECENT advances in artificial intelligence, communica-
tion, sensors, and control technologies have witnessed

a significant increase of unmanned aerial vehicles (UAVs),
ranging from the high-altitude and long-endurance ones which
may be used singly to execute missions, to the low-cost and
short-range ones which may be used in swarms [1]–[3]. With
their ease of deployment, low acquisition and maintenance
costs, and high flexibility [4], the latter ones have been
of particular interest in civil and military fields, including
surveillance [5], relay communication [6], rescue operation
[7]. Moreover, connecting those UAVs via a communication
network to build multi-UAV networks, can greatly expand their
ability for complex tasks [8].

Multi-UAV networks are viewed as a special form of mobile
ad hoc networks (MANET) with non-centralized architecture
[9]. Specially, numerous compelling applications, such as
cooperative targets search or the surveillance for earthquake
and forest fire disasters, etc., rely on the interaction among
UAVs. UAV-to-UAV (U2U) information sharing is recognized
as an effective solution to provide the high quality of service.
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However, in cases of facing a wide range of area or many
complex tasks, it needs to deploy UAV swarms [10]. As
a result, the number of nodes in the network will have
a sharp increase and the network with flat structure may
cause the degradation performance. Moreover, the dynamic
characteristics of UAVs network also bring challenges to the
stability of network topology [11]. To this end, the clustered
multi-UAV network is proposed to handle the scalability and
stability issues. Note that clustering and resource allocation
(RA) are the important processes in operating a clustered
network. Here, we focus on the clustering process and know
that the inter-cluster RA is much less efficient than the intra-
cluster RA [12].

In the clustering process, nodes are divided into several
clusters. Most existing clustering methods firstly select some
nodes as cluster heads (CHs) based on specified indicators,
such as residual energy, signal strength and geographical
position [13]–[15]. The CHs are responsible for the intra-
cluster radio resource allocation and the communication with
command center. Other nodes as cluster members could con-
nect to the command center through the intra-cluster links with
their cluster head rather than to establish a remote connection
[12], [16]. This hierarchical network structure can not only
reduce the number of long-distance communication, which can
prolong the lifetime and enhance the reliability of the entire
network, but also reuse radio resources to improve the network
performance. Furthermore, by reducing the complexity of
network management, clustering could provide efficient and
steady routes with low routing overhead during route discovery
and forwarding [17], [18].

However, these works focus on ad hoc networks without
special organization. The nodes are quite equal to each other.
While UAVs usually execute the task coordinately, such as
multi-UAV target tracking and mapping applications [19]. In
such networks, UAVs with the same task form a group. They
have a similar mobility model with almost the same velocity
and direction. Furthermore, the communication traffic mainly
occurs in the same group. Therefore, it’s necessary to design
a group-based clustering algorithm. Moreover, due to the high
mobility of UAVs, the network connectivity usually cannot be
guaranteed [2]. For these characteristics, in order to reduce
cluster switching operation and improve the network stability,
it needs to predict the movements of UAVs. In this case, many
clustering algorithms are proposed, which jointly consider
mobility and some other criteria [20]–[22], such as degree,
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connectivity and energy. But this lacks a theoretical framework
and leads to frequent changes in clusters.

Due to the UAVs’ high dynamism, the centralized op-
timization would bring high computing complex and large
control cost. To address this challenge, there is a need for
distributed and autonomous systems [23]. Hence, game theory
is adopted, which is a very powerful mathematical tool for
modeling and analyzing interactions between several decision
makers [24], [25]. As a branch of game theory, coalition game
theory is used to study the behavior of players when they
cooperate, and provide a relevant framework for clustering.
It has been widely applied in wireless communication and
signal processing, and brought new insights for task allocation,
interference management, power control, etc [26]–[28].

Therefore, in this paper, a distributed clustering algorithm is
proposed which takes into account the cluster size and cluster
diameter constraints. The coalition game theory is designed to
model the cluster formation by identifying UAVs to players
and clusters to coalitions. Each UAV makes its decision based
on the coalition value. Considering the group and mobility
information of UAVs, the proposed clustering achieves the
optimal partition, which can allow the UAVs with the same
group, as much as possible, into one cluster and efficiently
improve the network stability.

A. Related Work
Clustering is one of the important research topics to manage

the network in a more efficient way. Many works have shown
that the hierarchical network is more stable and scalable as
compared to flat structure [29].

Single-metric clustering: Lowest ID and highest degree
(LID/HD) algorithms [30] are early examples of clustering.
Every node broadcasts beacon messages and compares the ID
or degree based on local information. Then the node is selected
as a cluster head if it has the lowest ID or the highest degree
in its neighborhood and the other nodes as cluster members
are associated with the nearest cluster head. However, these
clustering algorithms don’t take into account the mobility
characteristic which causes the network instability.

Combined-metrics clustering: As extensions to the LID/HD,
some algorithms consider multiple metrics to form the most
suitable clustering. A popular kind is the weighted clustering
algorithm, which can flexibly assign the weighting factors for
each metric. For example, a clustering algorithm is proposed
for the UAV networking in near-space, where the ground
stations calculate the initial cluster according to geography
information. Then the cluster heads are selected based on the
connection endurance time, node degree and remnant energy
[21]. A similar idea is applied in the cluster-based location-
aided routing protocol, which is proposed for UAV fleet
networks and takes the relative speed and tactical value into
consideration [31]. In order to improve connection stability,
another cluster head selection algorithm is proposed for flying
ad hoc networks based on the distance from ground control
station and residual energy [13]. For efficient communication,
a bio-inspired clustering scheme for flying ad hoc networks
is proposed, where a path detection function based on the

weighted residual energy, number of neighbors, and distance
between the UAVs is used for route selection [32]. While
different from the weighted clustering algorithm, some works
apply fuzzy logic to synthesize multiple parameters. For
instance, the residual energy, moving speed and pause time
have been used to select cluster heads [33]. Moreover, in
GPS-denied area, the fuzzy-inference system could be used
to estimate the positions of UAVs [17]. However, the works
aforementioned cannot update clusters according to the trend
of movements. One possible solution is to design the mobility
prediction strategy.

Mobility-aware clustering: Mobility is a prominent charac-
teristic of mobile networks, and is the main factor causing
rapidly changing network topology and intermittent commu-
nication links. Therefore, it’s necessary to apply the mobility
prediction strategy for forming and maintaining clusters. One
of the early works for mobility prediction in multi-UAV
networks uses the link expiration time [22], where a dictionary
trie structure prediction algorithm is proposed to calculate the
probability of neighbor set. The UAVs having the longest last-
ing neighbor set and the largest degree in their neighborhoods
are selected as the cluster heads and the other UAVs will join
the cluster head which has longer link expiration time with
it. In the near future, UAVs are expected to be deployed to
support a plethora of applications. UAVs can cooperate with
vehicular ad hoc networks on the ground to provide a global
vision of the connected segments [34]. A UAV-assisted reactive
routing protocol is introduced to make the data delivery more
reliable in vehicular ad hoc networks. This protocol exploits
in conjunction with the flooding process to estimate accurately
the expiration time of the discovered routing paths [35]. An-
other mobility prediction scheme is proposed, which uses the
Doppler shifts to estimate relative speeds [36]. In bio-inspired
mobility prediction clustering algorithm [37], the movement
stability and link subsistence probability are adopted as the
clustering criterions. For improving network stability, the UAV
associates to the cluster head that can provide it with the
largest virtual communication fluxes. In order to reduce the
computation and routing overhead, the connectivity probability
between any two UAVs is predicted based on the movement
parameter, which is used to select cluster heads [20]. While
some works focus on the link availability, which is defined
as the probability that a link will be continuously available
from t0 to t0 + t, given that it is active at t0 [38]. This
probability is used to predict the movement of nodes which
is regarded as a stochastic process. In the distributed gateway
selection algorithm [39], the influence of link availability and
boundaries are considered to calculate the stability of UAVs.
However, a central gateway is required to collect the stability
information and compute the network partition parameter,
which increases the overhead of central gateway. And the link
availability is suitable for the two dimensional environment.
These algorithms don’t tackle the problem of clustering with
group structure. Therefore, in this work, we are interested in
a distributed clustering solution that considers the group and
mobility characteristics.

Game Theory: Game theory has recently become prevalent
in the field of resource allocation, network formation, jamming
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and many others [40]–[42]. Nowadays, in order to solve
the clustering problem, there are many games proposed. For
example, a hybrid game theory is proposed to model clustering
problem in wireless sensor networks, which considers both
node degree and distance to base station [43]. Furthermore, to
achieve energy efficiency, an anti-coordination game is used to
present a cost and payment-based clustering algorithm [44]. In
order to provide efficient and stable routes for data dissemina-
tion in vehicular ad hoc networks, an evolutionary game the-
oretic framework is proposed to solve the clustering problem
[18]. The node with highest throughput in a cluster is selected
as the cluster head. And each member is associated with
one of the cluster heads which provides the highest signal-
to-noise ratio. In addition, the problem of correlation-aware
clustering is studied by an evolutionary coalitional game,
which clusters machine-type devices into coalitions based on
data correlation and potential energy savings [45]. What’s
more, using coalition game theory, a novel generic distributed
node clustering algorithm is designed to fill the theoretical
gap in ad hoc networks. Both structured and unstructured
networks are analyzed [12] by defining the corresponding
revenue functions and heuristics to select candidate nodes for
switch operations. Note that, it has to be mentioned that the
impact of mobility is not taken into account in most works,
which makes them unsuitable to mobile scenarios. Hence, in
this study, based on group and mobility information, we use
the coalition game theory framework to solve the clustering
problem in multi-UAV networks.

B. Contribution
In this paper, we conceive a distributed clustering algorithm

that can dynamically group UAVs into different clusters.
Meanwhile, the algorithm is run at every UAV. The main
contributions of this work are:

• A system model is proposed to find the partition that
minimizes the average communication delay under the
cluster constraints. The constraints include cluster size
and cluster diameter, which have a greatly effect on the
communication performance of multi-UAV networks.

• A coalition formation game framework is developed
to model the clustering problem, identifying players to
UAVs and coalitions to clusters. Using this approach,
the decision-making process is performed in an auto-
mated and fully distributed fashion. In addition to group
information, the link subsistence probability is used as
mobility information to calculate the coalition value.

• In order to solve the game, a distributed coalition for-
mation algorithm is presented, which determines the
candidate switch operations and selects the best switch
operation. It could converge to the stable state rapidly
and improve the network performance.

C. Outline of Paper
The rest of this paper is organized as follows: In Section

II, system model is given. The clustering algorithm based on
coalition formation theory is presented in Section III. Section
IV is dedicated to the simulation results. Finally, conclusions

Fig. 1. Multi-UAV network scenario for targets search.

are drawn in Section V.

II. SYSTEM MODEL

N UAVs which form multiple groups, are deployed to
search targets in an unknown area. The set of groups G is
defined as {G1, ..., GM} where M is the number of groups.
Let ng

m be the size of UAVs of group Gm. Different kinds of
sensor equipments can be utilized in various UAV platforms
as illustrated in Fig. 1. Here, we consider each UAV group
equips with one type of sensing devices (e.g., infrared sensors,
visible light sensors, laser sensors, and etc.). In order to
improve the search performance, UAVs in the same group
need share real-time sensing information. However, the group
characteristics and the dynamic UAV network topology bring
in new challenges to clustering optimization.

To address these issues, a mobility prediction clustering
algorithm is proposed to guarantee the communication perfor-
mance among UAVs in this paper. To simplify the analyses, the
set of UAVs are denoted by N = {1, 2, ..., N}. The network
graph can be defined as G(V, E) where V represents the set
of vertices (N UAVs) and E denotes the set of edges. Two
UAVs i and j are neighbors if (i, j) ∈ E , which depends
on a minimum threshold value of signal-to-noise ratio (SNR)
between UAV i and UAV j. A clustering solution leads to a
partition C, which is composed of K disjoint clusters noted
Ck with k ∈ {1, ...,K}. Let nc

k be the size of cluster Ck.

A. Channel Model

In this subsection, channel model is introduced. For U2U
communication, when UAV i transmits signals to UAV j, the
received power at UAV j from UAV i is expressed as

P r
i,j = Pi,jhi,jd

−α
i,j , (1)

where Pi,j is the transmission power from UAV i to UAV j,
and hi,j is the power gain of small scale fading channel, which
is distributed exponentially with a unit mean [11]. di,j is the
distance between UAV i and UAV j and α is the mean path
loss exponent. Therefore, the SNR from UAV i to UAV j is
shown as

Γi,j =
Pi,jhi,jd

−α
i,j

N0
, (2)

where N0 is assumed as additive white Gaussian noise. The
successful packet transmission probability can be expressed
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by

P (Γi,j ≥ η) = P

(
hi,j ≥

ηdαi,jN0

Pi,j

)
= exp

(
−
ηdαi,jN0

Pi,j

)
, (3)

where η is the SNR threshold. Here, the average transmission
delay is defined as [11], [46]

wi,j = R̄i,j(T1 + T2), (4)

where T1 and T2 are the packet preparation delay and the
packet transmission delay respectively. R̄i,j is the average
number of retransmissions, which can be calculated as follows

R̄i,j =
1

P (Γi,j ≥ η)
. (5)

B. Problem Formulation
In this paper, our objective is to find the partition C =

{C1, C2, ..., Ck} that minimizes the average communication
delay under the cluster constraints. The average communica-
tion delay is used to measure the performance of a clustering
solution. The optimization problem can be formulated as
follows:

min
C

1

N

∑
i∈V,j∈V

πi,jτi,j(C). (6)

s.t. nc
k ≤ nmax, ∀k, (7)

ω(Ck) ≤ ω, ∀k, (8)

where πi,j is the communication probability between UAV
i and UAV j. Here, we assume the communication traffic
is generated within the same group. Therefore, πi,j = 1 if
i ∈ Gm and j ∈ Gm. Otherwise πi,j = 0. τi,j is the
communication delay, which is defined as

τi,j(C) =
∑

(i′,j′)∈qi,j

γi′,j′wi′,j′ , (9)

where qi,j is the shortest path between UAV i and UAV j,
which can be expressed as qi,j = ((i, i1) , (i1, i2) , ..., (iH , j)).
The shortest path is calculated by the link average transmission
delay and cluster structure. It is difficult to have an exact
expression for delay. For simplicity, due to the inter-cluster RA
is much less efficient than the intra-cluster RA, let γi′,j′ = 1
if (i′, j′) is the intra-cluster link and γi′,j′ = 2 if (i′, j′)
is the inter-cluster link. A cluster will satisfy if it fulfills
the cluster size and cluster diameter constraints. nmax is the
cluster size constraint, which is generally enforced. ω is the
cluster diameter constraint, which is closely related to the
communication delay and overhead in intra-cluster. Here, the
cluster diameter is defined as the length of the longest shortest
path between any two UAVs in a cluster.

Note that a feasible clustering solution is to make the UAVs
in the same group into one cluster. However, it cannot work
well in the following two cases. One is that the members in the
same group may not be neighbors, such as [19] and clusters
with a large number of hops is not desirable. Another case is
that the number of UAVs in the same group varies, such as [47]
and the cluster size should be neither too small nor too large.
Importantly, it is not an easy task to find the best partition

Fig. 2. An example for the relative movement scenario.

with the increase of network size. Therefore, in this paper, we
focus on finding a feasible suboptimal solution. Two specific
goals are given below. The first one is in order to control
the number of clusters and inter-cluster links, let each cluster
contain as many UAVs as possible with similar movements
under cluster constraints. The second one is to make the UAVs
from the same group, as much as possible, into one cluster.
In addition, the UAVs are mobile, which makes a centralized
approach encounter high computing complex and large control
cost when the network scale grows. Hence, it’s necessary to
find a distributed cluster formation framework where each
UAV could make its own switch operation decision.

III. CLUSTERING ALGORITHM BASED ON COALITION
FORMATION GAME

(6) is just a network cost function used to assess the quality
of partition. In order to provide efficient communication, every
cluster in the partition should fulfill cluster size and diameter
constraints. However, mobility may change the cluster state.
To reduce dissatisfaction, we use a mobility prediction strategy
in clustering. When the clustering algorithm takes into account
group and mobility characteristics, it is likely to provide
more stable networks and better quality-of-service. In addition,
coalition game theory could provide a suitable framework in
the presence of constraints. Hence, it is used to model the
cluster formation.

A. Mobility Prediction Strategy
In this paper, the link subsistence probability is used. Each

UAV in the network broadcasts Hello packets periodically.
Based on the received signal, the link subsistence probability
between any two UAVs can be calculated. Fig. 2 shows the
approaching scenario. Assume UAV i is static and located
in position A, and UAV j moves with a relative speed vi,j
towards UAV i. Considering the relative speed and direction
remain constant in a small time interval t and the UAV j
receives Hello packet successfully at positions B and C.
Dashed line indicates part of the transmission range boundary
of UAV i. The link subsistence probability can be calculated
as follows [37]

Li,j =


dC,D

vi,jT
,

dC,D

vi,j
< T

1,
dC,D

vi,j
≥ T

(10)

where T is the threshold value. Therefore, if the two UAVs
have approximately same speed and direction, Li,j = 1. dC,D
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and vi,j can be calculated based on the received Hello packets
[36], [37]. In addition, the receding scenario uses the same
method.

B. Coalition Formation Game Model

In coalition games, a set of players want to cooperate by
forming coalitions to improve the performance of individual
and the whole network. Note that the coalition is the term used
in game theory, and here it is synonymous with cluster. First,
the notion of coalition structure is given below [26].

Definition 1: A coalition partition or a coalition structure
is defined as the set Π = {C1, ..., CK} which partitions the
UAVs set N , i.e., ∀k, Ck ⊆ N are disjoint coalitions verifying∪K

k=1 Ck = N .
Then, the coalition game is defined by the pair (N , u),

which are explained as follows:

• Players. N denotes the set of UAVs.
• Coalition Value. In this paper, the coalition value u(Ck)

depends on whether the constraints are satisfied, which
is defined as:

u(Ck) =

{
r(Ck), if nc

k ≤ nmax, ω(Ck) ≤ ω,
0, otherwise,

(11)

where with r(∅) = 0, r(Ck) is defined as:

r(Ck) = F1(Ck) · ϵ+
1− ϵ

M

∑
m∈I(Ck)

F2(Ck), (12)

where ϵ ∈ [0, 1] is used to make a trade off between the two
goals. Let ϵ = 1 represent no group characteristic. I(Ck) is
the index of groups with at least one member in coalition Ck.
ng,c
m,k is the number of UAVs of group Gm in coalition Ck.

F1(Ck) and F2(Ck) are the functions to achieve the two goals
respectively, which can be expressed as follows:

F1(Ck) =

(
min

(i,j)∈εck

Li,j

)
nc
k
2

n2
max

, (13)

where n2
max normalizes F1(Ck) in [0, 1]. The first term is

the minimum link subsistence probability, which is used to
increase the cluster life time and reduce the number of
dissatisfying clusters. εck are the edges between the members
of coalition Ck.

F2(Ck) =
ng,c
m,k

2

ng
m

2 . (14)

where n2
mg

normalizes F2(Ck) in [0, 1].
In this work, our coalition game is with transferable utility

(TU) where u(Ck) is the total utility of coalition Ck. Since
the coalition value only depends on the action chosen by the
members in the coalition Ck, the proposed coalition game is
in characteristic form. Further, the coalition value has different
properties for static networks and mobile networks.

For a static network, the subsistence probability is one if two
UAVs are neighbors. That is to say, F1(Ck) only depends on
the number of UAVs in the cluster. Obviously, both functions
F1(Ck) and F2(Ck) are strictly convex. If the cluster fulfills
the constraints, this utility function is monotonic. Besides, a

game is said to be superadditive if

u(C1 ∪ C2) ≥ u(C1) + u(C2), ∀C1, C2 ⊆ C, C1 ∩ C2 = ϕ.
(15)

And a coalition game with TU is said to be convex if its value
function satisfies

u(C1) + u(C2) ≤ u(C1 ∪ C2) + u(C1 ∩ C2), ∀C1, C2 ⊆ C.
(16)

The value function of convex games is superadditive. To our
coalition game, let two different clusters satisfy the constraints
be Ck and Cl. We assume that Ck∪Cl satisfies the constraints,
then

F1(Ck ∪ Cl) =
(nc

k + nc
l )

2

n2
max

ϵ

≥ nc
k
2

n2
max

ϵ+
nc
l
2

n2
max

ϵ

= F1(Ck) + F1(Cl) (17)

F2(Ck ∪ Cl) =
∑

m∈I(Ck∪Cl)

(ng,c
m,k + ng,c

m,l)
2

ng
m

2

=
∑

m∈I(Ck∩Cl)

ng,c
m,k

2
+ ng,c

m,l
2
+ 2ng,c

m,kn
g,c
m,l

ng
m

2

+
∑

m∈I(Ck),m/∈I(Cl)

ng,c
m,k

2

ng
m

2 +
∑

m/∈I(Ck),m∈I(Cl)

ng,c
m,l

2

ng
m

2

≥ F2(Ck) + F2(Cl) (18)

Therefore, u(Ck ∪Cl) ≥ u(Ck) + u(Cl). The utility function
in the static networks is superadditive and the TU game is
convex. However, the group characteristic of UAVs and the
constraints limit the formation of the grand coalition.

For a mobile network, in order to adapt to mobility and
reduce the number of clusters that fail to satisfy constraints,
F1(Ck) depends on the minimum link subsistence probability
and the number of UAVs in the cluster. Therefore, the utility
function isn’t monotonic and superadditive. The TU game isn’t
convex. However, if some UAVs are close or in the same
group, they will merge. Next, let’s recall the notion of switch
operation [48]. A transfer of a UAV from one coalition to
another is called a switch operation:

Definition 2: A switch operation σk,l(P) is defined as
players P decide to leave their current coalition Ck ∈ Π,
and join another coalition Cl ∈ Π ∪ {∅}, Cl ̸= Ck. Hence,
σk,l(P) : Ck 7→ Ck \ P , and Cl 7→ Cl ∪ P .

Though the decision of switch operation would be made by
UAVs individually, the utility of the entire network should also
be considered. Then, we have the following definition.

Definition 3: For a switch operation σk,l(P), Ck, Cl are
the related coalitions before the switch operation, and Ck′ ,
Cl′ with k′ = k \P , l′ = l∪P are the related coalitions after
the switch operation respectively. The switch operation gain
is defined as:

ρ(σk,l(P)) = u(Cl′) + u(Ck′)− u(Cl)− u(Ck). (19)
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C. Algorithm Description

Given the related concepts of coalition formation game
above, the clustering algorithm is designed as follows, which
is run at each UAV.

Firstly, let’s assume that UAV i belongs to cluster Ck and
group Gm. In order to merge the UAVs in group Gm into
one coalition, we find the UAV j, which is the neighbor of
UAV i in the same group and has the largest degree. Thus,
the set S, which is used to form a candidate set for a switch
operation, can be obtained by considering all the neighbors of
UAV j in group Gm. However, due to the UAVs are mobile,
the network topology changes over time. As a consequence,
the cluster satisfies the constraints at one time, and may no
longer satisfy them later. Therefore, let every UAV i first check
if its cluster constraints are satisfied when it starts a decision
making procedure. Refer to [12], we give a way to find the
sets of candidate UAVs for a switch operation according to
the checking result.

• When UAV i starts a decision making process and its
cluster satisfies the constraints, let the sets of candidate
UAVs for the switch operation be {i} and S.

• When UAV i starts a decision making process and its
cluster doesn’t satisfy the constraints due to the mobility
of UAVs, let the set of candidate UAVs for the switch
operation be S.

After that, the candidate switch operations are generated
between neighbor clusters. Here, two clusters are neighbors if
one node in a cluster is the neighbor of one node in another
cluster. However, when one constraint of cluster Ck is not
satisfied, the cluster value will be u(Ck) = 0. Note that,
the cluster Cl′ should satisfy nc

l′ ≤ nmax and ω(Cl′) ≤ ω.
In addition, if nc

k ≤ nmax and ω(Ck) ≤ ω, then the
switch operation σk,l(P) needs to guarantee nc

k′ ≤ nmax and
ω(Ck′) ≤ ω in order not to break the properties of the cluster.
Moreover, the switch operation is valid if ρ(σk,l(P)) > 0.

Then, the best switch operation is selected based on
ρ(σk,l(P)). To this end, the preferences must be built over
the possible switch operation. For evaluating these preferences
over the candidate switch operations, the concept of the
preference relation or order [12], [26] is introduced.

Definition 4: The preference relation or order ≻ is a
complete, and transitive binary relation, which is defined over
two different switch operations σk,l(Pi) and σk′,l′(Pj) such
that:

σk,l(Pi) ≻ σk′,l′(Pj) ⇔ ρ(σk,l(Pi)) > ρ(σk′,l′(Pj)). (20)

Finally, the best switch operation is performed. A summary
of the proposed clustering algorithm is given in Algorithm 1.

D. Properties Analysis

Proposition 1: For a static network, starting from any initial
coalition partition Πinitial in which each cluster satisfies
all constraints, the proposed clustering algorithm based on
coalition formation game always converges to a final coalition
partition Π, which is composed of a number of disjoint
coalitions.

Algorithm 1 The clustering algorithm based on coalition
formation game
// UAV i belonging to group Gm in cluster Ck, starts a
decision-making process.

1: Find UAV j ∈ Ck, which is the neighbor of UAV i of the
same group and has the largest degree.

2: Initialize the set S, which is obtained by considering all
the neighbors of UAV j in group Gm.
// Find the sets of candidate UAVs for a switch operation

3: Set U = ∅
4: if the cluster Ck satisfies the constraints then
5: if the cluster Ck \ i satisfies the constraints then
6: Set P = {i}.
7: end if
8: if the cluster Ck \ S satisfies the constraints then
9: Set P = P ∪ {S}.

10: end if
11: else
12: Set P = S.
13: end if

// Generate the candidate switch operations
14: for each P ∈ P do
15: Set U = {σk,∅(P)}
16: for each neighbor cluster Cl of Ck do
17: if the cluster Cl ∪ P satisfies the constraints then
18: if ρ(σk,l(P)) > 0 then
19: Set U = U ∪ σk,l(P)
20: end if
21: end if
22: end for
23: end for

// Select the best switch operation
24: Find P∗ and l∗ such that σk,l∗(P∗) ≻ σk,l(P),

∀σk,l(P) ∈ U
// Perform the switch operation

25: The UAVs P∗ in cluster Ck leave Ck and join in Cl∗ .
That is, the coalition structure is updated as follows Ck 7→
Ck \ P∗, and Cl∗ 7→ Cl∗ ∪ P∗

Proof: Since the network is static, the subsistence proba-
bility will be always one if two UAVs are neighbors. Let Πn

denote the coalition partition after n switch operations (the
index n represent the number of switch operations performed
by all players). Given the initial coalition partition Πinitial, the
proposed clustering algorithm is composed of a sequence of
switch operations. Each switch operation transforms the cur-
rent coalition partition Π into another partition Π′. Therefore,
the cluster formation phase consists of a sequence of switch
operations such as the following:

Πinitial → Π1 → Π2 → · · · → Πn → · · · . (21)

Since the initial clusters satisfy the constraints, it can be seen
that the clusters in the new partition still satisfy the constraints
after a switch operation. Thus, by recurrence, the constraints
are always satisfied. In addition, every switch operation leads
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Fig. 3. Simulation snapshots with different cluster size constraint nmax.

to an increase in the total of the coalition values of all
coalitions. Given the fact that the number of partitions is finite,
the sequence in (21) will always converge to a final coalition
partition. Hence, the proposed clustering algorithm based on
coalition formation game always converges to a final coalition
partition consisting of a number of disjoint coalitions, which
completes the proof.

The stability of the resulting coalition partition can be
studied using the following stability notion from game theory
[49]. In other words, a partition is Nash-stable if there is no
UAV has an incentive to deviate from its current coalition.

Definition 5: A partition Π = {C1, ..., CK} is Nash-stable
if ∀k ∈ K, ∀i ∈ Ck, ρ(σk,l({i})) ≤ 0 for all Cl ∈ Π ∪ ∅.

Proposition 2: Based on Proposition 1, the final coalition
partition Π is Nash-stable.

Proof: For the coalition partition Π, no UAV i ∈ N has
a switch incentive. Assume that the final coalition partition
Π from the proposed clustering algorithm is not Nash-stable.
Then, there is a switch operation such that ρ(σk,l({i})) > 0.
Hence, the UAV i in coalition Ck can trigger a switch
operation to join in coalition Cl, which contradicts the fact
that Π is the final partition. Therefore, the final coalition
partition Π resulting from Proposition 1 is Nash-stable.

IV. SIMULATION RESULTS

In our simulation, a 5 km × 5 km square area is considered.
Unless stated otherwise, we assume that the number of groups
M = 10. Considering the different complexity of tasks, the
number of UAVs in each group is different but at least one
UAV. The SNR threshold is defined by 0dB, which means
two UAVs could not communicate if SNR is lower than
0dB. The maximum speed is set to vmax = 10m/s and the
altitude of UAVs is between 100m and 130m. The transmission
power of UAV is 20dBm and the mean path-loss exponent is
α = 4. The noise power is −100dBm. The delay is T1 = 0
and T2 = 50µs [11] and the system carrier frequency is
2.4 GHz. The Hello interval is set to 1s and the simulation
time is 100s. The tradeoff parameter is equal to ϵ = 10−5

and all statistical simulation results are averaged over 100
independent runs. Finally, the threshold value to calculate the
link subsistence probability is set to T = 5 units of time.
Performance evaluations for both static and mobility are made
via simulations.

A. Mobility Model
In this paper, the low cost and short range UAVs form

groups to perform tasks. And the problem of task allocation
is assumed to be already completed. In order to imitate
the mobility characteristic of UAVs, a new mobility model
is proposed based on the Reference Point Group Mobility
(RPGM) model [50], in which all UAVs in the same group
move according to their assigned task. Here, each UAV group
needs to perform a sequence of tasks. The location of these
tasks are randomly generated and remain constant in their own
interval. Furthermore, we assume the average length of the
interval is 20 units of time. Therefore, the movement of a UAV
is composed of some random length intervals. UAVs need to
change their speed and direction in each interval based on the
location of next task. Thus let every UAV choose a random
location around each of its task, then toward it flying.

B. Simulation Snapshots

In this subsection, we consider there are 4 different cluster
sizes with respective nmax = 10, nmax = 15, nmax = 20 and
nmax = 25. Note that in order to make a comparison, the
movements of UAVs are same in each case. Here, each UAV
runs the algorithm periodically with 5 units of time on average
to adapt to the changing network topology.

Fig. 3 illustrates the clustering results at the same time
where we can see that the number of clusters varies from
13 at nmax = 10 to 7 at nmax = 25. There are a singleton
cluster and two clusters that the cluster size is less than five
at nmax = 10. These small clusters are inefficient for network
performance. From Fig. 3, the average number of groups per
cluster is 1.3, 1.7, 1.75 and 2 respectively. This means the
proposed algorithm makes the UAVs from the same group, as
much as possible, into one cluster. Furthermore, when nmax
is large, each cluster contains as many UAVs as possible to
control the number of clusters and reduce the number of inter-
cluster links.

C. Convergence Analysis
The performance of algorithm is directly related to the con-

vergence speed. Fig. 4 shows the number of iterations needed
till convergence of the algorithm, as the size of the network
N increases. A boxplot is drawn to detail the statistical result.
From bottom to top the different bars show the lowest value,



0018-9545 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVT.2019.2936894, IEEE
Transactions on Vehicular Technology

8

2

2.5

3

3.5

4

4.5

5

5.5

6

50 100 150 200 250
Number of UAVs (N)

N
um

be
r 

of
 it

er
at

io
ns

 

 
Average number of iterations

Fig. 4. The number of iterations till convergence.

0 10 20 30 40 50 60 70 80 90 100
0

0.05

0.1

0.15

0.2

0.25

0.3

Time (s)

A
ve

ra
ge

 c
oa

lit
io

n 
va

lu
e

 

 
M=5
M=8
M=10
M=12
M=15

60 70 80
0

0.05

0.1

0.15

Fig. 5. The average coalition value vs. time in a network with N = 100
UAVs.

first, median and third quartiles, and highest value. During an
iteration, all UAVs run the algorithm independently and make
a decision whether to switch the current cluster. This figure
shows that, as the number of UAVs increases, the total number
of iterations required to get the stable network increases. This
result is due to the fact that, the number of candidate switch
operations increases, thus more iterations are required for the
convergence. For instance, the minimum, average and maxi-
mum number of iterations vary, respectively, from 2, 2.9, 4 at
N = 50 UAVs up to 3, 4.2, 6 at N = 250 UAVs. Therefore,
the figure demonstrates that, our proposed algorithm could
converge to a final Nash-stable partition after several iterations.
Moreover, the number of iterations is slightly more even for
large-scale networks.

D. Performance Evaluation
Let us consider the impact of some factors on the network

performance, such as the number of groups, maximum moving
speed and the Hello interval.

Fig. 5 illustrates the average coalition value in the cases of
different number of groups when N = 100 and vmax = 10m/s.
We can see that with the number of groups M increasing,
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Fig. 7. The total number of cluster adjust times vs. HI values and maximum
speed in a network with N = 100 UAVs.

the average coalition value increases. On one hand, UAVs
from the same group are more likely to join a cluster and
the number of clusters may increase. On the other hand, the
average group size decreases when M increases. However, the
average coalition value stays almost unchanged when M = 5.
Because the cluster modifications have less impact on the
coalition value with lower number of groups.

In Fig. 6, the cluster adjust times is presented for a network
with N = 100 UAVs as the maximum speed varies. To
simplify the simulation without losing generality, we consider
three scenarios, such as vmax = 5m/s, vmax = 10m/s and
vmax = 20m/s. This figure shows that, after a period of time
(less than 10s), the frequency of modifications becomes lower.
It demonstrates that the proposed algorithm could convergence
to form stable clusters. Moreover, the cluster will change
following the movement of UAVs. However, UAVs move with
high speed would cause the links to be established inter-
mittently and force the network to organize and re-organize
frequently, thus increasing the number of modifications.

In Fig. 7, we evaluate the performance of our proposed
algorithm on the cluster adjust times when N = 100 under
different Hello interval (HI) values and maximum speed. At
the beginning of the simulation, each UAV creates a cluster
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independently. The simulation time is set to 100s. From Fig. 7,
we can see that if HI is large, the network would be adjusted
more times. thus leading to more communication overhead.
This phenomenon means that the mobility predict strategy
would be more accurate if the HI is small. Meanwhile, for
a same HI, when the UAV speed increases, the probability
of a cluster becoming dissatisfied is high, thus increasing the
number of modifications.

The above simulations are based on a modified RPGM
model. For the sake of generality, we consider a random walk
(RW) mobility model. In this model, UAVs change their speed
and direction irrelevantly. Therefore, the UAVs don’t have
group characteristic, thus parameter ϵ = 1. The total number
of cluster adjust times is shown in Fig. 8(b). It can be seen
that the RW model requires more cluster adjust times than
the modified RPGM model. The performance of the modified
RPGM model is illustrated in Fig. 8(a).
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Fig. 8. The cluster adjust times vs. maximum speed.

E. Comparison

There are few clustering algorithms that consider the
group characteristic of UAVs. Therefore, we compare our
proposed algorithm with the non-prediction scheme [12]
and the Bio-inspired mobility prediction clustering (BIMPC)
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Fig. 10. The average communication delay vs. the number of UAVs.

algorithm [37]. In the non-prediction scheme, it doesn’t
consider the mobility prediction mechanism. In the BIMPC
algorithm, cluster heads are elected first.

Fig. 9 depicts the average communication delay with
different maximum speed. With the increment of maximum
speed, we can observe that the average communication delay
decreases because larger speed provides a more similarity.
The UAVs from the same group are more likely to merge
into one cluster. The communication delay in the proposed
algorithm is lower than that of the non-prediction scheme,
due to the efficient prediction mechanism. When compared
with the BIMPC algorithm, our proposed can achieve 12%
lower communication delay on average, because the BIMPC
algorithm does not consider the group characteristics of
UAVs.

Fig. 10 shows the average communication delay with
different number of UAVs. It is shown that the average
communication delay increases with more UAVs in the
network. Due to the cluster constraints, a larger UAVs not
only divides the UAVs from the same group into multiple
clusters, but also leads to a larger number of inter-cluster
links. Therefore, more average communication delay is
generated by the inter-cluster links.

In addition, Table I shows the number of clusters that fail
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to satisfy the constraints during 100s simulation. We can see
from the simulation results, as the maximum speed increases,
the number of clusters that fail to satisfy the constraints
increases. This is due to the fact that, as the UAVs move
faster, clusters are more likely to fail to satisfy the constraints.
Moreover, our proposed algorithm is able to predict a change
in the topology and reacts before the cluster fails to satisfy
the constraints, while the BIMPC scheme does not consider
the cluster size constraint.

Table I The total number of clusters that fail to satisfy constraints during
100s simulation for different maximum speed

v = 5 v = 10 v = 15 v = 20 v = 25
BIMPC scheme 266 282 292 287 312
Non-prediction 1 2 4 5 5

Proposed algorithm 1 1 2 3 3

V. CONCLUSIONS

This paper studies a new clustering problem in the multi-
UAV network. By considering some constraints, such as
the cluster size and cluster diameter, the stable clusters are
achieved via considering group information and exploiting the
link subsistence probability induced by UAV mobility. The
clustering problem is modeled as a coalition formation game
among UAVs that interact in order to form disjoint coalitions.
To solve the game, we introduce an algorithm that allows the
UAVs to join or leave the coalitions based on their preferences
which capture the goal and constraints achieved by the coali-
tion. In this way, the proposed coalition formation algorithm
converges to a Nash-stable solution. Simulation results show
the UAVs can self-organize into independent coalitions. The
results also demonstrated that the proposed algorithm achieves
notable gains compared with other approach.
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