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a b s t r a c t 

For meeting diverse requirements of data analysis, the machine learning classifier has been 

provided as a tool to evaluate data in many applications. Due to privacy concerns of pre- 

venting disclosing sensitive information, data owners often suppress their data for an un- 

trusted trainer to train a classifier. Some existing work proposed privacy-preserving solu- 

tions for learning algorithms, which allow a trainer to build a classifier over the data from 

a single owner. However, they cannot be directly used in the multi-owner setting where 

each owner is not totally trusted for each other. In this paper, we propose a novel privacy- 

preserving Naive Bayes learning scheme with multiple data sources. The proposed scheme 

enables a trainer to train a Naive Bayes classifier over the dataset provided jointly by dif- 

ferent data owners, without the help of a trusted curator. The training result can achieve 

ε-differential privacy while the training will not break the privacy of each owner. We im- 

plement the prototype of the scheme and conduct corresponding experiment. 

© 2018 Elsevier Inc. All rights reserved. 

 

 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

Nowadays, the machine learning classifier, as a concrete implementation of classification [5] , is becoming an effective

tool in data analysis, which has facilitated applications in many areas including economic prediction, risk assessment, and

spam detection. Given a queried instance x , a trained classifier model W can be run to output a prediction that indicates

the class which the instance belongs to. To make the prediction accuracy, it is desirable for a trainer to train the classifier

over sufficient samples collected from various sources. Unfortunately, privacy and security concerns of personal information

arise in recently years, that is, data owners can hard allow untrusted entities to get access to their sensitive data, which

restricts trainer’s centralization of sample datasets. For example, a medical researcher wants to build a classifier which can

be used to classify symptoms according to patients’ health records. In this scenario, the researcher is a trainer while health

records can be seen as training samples that contains patients’ individual sensitive information that should not be revealed

by the researcher. It is urgent for this trainer to address a paradox between preserving privacy of patients and keeping the

availability of samples. 

As a solution, the notion of differential privacy [12,14] has been proposed to provide a privacy guarantee for an analyzed

dataset, even in the situation that a trainer hold some prior knowledges about the dataset. Implementing an appropriate
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private mechanism on analysis results of an algorithm can ensure that the algorithm will produce very similar outputs when

working on two adjacent datasets. Thus, we can adopting similar methods for the privacy-preserving machine learning to

build a classifier over a sample dataset without disclosing any single individual sample in the set. Aiming at a specific

learning algorithm, some privacy-preserving schemes [1,48] are developed to achieve the goal of differential privacy. 

However, the samples for training are usually collected from multiple data owners rather than a single source. In the

multi-owner setting, owners are untrusted for each other, that is, they all try to reveal the data contents of other owners and

hope to protect their own privacy. As a result, it is infeasible to directly depute the task of implementing private mechanisms

to any owner. A trivial way to solve this training problem is to introduce a trusted curator whose tasks are collecting

samples, training a model, and performing the mechanism. Unfortunately, such a curator usually cannot be established in a

real world application. This motivates us to design a multi-owner learning scheme without the help of a trusted third party.

Although some powerful cryptographic tools (e.g., fully homomorphic encryption or secure multi-party computation pro- 

tocol) can be used for these training computations, they are too heavy to be adopted for applications. To carry out multi-

owner training results achieving differential privacy in a practical way, we should face challenges from two aspects. On one

hand, the sensitivity of the learning function, which is a significant parameter in the mechanism, is related to the whole

sample set. That means deriving it without knowing the set is very hard. On the other hand, collecting samples will cer-

tainly obtain some of their important characteristics such as counts. So, if there is an untrusted curator, how to prevent it

revealing the characteristics is another problem. 

1.1. Contribution 

To address the problem above, in this paper, we propose a privacy-preserving machine learning scheme in the multi-

owner setting for a simple but highly effective classification, the Naive Bayes (NB) classification. The proposed scheme en-

ables a trainer, which is called data receiver, to build a NB classifier over the dataset contributed jointly by different data

providers, without the help of a trusted curator. The NB classifier model is able to meet the requirements of ε-differential

privacy. 

In summary, we present the main contributions of this paper as follows. 

• To achieve the goal of training, we design novel algorithms for aggregating each data provider’s data and implementing

differentially private training over these data. These algorithms do not involve heavy cryptographic tools and any trusted

curator but can protect each provider’s individual privacy. 

• Different from existed works, the aggregation method that we design in the proposed scheme can hide some statistics

information (e.g., the number of total samples). Furthermore, it makes the scheme guarantee the ownership privacy,

which means others cannot know whether a provider holds a sample that contains a specific attribute value. 

• We implement the prototype of our scheme and conduct experiments on the LAN server over datasets from UCI Machine

Learning Repository [15] . The result shows that the proposed scheme is practical. 

1.2. Organization 

The rest of this paper proceeds as follows. In Section 2 , related works are presented. Some preliminaries of this paper

are briefly introduced in Section 3 . In Section 4 , we state the architecture of our scheme and give the threat model, re-

quirements, and problems. The concrete construction of the scheme are proposed in Section 5 . The security analysis for

the proposed scheme are presented in Section 6 . In Section 7 , we present the implementation and evaluate the results of

experiments. Finally, we make a conclusion in Section 8 . 

2. Related work 

2.1. Privacy-preserving machine learning 

There have been some existing works that address privacy problems for machine learning algorithms, which provide

solutions for protecting the privacy of data providers. According to focused problems, the scenarios are mainly divided into

two categories. One is classifying a data instance, and the other is training a classifier over the datasets. Our work pays

attention on the latter one. 

Classification . We briefly describe this category. In the privacy-preserving classification, Barni et al. [4] proposed the secure

evaluation based on garbled circuits [22,52] for linear branching programs and neural networks. To deal with a Naive Bayes

classifier, some literatures presented schemes for protecting the confidentiality of queried instances [25,46,53] . Based on

comparison blocks and argmax blocks, Bos et al. [6] constructed a series of secure classification protocols which contains

the NB classification. 

Training . The system model of the training usually falls into either collaborative or client-server style. The addressed prob-

lem in the former is how to enable several data providers to collaboratively train a machine learning classifier over all their

datasets but not break the privacy of each one. In this setting, each data provider also plays a role of the trainer. The ex-

isting works considered this issues for machine learning algorithms, such as the neural network [3,9,40,42,43,54] , decision
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trees [38] , k-means clustering [24] , and NB classification [16,47] . Some of these works introduce a trusted third party for

authorizations, which is a usual method in the outsourcing storage system [10,11,28–31,33,34,44,49,51] . Alternatively, the

latter system is to enable a trainer (i.e., the server who receives training results) to train the classifier over the datasets

collected from data providers (i.e., the clients ) without revealing the content of the datasets. In this setting, some general

solutions based on the fully homomorphic encryption (FHE) technique [7,17,18] were presented by [19,50] . Nevertheless, the

FHE scheme is currently inefficient for practical applications. Other works presented solutions for specific data analysis tasks

and machine learning algorithms including statistics query [23,32,37] , SVM [8,27] , and deep learning [35,36,45] . 

We concern about The problem of the NB learning in a system architecture similar to a client-server one. Besides tradi-

tional privacy-preserving issues, we also address the problem in the view of the differential privacy. 

2.2. Differential privacy in machine learning 

Dwork et al. [14] have proposed the rigorous privacy definition of differential privacy, which is a significant work on

privacy protection for data release. The differential privacy is defined in terms of that the access of a dataset is unrelated to

the presence or absence of any individual. It has been extended to various applications of privacy-preserving data analysis

such as recommender system [39] and access log statistics [26] . 

There have also been works that proposed differentially private solutions for data analysis tasks. The solution approaches

are to implement a mechanism on the queried functions according to requirements of a specific task, and then give a way

to mitigate the impact of the noise from the learning results [2] . The differentially private learning schemes follow the same

line of the approaches to achieve quantifiable notion of privacy. These approaches include adding noises directly on the raw

data [13] and conducting particular randomization mechanism [20] to query results. Recently, Abadi et al. [1] proposed a

deep learning scheme with differential privacy, in which the mechanism is performed on the result of each learning round.

For the privacy-preserving NB classification with differential privacy, there are two existed work is most closely related

to ours. One is the work [48] in which developed differential private scheme to training the NB classifier from horizontally

partitioned data. However, this scheme orients to a single data provider. Without a trusted curator, it cannot be directly used

in the multi-owner setting where each owner is not totally trusted for each other. The other work [21] proposed a scheme

for the multi-owner setting. Nevertheless, different from ours, this work set statistics information such as the size of the

dataset as public, and the trainer can easily know whether an data owner holds a sample contains a specific value. Both

of these situations will break owner’s privacy. Furthermore, the algorithm of the scheme for vertically partitioned data is

trivial. Our work aims at enabling a trainer to training a NB classifier that achieves ε-differential privacy in the multi-owner

setting, while guaranteeing statistic privacy and ownership privacy defined in Section 4.3 . 

3. Preliminaries 

3.1. Naive Bayes learning 

3.1.1. Classification 

For a input vector x = (x 1 , . . . , x d ) ∈ R 

d , the machine learning classification aims at classifying x into a class in a discrete

possible category set { c 1 , . . . , c m 

} . A classifier is defined by a model W and a classification function C W 

: R 

d → { c 1 , . . . , c m 

} . To

predict the class which x belongs to, the function C W 

(·) should be evaluated on x . The output c i 0 ← C W 

( x ) is the classifica-

tion result. 

According to the Bayes decision rule, the classification function of a Naive Bayes classifier is to choose the class with the

highest posterior probability. It should compute i 0 ← arg max 
i ∈ [ m ] 

p(C = c i | X = x ) = arg max 
i ∈ [ m ] 

p(C = c i , X = x ) , where the factor

p( X = x ) with a fixed x is omitted. 

Based on the attribute conditional independence assumption that each attribute (component) of x is conditionally inde-

pendent, each class-conditional probability p(C = c i , X = x ) is equal to the factorization p(C = c i ) 
∏ d 

j=1 p(X j = x j | C = c i ) . 

Therefore, for a Naive Bayes classifier, the model W is composed of a set of probabilities: 

• prior probability { p(C = c 1 ) , . . . , p(C = c m 

) } that represents the occurring probability of each class c i ; 

• class-conditional probability {{{ p(X j = v | C = c i ) } v ∈ V j } d j=1 
} m 

i =1 
that represents the probability of that the j th attribute of x

is v when x belongs to class c i , where V j is the domain of X j . 

3.1.2. Training 

The prior probabilities and the class-conditional probabilities in model W need to be trained from the sample dataset.

Typically, the probabilities are estimated by simply counting the frequencies of samples in the set. 

The NB learning is a supervised learning that each sample can be depicted as 〈 x , c〉 where x is the feature vector and c

is the value denoting the class of x . In the proposed scheme, the attributes of x are nominal. Let n be the total number of

samples and n i be the number of samples whose class label is c i . Each probability can be obtained as follows: 

• prior probability p i = p(C = c i ) = 

n i ; 
n 
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• class-conditional probability p i, j (v ) = p(X j = v | C = c i ) = 

n i, j (v ) 
n i 

where n i, j ( v ) is the number of samples whose j th attribute

is v and class label is c i . 

3.2. Differential privacy 

Differential Privacy provides a formal and quantifiable privacy guarantee irrespective of an adversary’s background knowl-

edge and available computational power. The differential Privacy is actually a condition on the data release mechanism but

not on the dataset. A randomized algorithm is considered to be differentially private if for any pair of neighboring inputs,

the probability of generating the same output is within a small multiple of each other for the entire output space. This

means that for any two datasets which are close to one another, a differentially private algorithm will behave approximately

the same on both datasets. This notion provides sufficient privacy protection for users regardless of the prior knowledges

possessed by the adversaries. 

Definition 1 ( ε - differential privacy) . A randomization algorithm M satisfies ε - differential privacy if for any two neigh-

boring datasets D 1 and D 2 , and any output D ∈ Range (M ) , we have e −ε ≤ Pr[ M (D 1 )]= D 
Pr[ M (D 2 )]= D ≤ e ε . 

Definition 2 (Sensitivity) . For a function f : D → R 

d over the input datasets, the sensitivity of f is δ f = max || f (D 1 ) − f (D 2 ) ||
for any two neighboring datasets D 1 and D 2 . 

The lower sensitivity queries with, the better tolerate the data modifications from added noise is. 

Definition 3 (The Laplace distribution) . The Laplace distribution (centred at 0) with scale b is the distribution with proba-

bility density function: 

Lap(x | b) = 

1 
2 b 

exp (−| x | 
b 

) . 

Laplace distribution with scale b can be simply denoted as Lap ( b ). 

Definition 4 (The Laplace mechanism) . Given any function f : N 

| χ | → R 

k , the Laplace mechanism is defined as: 

M L (x, f (·) , ε) = f (x ) + (Y 1 , . . . Y k ) 

where each noise Y i is i.i.d. random variable drawn from Lap ( δf / ε). 

Theorem 1. The Laplace mechanism preserves ε-differential privacy. 

The proof of Theorem 1 is presented in [14] which shows that releasing a function f ( · ) with Laplace mechanism M L can satisfy

privacy. In this paper, we add Laplace noises to training results with standard deviation δf / ε. 

3.3. Additive homomorphic encryption 

Homomorphic encryption enables the computations of plaintexts to be performed on the corresponding ciphertexts with-

out revealing the underlying plaintexts. A public-key encryption scheme AHE that supports addition operations is additively

homomorphic. Given two encrypted messages AHE .Enc(a ) and AHE .Enc(b) that are encrypted by using the same public

key, there exists a public-key operation � such that AHE .Enc(a ) � AHE .Enc(b) is the encryption of a + b. Let AHE .Enc(a )

be a ciphertext of a plaintext a and c be a constant value. The multiplication ciphertext AHE .Enc(ca ) can be implement

by AHE .Enc(a ) � . . . � AHE .Enc(a ) = ( AHE .Enc(a )) c . Considering the practicality, the AHE cryptosystem we choose in this

paper is the Paillier cryptosystem [41] . 

3.4. Notations 

In this paper, we denote a set as { · } and the integer set { 1 , . . . , n } as [ n ]. The simple combination of several elements is

denoted as 〈 · 〉 A column vector is denoted as a bold-type letter (e.g., x = (x 1 , . . . , x d ) ). 

The plaintext space of the Paillier cryptosystem P is Z N where N is the modulus. The corresponding ciphertext space is

Z N 2 . We use [[ a ]] to represent the Paillier ciphertext encrypted from a . For distinguishing different public parameters, we

add different constant subscripts to the encryption symbol (e.g., [[ · ]] 1 is the ciphertext generated via P 1 ). For computations

of the Paillier ciphertext, we define some operators. The ciphertext addition of [[ a ]] and [[ b ]] is denoted as [[ a ]] · [[ b ]] that

is [[ a + b]] . The ciphertext multiplication of [[ a ]] and a plaintext c is denoted as [[ a ]] c that is [[ ca ]]. 

4. Problem statement 

4.1. Architecture 

Imagine a multi-owner application in practical. A medical researcher wants to build a Naive Bayes classifier which can

be used to predict the health condition of a patient in holistic assessments. Since the NB classifier takes a patient’s health

record as the input, the researcher should take a paradox into consideration. On one hand, in order to train a classifier that

makes the prediction more accurate, it is necessary for the researcher to collect records as raw as possible from patients.

On the other hand, the researcher have the duty to keep the privacy of each patient when providing records. That means, a
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desirable secure scheme should be design to enable the researcher to perform training over the record sets without revealing

too much information about any single individual in them. 

In this application, health records are training samples, each patient can be seen as a data provider, and the researcher

can be seen as a data receiver. As described in Section 3.2 , to make the trained classifier differentially private via a private

mechanism, the noises that is added to statistics (e.g., counts) should be related to the whole dataset aggregated from the

provided datasets. However, for a provider, other providers are not totally trusted such that the contents of his/her own

dataset must not be known by others. Thus, we introduce a untrusted data collector to undertake the aggregation task.

Consequently, in the view of a provider, his/her privacy should be protected against the receiver, the collector, and other

providers via some techniques. 

An architecture that contains three entities is shown in Fig. 1 . Each entity is described as follows. 

• Data provider . The sample dataset is jointly owned by s data providers { O 1 , . . . , O s } . A data provider O k has a dataset

partitioned from the whole database by some means. Each O k encrypts its dataset D k into e k for protecting the confiden-

tiality and generates the auxiliary information aux k for aggregating data. Then, O k contributes e k and aux k to the data

collector DC . 

• Data collector . The task of the data collector DC is to aggregate ciphertext { e 1 , . . . , e s } and perform differentially private

mechanism secretly. Then, DC submits an encrypted model E( W ) to the data receiver DR . 

• Data receiver . The data receiver DR can extract a NB classifier model W from a submission received from DC . The model

W can meet the requirement of the differential privacy. 

4.2. Threat model 

Typically, we assume that the entities in our scheme are “honest-but-curious”. That is, they will follow our proposed

algorithms, but try to find out as much secret information as possible based on their possessions. Two categories of adver-

saries are considered, which are an external attacker and an internal attacker. 

An external adversary may obtain some information (e.g., an encrypted part of a NB classifier) in the communication via

public channels. It can play a role of an external eavesdropper. 

An internal adversary could refer to a data provider O , the data collector DC , or the data receiver DR . The goal of the

type-i adversary O is to extract the information of partitioned datasets not owned by it, while the goal of the type-ii DC

and type-iii adversary DR is to reveal the information of each partitioned dataset. In addition, we do not allow the collusion

between DC and DR . 

4.3. Requirements and problems 

In this paper, the security goals which we aim to achieve is the privacy of the whole dataset. 

• ε-differential privacy . It is the basic requirement of the proposed scheme. The result of “queried function” is the NB

classifier model W obtained by the receiver DR , in which each probability (i.e., p ′ 
i 

and p ′ 
i, j 

(v ) ) should meet ε-differential

privacy. 

• Statistics privacy . A privacy-preserving scheme ensures that the content of a dataset is not revealed by entities other than

it owner. Besides, the statistics privacy requires the statistics information of the dataset, including n , each n i , and each

n i, j ( v ), should not be disclosed by neither external adversaries nor internal adversaries. 

• Ownership privacy . Furthermore, the adversaries are not allowed to learn whether a provider holds a sample that contains
a specific attribute value and a specific class label. 
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There are some key problems should be taken into consideration when design the scheme. 

• Sensitivity deriving . Results of the training function are a set of probabilities, and the function’s sensitivity cannot be de-

rived directly. Alternatively, since the sensitivity is related to the whole dataset which is jointly owned by the providers,

the deriving without breaking the privacy of each one is a key problem. 

• Mechanism implementation . After the sensitivity is carried out, how to privately implement Laplace mechanism on each

probability should also be taken into consideration. 

• Aggregate method . Aggregating provided data to a model W is undertaken by the untrusted collector DC . So, the aggregate

method should be designed to meet all above requirements. 

5. The proposed scheme 

5.1. Overview 

In this section, we give constructions of our privacy-preserving Naive Bayes learning scheme. Firstly, we reformulate some

details of the partition in the scheme. 

As is shown in Section 3 , each sample can be depicted as 〈 x , c〉 where the feature vector x = (x 1 , . . . , x d ) ∈ R 

d and the

class label c ∈ { c 1 , . . . , c m 

} . The partition of a whole database D can be divided into two categories: horizontal partition and

vertical partition. 

• Horizontal partition . All s data providers jointly hold n samples and the k th data provider O k holds a subset D k of D . Each

sample in D is in the form as 〈 x , c〉 . In addition, D 1 ∪ . . . ∪ D s = D and D 1 ∩ . . . ∩ D s = ∅ . 
• Vertical partition . All s data providers jointly hold n samples, and each one has some attributes of these samples. In more

detail, each vector x in D is partitioned into { x 1 , . . . , x s } owned by corresponding O k ( k ∈ [ s ]). Obviously, if class labels are

know by each O k , the solution of training is trivial. Therefore, in this setting, we set the s th provider O s only has all the

labels, while other (s − 1) provider jointly hold the n vectors. 

In terms of the requirements in Section 4.3 , we consider that the proposed scheme is expected to contain procedures:

the Initialization phase , the Preparation phase , the Aggregation phase , and the Extraction phase . A overview of the procedures

is described as follows. 

• Initialization phase . In this phase, the system , which can be an honest dealer, initializes cryptographic systems and gener-

ates some public parameters. Each entity will receive some tokens from the system for follow-up tasks. 

• Preparation phase . In this phase, each data provider O k firstly encrypts his/her “partitioned” set, and then contributes it

to the data collector DC . Some providers also submit some auxiliary information to DC . 

• Aggregation phase . In this phase, the data collector DC aggregates each encrypted data. Then, it uses the auxiliary infor-

mation to add noise in the aggregated ciphertexts, which functionally equivalent to perform the mechanism that imple-

ments differential privacy on the corresponding plaintexts. Next, DC releases an encrypted NB classifier model E( W 

′ ) for

the data receiver DR . 

• Extraction phase . In this phase, using the received tokens the data receiver DR recover the trained model W ’ of a Naive

Bayes Classifier from E( W 

′ ) . 

Then, we present two constructions for horizontally partitioned dataset and vertically partitioned dataset respectively. 

5.2. Sensitivity 

As is depicted in Section 3.2 , we choose the Laplacian mechanism to preserve the differential privacy in the trained

NB classifier. Let f ( · ) be the queried function. The noise that is added to the result is y meets y ∼ Lap ( δf / ε). Each queried

function and its sensitivity are derived as follows. 

Functions . In this paper, we mainly consider the processing of categorical attributes. The description in Section 3.1 shows

that all possible values for the given categorical attributes are public information (i.e., the j th nominal attribute is x j = v ∈ V j 
where V j has been known already). Intuitively, the outputs of training function are the prior probabilities and the class-

conditional probabilities. As shown in [48] , ε-differentially private counts can make the trained NB classifier be preserved

ε-differential privacy. Hence, the private mechanism is implemented on the counts. For each prior probability p i = 

n i 
n and

each class-conditional probability p i j (v ) = 

n i j (v ) 
n i 

, the corresponding output can be seen as the count n i and n ij ( v ). 

Sensitivity . As described above, the sensitivity computation can be done on the counts, and the mechanism is conducted

on the counts. The presence of a sample can change 1 at most on the count n i that indicates the number of samples

with a class label c i , which can result the same change on the count n ij ( v ). Therefore, the sensitivity of each n i and n ij ( v )

is 1 for all attribute values and class values. According to Theorem 1 , each noised count n ′ 
i 
= n i + Lap(δ f/ε) (noised count

n ′ 
i j 
(v ) = n i j (v ) + Lap(δ f/ε) ) is ε-differentially private. As a result, the Laplace noise is sampled from Lap ( δf / ε) (i.e., Lap (1/ ε)).

Encryption details . In this scheme, a noise y ∼ Lap ( b ) is represented as a float. Thus, considering the Paillier cryptosystem

can only work with integers, a float number should be converted to an integer by multiplying it with a pre-concert public

number l and ceiling ( � · � ). We represent real numbers using IEEE 754 double precision floating point numbers with 52 bits
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of precision and adopt the conversion method in [6] . As a result, the converted integer is in Z N , where N is the modulus for

Paillier. The integer will not be in Z 

∗
N � Z 

∗
P × Z 

∗
Q with negligible probability (1 − 1 

P )(1 − 1 
Q ) , where P and Q are the private

primes. So Paillier plaintext space Z 

∗
N 

can be approximately seen as Z N for convenience. 

5.3. Construction for horizontally partitioned dataset 

5.3.1. Main idea 

Intuitively, using a additive homomorphic cryptosystem to encrypt provider’s data can ensure the aggregation task is

undertaken over the encrypted data. However, there are still two problems must be solved. 

• Each probability in a NB classifier model W is carried out by a division operation. Since n and each n i must be kept

secret, such a operation cannot directly conducted by the collector DC . 

• There is a paradox for the aggregation. That is, DC can know the noised count such as n ′ 
i 

via decryption the corresponding

aggregation result, but it is not allowed to decrypt each encryption submitted by providers before the aggregation. 

For the first problem, we run two Paillier cryptosystems P 1 and P 2 . P 1 is used for the collector DC to aggregate noised

data so that DC obtains each n ′ 
i 

and n ′ 
i, j 

(v ) in clear. Therefore, a division operation can be implemented by a multiplication

operation over the ciphertext space of P 2 . For the second one, we set a series of factors { τ0 , . . . , τs } that each τk ∈ Z 

N 2 
1 

and

au 0 · . . . . · τs = 1 where N 1 is the modulus of P 1 . The factor τ k is issued to the k th provider O k , while τ 0 is issued to DC . As

a result, DC can only extract the sum of counts, if each O k multiples his/her encrypted count by τ k . 

5.3.2. Initialization 

For the system initialization, according to the secure parameter 1 λ, system initializes the Paillier cryptosystems P 1 and

P 2 , where the key pairs are 〈 pk 1 , sk 1 〉 and 〈 pk 2 , sk 2 〉 respectively. Then, system generates two sets of factors { τ1 , 0 , . . . , τ1 ,s +1 }
and { τ2 , 0 , . . . , τ2 ,s } . The sets meet that each τ1 ,k ∈ Z 

N 2 
1 
, each τ2 ,k ∈ Z 

N 2 
2 
, τ1 , 0 · . . . · τ1 ,s +1 = 1 , and τ2 , 0 · . . . · τ2 ,s = 1 . The public

parameters are published as public. The factor τ 1, 0 , τ 2, 0 , and sk 1 are issued to the collector DC , while sk 2 is issued to

the receiver DR , The k th provider O k will receive τ 1, k and τ 2, k , while the token τ1 ,s +1 is give a member of providers for

performing Laplace mechanism. The public factor l is determined in the initialization. 

5.3.3. Preparation 

Each data provider creates a count table for his/her dataset. Take the k th provider as an example. The partitioned dataset

D k is held by O k , and contents of the table T k are maintained as: 

• { n (k ) 
i 

} m 

i =1 
, where n (k ) 

i 
is the number of samples that contain a class label c i ; 

• {{{ n (k ) 
i, j 

(v ) } v ∈ V j } d j=1 
} m 

i =1 
, where n (k ) 

i, j 
(v ) is the number of samples of which j th attribute is v ∈ V j and class label is c i . 

Some counts in T k could be 0. Using N 1 and τ 1, k , O k encrypt T k into e 1 ,k = 〈{ e (1 ,k ) 
i 

} m 

i =1 
, {{{ e (1 ,k ) 

i, j 
(v ) } v ∈ V j } d j=1 

} m 

i =1 
〉 =

〈{ τ1 ,k [[ n 
(k ) 
i 

· l]] 1 } m 

i =1 
, {{{ τ1 ,k [[ n 

(k ) 
i, j 

(v ) · l]] 1 } v ∈ V j } d j=1 
} m 

i =1 
〉 . T k is also encrypted into e 2 ,k = { e (2 ,k ) 

i 
} m 

i =1 
= { τ2 ,k [[ n 

(k ) 
i 

]] 2 } m 

i =1 
. by using

N 2 and τ 2, k . Then, O k contributes 〈 e 1, k , e 2, k 〉 to the collector DC . 

Next, the holder of τ1 ,s +1 generates ciphertexts of noises. Considering the sensitivities of queried functions (i.e., both n i
and n ij ( v )) are 1, the holder can maintain a noise table Y = 〈{ y i } m 

i =1 
, {{{ y i, j (v ) } v ∈ V j } d j=1 

} m 

i =1 
〉 for 〈{ n i } m 

i =1 
, {{{ n i, j (v ) } v ∈ V j } d j=1 

} m 

i =1 
〉 .

Each element in Y is independent and has same the distribution Lap (1/ ε). The holder also encrypts Y into e Y =
〈{ e (Y ) 

i 
} m 

i =1 
, {{{ e (Y ) 

i, j 
(v ) } v ∈ V j } d j=1 

} m 

i =1 
〉 = 〈{ τ1 ,s +1 [[ y i · l]] 1 } m 

i =1 
, {{{ τ1 ,s +1 [[ y i, j (v ) · l]] 1 } v ∈ V j } d j=1 

} m 

i =1 
〉 , where l is used to transform a

noise to an integer. The encrypted noises e Y , that can be seen as auxiliary information, are submitted to DC . Algorithm 1

and Algorithm 2 depicts the preparation algorithm run by O k . 

5.3.4. Aggregation 

After receiving { e 1 ,k } s k =1 
, { e 2 ,k } s k =1 

, and e Y , DC starts to train a differentially private NB classifier over the ciphertext (i.e.,

e W 

). 

One task of the collector DC is to extract { n ′ 
i 
} i =1 

m and {{{ n ′ 
i, j 

(v ) } v ∈ V j } j=1 
d } i =1 

m . Obviously, a total count equals the sum

of corresponding s counts (e.g., n i = 

∑ s 
k =1 n 

(k ) 
i 

). To the begin with, DC aggregates to obtain each encrypted noised count as

follows. 

• For each [[ n ′ 
i 
· l]] 1 , DC computes τ1 , 0 · e (1 , 1) 

i 
· . . . · e (1 ,s ) 

i 
· e (Y ) 

i 
mod N 

2 
1 

; 

• For each [[ n ′ 
i, j 

(v ) · l]] 1 , DC computes τ1 , 0 · e (1 , 1) 
i, j 

(v ) · . . . · e (1 ,s ) 
i, j 

(v ) · e (Y ) 
i, j 

(v ) mod N 

2 
1 . 

According to the property of P 1 , the correctness of [[ n ′ 
i 
· l]] 1 (same as [[ n ′ 

i, j 
(v ) · l]] 1 ) is shown as: 
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Algorithm 1 Preparation. (Part 1). 

Input: 

D k , the k th horizontally partitioned dataset; 

τ1 ,k and τ2 ,k , the k th factor for P 1 encryption and P 2 encryption respectively; 

τ1 ,s +1 , the token for adding noises; 

ε, the privacy parameter for differential privacy; 

pk 1 and pk 2 , the public keys of P 1 and P 2 respectively; 

and l, the integer transforming value 

Output: 

e 1 ,k , the P 1 ciphertext of k th provider’s counts; 

e 2 ,k , the P 2 ciphertext of k th provider’s counts; 

and e Y , the auxiliary information that contains encrypted noises 

1: Initialize table T k = 〈{ n (k ) 
i 

} m 

i =1 
, {{{ n (k ) 

i, j 
(v ) } v ∈ V j } d j=1 

} m 

i =1 
〈 and set each element 0; 

2: for each 〈 x , c〉 ∈ D k do 

3: Set i to the identifier of class c ( c = c i ); 

4: n (k ) 
i 

← n (k ) 
i 

+ 1 ; 

5: for each j ∈ [ d] do 

6: n (k ) 
i, j 

(x j ) ← n (k ) 
i, j 

(x j ) + 1 ; 

7: end for 

8: end for 

9: for each i ∈ [ m ] do 

10: Using pk 1 to encrypt n (k ) 
i 

to e (1 ,k ) 
i 

← τ1 ,k · [[ n (k ) 
i 

· l]] 1 ; 

11: Using pk 2 to encrypt n (k ) 
i 

to e (2 ,k ) 
i 

← τ2 ,k · [[ n (k ) 
i 

]] 2 ; 

12: for each j ∈ [ d] do 

13: for each v ∈ V j (the range of x j ) do 

14: Using pk 1 to encrypt n (k ) 
i, j 

(v ) to e (1 ,k ) 
i, j 

(v ) ← τ1 ,k · [[ n (k ) 
i, j 

(v ) · l]] 1 ; 

15: end for 

16: end for 

17: end for 

18: e 1 ,k ← 〈{ e (1 ,k ) 
i 

} m 

i =1 
, {{{ e (1 ,k ) 

i, j 
(v ) } v ∈ V j } d j=1 

} m 

i =1 
〉 ; 

19: e 2 ,k ← { e (2 ,k ) 
i 

} m 

i =1 
; 

 

 

τ1 , 0 · e (1 , 1) 
i 

· . . . · e (1 ,s ) 
i 

· e (Y ) 
i 

= τ1 , 0 ·
s ∏ 

k =1 

(τ1 ,k · [[ n 

(k ) 
i 

· l]] 1 ) · (τ1 ,s +1 · [[ y i · l]] 1 ) 

= 

s +1 ∏ 

k =0 

τ1 ,k ·
[ [ 

y i · l + 

s ∑ 

k =1 

(n 

(k ) 
i 

· l) 

] ] 

1 

= [[ y i · l + n i · l]] 1 

= [[ n 

′ 
i · l]] 1 mod N 

2 
1 . 

Thus, DC can decrypt the ciphertexts to obtain each n ′ 
i 

and n ′ 
i, j 

(v ) . 

The other task is to carry out the encrypted classifier model e W 

= 〈{ ([[ n ]] 2 ) 
r i } m 

i =1 
, {{{ ([[ n i ]] 2 ) 

r i, j (v ) } v ∈ V j } d j=1 
} m 

i =1 
〉 , where each

r i is the reciprocal of corresponding n i and each r i, j ( v ) is the reciprocal of corresponding n i, j ( v ). 

Similar as the aggregation on { e 1 ,k } s k =1 
, DC generates P 2 ciphertexts for the fractions of class-conditional probabilities

and prior probabilities. 

• For each [[ n i ]] 2 , DC computes τ2 , 0 · e (2 , 1) 
i 

· . . . · e (2 ,s ) 
i 

mod N 

2 
2 

; 

• For each [[ n ]] 2 , DC computes [[ n 1 ]] 2 · . . . · [[ n m 

]] 2 mod N 

2 
2 . 

The correctness of [[ n i ]] 2 and [[ n ]] 2 can be derived by computing 

m ∏ 

i =1 

(τ2 , 0 · e (2 , 1) 
i 

· . . . · e (2 ,s ) 
i 

) 

= 

m ∏ 

i =1 

( 

τ2 , 0 ·
s ∏ 

k =1 

(τ2 ,k · [[ n 

(k ) 
i 

]] 2 ) 

) 
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Algorithm 2 Preparation. (Part 2). 

1: //Performing Laplace mechanism if the provider holds τ1 ,s +1 . 

2: if τ1 ,s +1 is NULL then 

3: e Y ← ∅ ; 
4: else 

5: for each i ∈ [ m ] do 

6: y i 
R ← Lap(1 /ε) ; 

7: Using pk 1 to encrypt y i to e (Y ) 
i 

← τ1 , 1+ s · [[ y i · l]] 1 ; 

8: for each j ∈ [ d] do 

9: for each v ∈ V j do 

10: y i, j (v ) 
R ← Lap(1 /ε) ; 

11: Using pk 1 to encrypt y i, j (v ) to e 
(Y ) 
i, j 

(v ) ← τ1 , 1+ s · [[ y i, j (v ) · l]] 1 ; 

12: end for 

13: end for 

14: end for 

15: e Y ← 〈{ e (Y ) 
i 

} m 

i =1 
, {{{ e (Y ) 

i, j 
(v ) } v ∈ V j } d j=1 

} m 

i =1 
〉 ; 

16: end if 

17: return e 1 ,k , e 2 ,k , and e Y . 

 

 

 

 

 

 

 

 

 

 

 

 

= 

m ∏ 

i =1 

( 

s ∏ 

k =0 

τ2 ,k · [[ 

s ∑ 

k =1 

(n 

(k ) 
i 

]] 2 

) 

= 

m ∏ 

i =1 

[[ n i ]] 2 

= [[ 

m ∑ 

i =1 

n i ]] 2 

= [[ n ]] 2 mod N 

2 
2 . 

Then, DC computes each reciprocal. To enable multiplications over Z 

N 2 
2 
, reciprocals are in the integer form as r i = l · 1 /n ′

i

and r i, j (v ) = l · 1 /n ′ 
i, j 

(v ) . 
Finally, DC builds and releases e W 

, of which underlying messages are probabilities, to the receiver DR . Algorithm 3 depicts

the aggregation. 

5.3.5. Extraction 

In this phase, the aim of the receiver DR is to extract W of a differential private NB classifier. As the owner of secret key

sk 2 , DR can easily decrypt each element in e W 

. Finally, the model W = { p ′ 
i 
} m 

i =1 
, {{{ p ′ 

i, j 
(v ) } v ∈ V j } d j=1 

} m 

i =1 
is recovered from the

result of decrypting 〈{ e (2) 
i 

} m 

i =1 
, {{{ e (2) 

i, j 
(v ) } v ∈ V j } d j=1 

} m 

i =1 
〉 . The correctness of extraction is obvious. Take p ′ 

i 
as an instance, the

underlying plaintext of e (2) 
i 

is actually l/p ′ 
i 

since 

e (2) 
i 

= ([[ n ]] 2 ) 
r i 

= [[ n · r i ]] 2 = [[ n · l · 1 /n 

′ 
i ]] 2 = [[ l/p ′ i ]] 2 . 

5.4. Construction for vertically partitioned dataset 

5.4.1. Main idea 

In fact, if an entity has the j th attribute of each sample and the corresponding class label, the class-conditional probability

p i, j ( v ) can be trained locally. Thus, in the vertical partition setting, the loss of label is the only one obstacle for a provider to

perform computation. Without loss of generality, we simply set that d data providers jointly hold n samples and the j -the

provider O j has the j th attribute of these samples for convenience. In addition, the d + 1 th provider O d+1 , who is called the

label provider LP , only has all the labels. 

A part of the solution of training is still trivial. That is, LP is able to count the number of any class, what results each

n i , n , and p i = n i /n are subsequently obtained by LP directly. LP uses Laplace mechanism to add the noise to each prior

probability p ′ 
i 

and contributes it to the receiver DR via a secure communication protocol. 
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Algorithm 3 Aggregation. 

Input: 

{ e 1 ,k } s k =1 
and { e 2 ,k } s k =1 

, P 1 ciphertext and P 2 ciphertext of providers’ counts; 

e Y , the auxiliary information that contains encrypted noises; 

pk 1 and pk 2 , the public keys of P 1 and P 2 respectively; 

sk 1 , the secret key of P 1 ; 

τ1 , 0 and τ2 , 0 , the decryption factors of a P 1 encrypted sum and P 2 encrypted sum respectively; 

and l, the integer transforming value 

Output: 

e W 

, the encrypted model of a NB classifier 

1: //Obtain each noised counts. 

2: for each i ∈ [ n ] do 

3: [[ n ′ 
i 
· l]] 1 ← τ1 , 0 · e (1 , 1) 

i 
· . . . · e (1 ,s ) 

i 
· e (Y ) 

i 
; 

4: Recover n ′ 
i 

by decrypting [[ n ′ 
i 
· l]] 1 ; 

5: r i ← l · 1 /n ′ 
i 
; 

6: for each j ∈ [ d] do 

7: for each v ∈ V j do 

8: [[ n ′ 
i, j 

(v ) · l]] 1 ← τ1 , 0 · e (1 , 1) 
i, j 

(v ) · . . . · e (1 ,s ) 
i, j 

(v ) · e (Y ) 
i, j 

(v ) ; 
9: Recover n ′ 

i, j 
(v ) by decrypting [[ n ′ 

i, j 
(v ) · l]] 1 ; 

10: r i, j (v ) ← l · 1 /n ′ 
i, j 

(v ) ; 
11: end for 

12: end for 

13: end for 

14: //Obtain encrypted model. 

15: [[ n i ]] 2 ← τ2 , 0 · e (2 , 1) 
i 

· . . . · e (2 ,s ) 
i 

; 

16: [[ n ]] 2 ← [[ n 1 ]] 2 · . . . · [[ n m 

]] 2 ; 

17: for each i ∈ [ n ] do 

18: e (2) 
i 

← ([[ n ]] 2 ) 
r i ; 

19: for each j ∈ [ d] do 

20: for each v ∈ V j do 

21: e (2) 
i, j 

(v ) ← ([[ n i ]] 2 ) 
r i, j (v ) ; 

22: end for 

23: end for 

24: end for 

25: e W 

← 〈{ e (2) 
i 

} m 

i =1 
, {{{ e (2) 

i, j 
(v ) } v ∈ V j } d j=1 

} m 

i =1 
〉 ; 

26: return e W 

. 

 

 

 

 

 

 

 

 

 

 

 

Therefore, what should we consider is to make DR receive each differentially private class-conditional probability p ′ 
i, j 

(v )
without breaking providers’ privacy. Inspired by the personal information retrieve (PIR), we devise a way to enable O j to

count n i, j ( v ) and add the corresponding noise for each v ∈ V j . 

5.4.2. Initialization 

For the system initialization, according to the secure parameter 1 λ, system initializes the Paillier cryptosystems P 1 and

P 2 , where the key pairs are 〈 pk 1 , sk 1 〉 and 〈 pk 2 , sk 2 〉 respectively. The public keys and parameters are published as public.

The secret key sk 1 is issued to the collector DC , while sk 2 is issued to the receiver DR , The public factor l for transforming a

float to an integer is determined in the initialization. 

5.4.3. Preparation 

The label provider and each data provider undertake different tasks in the preparation. 

The label provider LP firstly counts the total number n and each class number n i , and the set { n i } m 

i =1 
is encrypted to

{ [[ n i ]] 2 } m 

i =1 
. Then, LP creates m encrypted class vectors for each i ∈ [ m ], where the i th vector t i = (t 1 , . . . , t n ) . For each k ∈ [ n ],

t k is carried out as follows: if the k th sample is labelled with c i , let t k be [[1]] 1 (i.e., the constant 1 encrypted with P 1 ); else

let t k be [[0]] 1 . Next, via a secure communication protocol, LP sends the class vectors to each O j , and sends { [[ n i ]] 2 } m 

i =1 
to

the collector DC . 

Alternatively, the task of each data provider O j is to prepare a series of noised class-conditional counts without disclosing

the class of samples. We denote the vectors in the dataset as x 1 , . . . , x n and the j th attribute of x k as x (k ) 
j 

. After receiving

the m encrypted class vectors, each O j generate a cipher set for {{ n ′ 
i, j 

(v ) } v ∈ V j } m 

i =1 
. The procedure for the j th provider O j 
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Algorithm 4 Preparation of data provider. 

Input: 

{ x (1) 
j 

. . . , x (n ) 
j 

} , the jth vertically partitioned dataset; 

{ t 1 , . . . , t m 

} , a set of encrypted class vectors; 

ε, the privacy parameter for differential privacy; 

pk 1 , the public key of P 1 ; 

and l, the integer transforming value 

Output: 

e j , the P 1 ciphertext of jth differentially private class-conditional counts 

1: //Obtain encrypted class-conditional probabilities 

2: for each i ∈ [ m ] do 

3: for each v ∈ V j do 

4: [[ n i, j (v )]] 1 ← [[0]] 1 ; 

5: for each k ∈ [ n ] do 

6: if x (k ) 
j 

= v then 

7: [[ n i, j (v )]] 1 ← [[ n i, j (v )]] 1 · (t (i ) 
k 

) l ; 

8: end if 

9: end for 

10: end for 

11: end for 

12: //Obtain encrypted noised class-conditional probabilities 

13: for each i ∈ [ m ] do 

14: for each v ∈ V j do 

15: y i, j (v ) 
R ← Lap(1 /ε) ; 

16: Using pk 1 to encrypt y i, j (v ) to [[ y i, j (v ) · l]] 1 ; 

17: [[ n ′ 
i, j 

(v )]] 1 ← [[ n i, j (v )]] 1 · [[ y i, j (v ) · l]] 1 ; 

18: end for 

19: end for 

20: e j ← {{ [[ l · n ′ 
i, j 

(v )]] 1 } v ∈ V j } m 

i =1 
; 

21: return e j . 

 

 

 

 

 

 

 

 

 

 

 

 

 

is depicted Algorithm 4 . The correctness of this algorithm can be easily derived. Then, the encrypted counts e j = {{ [[ l ·
n ′ 

i, j 
(v )]] 1 } v ∈ V j } m 

i =1 
are submitted to DC . 

5.4.4. Aggregation and extraction 

Aggregation . After receiving { [[ n i ]] 2 } m 

i =1 
and { e j } d j=1 

, the receiver DC starts to aggregate differentially private class-

conditional probabilities {{{ [[ l · p ′ 
i, j 

(v )]] 2 } v ∈ V j } d j=1 
} m 

i =1 
over the ciphertext. Our trick is similar as the one in the horizontally

partitioned setting. To the begin with, DC uses sk 1 to decrypt { e j } d j=1 
to a clear set, and obtains {{{ n ′ 

i, j 
(v ) } v ∈ V j } d j=1 

} m 

i =1 
. Then,

DC computes the reciprocal of each n ′ 
i, j 

(v ) in float. To make sure that multiplications are over Z 

N 2 
2 
, we set the integer

reciprocals as r i, j (v ) = l · 1 /n ′ 
i, j 

(v ) . Finally, DC releases {{{ ([[ n i ]] 2 ) 
r i, j (v ) } v ∈ V j } d j=1 

} m 

i =1 
, of which the underlying messages are

class-conditional probabilities, to the receiver DR . 

Extraction . In this phase, the aim of the receiver DR is to extract class-conditional probabilities in a differential private

NB classifier, since prior probabilities have been contributed by the label provider LP . As the owner of secret key sk 2 , DR can

easily obtain the probabilities by decrypting each element in {{{ ([[ n i ]] 2 ) 
r i, j (v ) } v ∈ V j } d j=1 

} m 

i =1 
and then recovering it to a float.

Thus, W = { p ′ 
i 
} m 

i =1 
, {{{ p ′ 

i, j 
(v ) } v ∈ V j } d j=1 

} m 

i =1 
is built. The correctness deriving is same as in Section 5.3.5 . 

6. Security analysis 

In this section, we make intuitively security analysis based on assumptions that contain the security property of ε-

differential privacy, the secure communication protocol, and the semantic security of the Paillier cryptosystem. 

An external adversary can only observe the communication among the provider O , the collector DC , and the receiver DR

during the training. Therefore, the internal adversaries have more attack power than the external adversaries and thus we

only need to consider privacy and security against the internal attackers. 

In Section 4.2 , we present three types of internal adversaries that do not collude with each other. According to the secu-

rity requirements in Section 4.3 , the statistics privacy should be protected against the type-i adversary A 1 , type-ii adversary

A 2 , and type-iii adversary A 3 , who try to reveal n , each n i , and each n i, j ( v ). 
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6.1. Statistics privacy 

6.1.1. Construction for horizontally partitioned dataset 

In the constructions for horizontally partitioned dataset, other than the eavesdropped information, what A 1 (i.e., a

provider O k ) learns are its own partitioned dataset D k , private factors 〈 τ 1, k , τ 2, k 〉 , and the public information. We assume

that A 1 undertakes encrypting Laplace noises and it will also hold τ1 ,s +1 . In the view of A 1 , the outputs of Algorithms 1 and

3 can be captured, which results that A 1 has { e 1 , 1 , . . . , e 1 ,s } , { e 2 , 1 , . . . , e 2 ,s } , and e W 

. On one hand, due to the seman-

tic security of P 2 , A 1 cannot recover any p ′ 
i 

or p ′ 
i, j 

(v ) from e W 

. On the other hand, although A 1 can locally aggregate

e (1 , 1) 
i 

· . . . · e (1 ,s ) 
i 

· τ1 ,s +1 to [[ n i · l]] 1 · τ−1 
1 , 0 

, it still cannot extract n i without knowing τ 1, 0 and the decryption key sk 1 (the

same as n i, j ( v )). Therefore, the statistics privacy of the dataset can be protected against A 1 . 

The adversary A 2 plays a role of DC , which views { e 1 ,k } s k =1 
, { e 2 ,k } s k =1 

, and e Y . Since the factors 〈 τ1 , 1 , . . . , τ1 ,s 〉 and

〈 τ2 , 1 , . . . , τ2 ,s 〉 are chosen randomly in Z 

N 2 
1 

and Z 

N 2 
2 

respectively, the elements in e 1, k and e 2, k are not legal Paillier cipher-

texts. As a result, without knowing the factors, A 2 can only get the aggregation results rather than the underlying contents

of any e 1, k or e 2, k . However, the clear counts { n ′ 
i 
} and { n ′ 

i, j 
(v ) } are ε-differentially private, while the cipher counts [[ n i ]] 2 

and [[ n i, j ( v )]] 2 are encoded via P 2 encryption which cannot be decrypted without sk 2 . Thus, the statistics privacy is also

protected against A 2 . 

Similar as A 2 , even the receiver A 3 can capture { e 1 ,k } s k =1 
, { e 2 ,k } s k =1 

, and e Y , it still cannot disclose the underlying con-

tent of any individual due to missing the random factors. Alternatively, the training result, which is the decryption of e W 

,

achieves ε-differential privacy and does not contain the information of statistics counts. Hence, the privacy can be protected

against A 3 . 

6.1.2. Construction for vertically partitioned dataset 

In this construction, consider the format of partitioned sets the total number of samples in the whole dataset (i.e., n ) is

“public” for each provider O j . Besides, the label holder LP has already known each count n i from its own class label set, and

an honest-but-curious LP can be regarded as a special adversary A 

′ 
1 . 

Considering the label holder LP sends the class vectors to each O j , and sends { [[ n i ]] 2 } m 

i =1 
to DC . via a secure communica-

tion protocol, such sent ciphertexts cannot be captured by entities other than their receiver. As a result, A 2 can only obtain

ε-differentially private counts {{ n ′ 
i, j 

(v ) } v ∈ V j } m 

i =1 
by decrypting e j = {{ [[ l · n ′ 

i, j 
(v )]] 1 } v ∈ V j } m 

i =1 
, while A 3 only obtains the trained

NB classifier with ε-differentially private probabilities. 

For A 1 (i.e, the provider O j ), [[0]] 1 and [[1]] 1 are indistinguishable due to the semantic security of P 1 . That is, A 1 cannot

determine the underlying text of any component of a class vector t i = (t 1 , . . . , t n ) , which makes it have no way to infer

{ n i } m 

i =1 
and {{ n i, j (v ) } v ∈ V j } m 

i =1 
. Alternatively, since A 

′ 
1 

can capture { e j } d j=1 
and {{{ ([[ n i ]] 2 ) 

r i, j (v ) } v ∈ V j } d j=1 
} m 

i =1 
but does not hold

corresponding secret keys, it cannot reveal {{ n i, j (v ) } v ∈ V j } m 

i =1 
. 

Therefore, the statistics privacy of the dataset can be protected in this construction. 

6.2. Ownership privacy 

In the constructions for vertically partitioned dataset, each provider O j has the j th attribute values of all samples in the

whole dataset. That means, if the statistics privacy is achieved in this construction, the ownership of samples that contain a

specific attribute value is hidden for A 1 , A 2 , and A 3 . Hence, the ownership privacy is equivalent to the statistics privacy in

this setting. 

In the other setting, the ownership privacy is based on the semantic security of the Paillier cryptosystem. Take A 1 (is not

the provider O k ) as an example. In its view, n (k ) 
i 

= 0 means the k th provider O k does not hold a sample of which class label

is c i , and n (k ) 
i, j 

(v ) = 0 means the k th provider O k does not hold a sample of which j th attribute is a specific value v . A 1 try to

learn them, but the captured e 1, k and e 2, k do not belong to A 1 . As a result, A 1 cannot distinguish whether e (1 ,k ) 
i 

( e (2 ,k ) 
i 

) in

e 1, k ( e 2, k , respectively) is the encryption of n (k ) 
i 

= 0 or not. Therefore, this adversary cannot learn whether another provider

holds a sample contains a specific attribute value and class label. 

On the similar condition, A 2 and A 3 do not have another way to conduct distinguishing, since each e 1, k and e 2, k cannot

be decrypted directly. 

Therefore, the ownership privacy can be protected here. 

7. Implementation and evaluation 

7.1. Implementation details 

Our prototype is implemented in C ++ Language on two different machine in the LAN, and they are connected with

1 Gbps Ethernet network. The one acts as the user U that is equipped with an Inter(R) Core(TM) i7-2600 3.40 GHz CPU,
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Table 1 

Parameters of secure Naive Bayes classifiers. 

Dataset Attribute number Class number Set size 

Balance Scale 4 3 625 

Breast Cancer Original 9 2 699 

SPECT Heart 22 2 307 

Gene Sequences 60 3 3190 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4 GB RAM and installed with Ubuntu 16.04 64-Bit Version. The other acts as the remote server RS that is equipped with an

Intel(R) Xeon(R) E5-2630 v3 2.40 GHz CPU, 16 GB RAM and installed with Ubuntu Server 16.04 64-Bit Version. 

In the implementation, the training and testing datasets are chosen from UCI Machine Learning Repository. We choose

Balance Scale, Breast Cancer Wisconsin (Original), SPECT Heart , and Splice-Junction Gene Sequences for training and testing

Naive Bayes classifiers. The parameters are shown in Table 1 . The classifiers are trained using scikit-learn non-privately. 

We adopt GMP library to implement cryptographic operations. Considering security and efficiency, the modulus N of the

Paillier cryptosystem is set as 1024-bit. Real numbers are represented by IEEE 754 double precision floating point numbers

with 52 bits of precision, and we choose the big integer l = 2 80 for our number conversion. 

7.2. Evaluation 

For the dataset partitioned by different means, we perform experiments in terms of the computational cost of Preparation

phase, Aggregation phase, and Extraction phase, respectively. The existed works are proposed either just for the single data

owner or without the protection of the statistics privacy. Thus, these works cannot be used for solving the problem we focus

on and compare to ours directly. In the experiment, we set ε = 0 . 1 for the differential privacy. 

7.2.1. Horizontally partitioned dataset 

. 

The whole dataset is partitioned (as evenly as possible) into several part each of which is held by a provider. The num-

ber of parts varies from 2 to 16. Before submitting his/her private data to the collector DC for NB learning, each provider

O k ( k ∈ [ s ]) runs Algorithm 1 . Assume that the first provider O 1 has the duty to perform Laplace mechanism. Fig. 2 a and b

show that the data encryption time for each provider is not affected by the number of samples in the partitioned set (the

number of providers as well), while the time of adding noises does not vary either. This is because each provider has to en-

crypt all partitioned prior counts and class-conditional counts to make them obvious no matter how many samples he/she

holds. The preparation has an one-time cost and can be pre-computed off-line. 

After collecting all encryptions from providers, the performance of DC in the aggregation is depicted in Fig. 2 c. In the

algorithm, for each e 1, k and e 2, k , DC aggregates it with the corresponding blinding factor. Although the time spent on this

operation is determined by the number of providers theoretically, its trend is not apparent when the number is small.

Besides undertaking aggregation tasks, DC should also compute each noised prior count and class-condition count, and then

derive the corresponding encrypted probability. In Fig. 2 (c), the time cost is roughly linear with the sum of each | S j | (the size

of attribute set S j ), and thus we can learn that the Paillier decryption and the multi-plus operation over Paillier ciphertexts

cause most of the cost. The performance of the receiver DR in the extraction is depicted in Fig. 2 (d). Since the aim of DR is

to decrypt e W 

, its time cost has the similar result as DC ’s. 

7.2.2. Vertically partitioned dataset 

. 

Recall that the partition of attribute is trivial in the vertical partition setting. Thus, we simply set that there is only

one data provider O (not the label provider LP ) in the system. Considering the computation of differentially private prior

probabilities is trivial for LP , our evaluation is only conduct for class-conditional probabilities. 

Fig. 3 (a) describes the performance of O and LP . For the generation of class vectors, LP has to go through the whole

dataset and modify P 1 ciphertext for each sample. Alternatively, O uses these vectors to obviously compute each class-

conditional count and then performs the private mechanism. As a result, the time cost is affected by the size of dataset, the

number of classes, and the sum of each | S j |. 

Similar as in the horizontal partition setting, the necessary work of DC is to decrypt P 1 ciphertexts of noised counts and

create P 2 ciphertexts of noised probabilities, while the work of DR is to decrypt e W 

. From Fig. 3 (b), we can see the time

spent on the aggregation of DC and the extraction of DR . The cost is roughly determined by both the number of classes and

the sum of each | S j |. 

The experimental results in the two setting show that the algorithms run in at most a few seconds in once training.

Therefore, we believe the proposed scheme to be practical for privacy-preserving applications. 
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8. Conclusion 

In this paper, we propose a scheme for privacy-preserving Naive Bayes learning over data contributed by multiple

providers. In the proposed scheme, the designed algorithms can aggregating each provider’s data and implementing the pri-

vate mechanism on training results privately. Thus, a data receiver is allow train a NB classifier which achieves ε-differential

privacy without breaking the privacy of each provider. Moreover, the proposed scheme can also guarantee both statistics

privacy and ownership privacy, and is applicable for either horizontally or vertically partitioned dataset. Finally, our ex-

perimental results over datasets from UCI Machine Learning Repository show that the proposed scheme is practical for

applications. In the future, we plan to enhance the proposed scheme based on a weaker assumption where some collusions

are allowed or adversaries have abilities of forgery and tampering. 
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