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Abstract—This paper presents a novel dual-polarized millimeter- 

wave (mm-Wave) patch antenna with bandpass filtering response. 

The proposed antenna consists of a differential-fed cross-shaped 

driven patch and four stacked parasitic patches. The combination 

of the stacked patches and the driven patch can be equivalent to a 

bandstop filtering circuit for generating a radiation null at the 

upper band-edge. Besides, four additional shorted patches are 

added beside the cross-shaped driven patch to introduce another 

radiation null at the lower band-edge. Moreover, by embedding a 

cross-shaped strip between these four stacked patches, the third 

radiation null is generated to further suppress the upper stopband. 

As a result, a quasi-elliptic bandpass response is realized without 

requiring extra filtering circuit. For demonstration, a prototype 

was fabricated with standard PCB process and measured. The 

prototype operates in the 5G band (24.25−29.5 GHz) and it has an 

impedance bandwidth of 20%. The out-of-band gain drops over 

15 dB at 23 GHz and 32.5 GHz respectively, which exhibits 

high-selectivity. These merits make the proposed antenna a good 

element candidate for the 5G mm-Wave massive MIMO 

applications to reduce the requirements of the filters in the 

mm-Wave RF frontends. 
 

Index Terms—Filtering antenna, millimeter-wave antenna, 

dual-polarized antenna. 

I. INTRODUCTION 

ITH the advantages such as wide bandwidth, high data 

rate, and low latency, the millimeter-wave (mm-Wave) 

communication has attracted extensive attention in 5G 

applications [1]. In 5G mm-Wave front-ends, filters are usually 

needed to suppress the unwanted image frequency spectrum, 

LO leakage and harmonics. However, compact on-chip filters 

[2]−[4] feature the low-quality (Q)-factor, resulting in a high 

insertion loss which is generally over 2.5 dB. Besides, the 

high-Q filters [5]−[6] are not easy to be integrated in 5G 

mm-Wave system due to the large size. Moreover, if the high-Q 

filter is packaged separately, the interconnection between the 
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filter and the chip is required, which will also cause high 

insertion loss in the mm-Wave band. In order to solve this 

problem, an effective solution is to integrate filtering response 

into the antenna to realize the so-called filtering antenna, and 

thus to simplify the design of filters in the mm-Wave RF 

frontends to a certain extent. 

A typical method of designing a filtering antenna is to 

incorporate filtering circuits into feeding networks [7]−[14]. 

This method is straightforward. But, still, the insertion loss of 

the additional filtering circuits is unavoidable. As an alternative, 

specific parasitic elements, such as parasitic patch [15]−[17], 

slot [18]−[20], shorting pins [21], microstrip stub [22], and 

metallic loop [23] were used in antennas, to generate radiation 

nulls beside the operating passband so as to realize the filtering 

function. In this way, no extra filtering circuit is required, 

leading to lower insertion loss and more compact size.  

A number of filtering antennas have been developed in the 

last decade by the above two methods [7]−[24]. However, thus 

far, most of them operate at microwave frequency band. In 

addition, due to the limitation of mm-Wave processing 

technology, not all of them are suitable to be designed at 

mm-Wave frequency (e.g. the dipole antenna in [23] is difficult 

to be assembled at the high frequency). Recently, a few 

mm-Wave filtering antennas were realized based on substrate 

integrated waveguide (SIW) filters [11]−[14]. These antennas 

exhibit high-Q filtering response and good frequency 

selectivity. But, unfortunately, they generally suffer from 

narrow bandwidth (less than 5%), which is not sufficient for 

specific wideband applications. Besides, due to the integration 

of SIW filter, some of them feature bulky size. For example, the 

Ka-band single-polarized SIW filtering antenna in [12] 

occupies a large size of 0.92 × 1 λc
2 (λc denotes the wavelength 

at the central frequency of the passband), and the 

dual-polarized design in [14] takes up a larger size of 1.73 × 

1.73 λc
2. Therefore, they are not suitable to be used as an 

antenna element in the 5G mm-Wave massive MIMO arrays, in 

which the element spacing is usually less than 0.5 λc for 

wide-angle scanning. 

 In this paper, an mm-Wave wideband dual-polarized 

filtering microstrip antenna is proposed. It mainly consists of a 

differential-fed cross-shaped driven patch and four stacked 

parasitic patches. In addition, four shorted patches are added at 

the corners of the cross-shaped driven patch to generate a 

radiation null at the lower stopband, whereas a cross-shaped 

strip is introduced between the four stacked parasitic patches to 

realize an extra radiation null at the higher stopband. As a result, 

a bandpass filtering response with sharp roll-off rate is achieved. 
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The proposed filtering antenna has a compact size, which is 

suitable for 5G mm-Wave massive MIMO applications. The 

working mechanism, design guideline, as well as measured 

results of the proposed antenna are presented in the following 

sections.  

II. ANTENNA CONFIGURATION AND WORKING MECHANISM 

A. Antenna Configuration 

Fig. 1 and Fig. 2 illustrate the configuration of the proposed 

dual-polarized filtering antenna, and the specific dimensions of 

the antenna are listed in Table I. It is composed of parasitic 

patches, driven patch, ground plane and differential feeding 

networks. In order to reduce the fabrication cost, a standard 

PCB process is adopted. As shown in Fig. 2(a), the entire 

structure consists of three laminates (Sub 1: Rogers 4003C with 

a thickness of 305um; Sub 3: Rogers 4350B with a thickness of 

102um; Sub 5: Rogers 4350B with a thickness of 102um), two 

bondply layers (Sub 2: Rogers 4450F with a thickness of 

102um; Sub 4: Rogers 4450F with a thickness of 305um) and 4 

metal layers (a copper thickness of 18um). The four parasitic 

patches together with a cross-shaped strip are printed on metal 

Layer 1, and the driven patch together with four additional 

shorted patches are printed on metal Layer 2, as shown in Fig. 

2(b) and Fig. 2(c), respectively. The ground plane and feeding 

networks of the antenna are fabricated on metal Layer 3 and 

Layer 4 separately. With reference to Fig. 2(d), the two-port 

differential feeding networks are located under the ground to 

excite the driven patch through via holes. The main function of 

the differential feeding networks in the proposed antenna is to 

enhance the isolation between the two ports and the 

cross-polarization discrimination (XPD).  

B. . Antenna Mechanism 

To better illustrate the mechanism of the proposed filtering 

antenna, three reference designs are investigated, as shown in 

Fig. 3. For simplicity, the differential feeding networks are 

removed, and a pair of ideal differential ports (Port 1+ and Port 

1−) are used in the reference antennas. The corresponding 
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Fig. 1. Geometry stack-up of the proposed dual-polarized filtering antenna.  
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Fig. 2. Configuration of the dual-polarized filtering antenna. (a) The lamination 
stack-up of the antenna package. (b) Top view of the parasitic patches. (c) Top 

view of the driven patch. (d) Top view of the differential feeding networks. 
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simulated realized gains of these antennas are depicted in Fig. 4. 

In reference Design I, a cross-shaped driven patch along with 

four stacked parasitic patches can introduce a radiation null at 

around 32 GHz (Null 1), enhancing the roll-off rate at the edge 

of the higher stopband (see the black solid line in Fig. 4). By 

adding four extra shorted patches around the cross-shaped 

driven patch, reference Design II is obtained, and another 

radiation null (Null 2) is generated at the lower band-edge (see 

the red dash line in Fig. 4). In reference Design III, a 

cross-shaped strip is embedded between the four stacked 

patches, which generates a third radiation null (Null 3) to 

further suppress the upper stopband (see the blue dash line in 

Fig. 4). Consequently, a quasi-elliptic bandpass response is 

realized with the aid of these three radiation nulls. The 

generative mechanisms of Null 1 − Null 3 are analyzed below 

in detail. 

1) Analysis of radiation Null 1 

Firstly, to illustrate the mechanism of radiation null 1 at 

around 32 GHz, a simple transmission-line equivalent circuit is 

depicted in Fig. 5. The driven patch section is represented as an 

open-circuited transmission line. The parasitic patches are 

represented as two transmission line (one pair parasitic patches 

are represented one transmission line) with a gap between them. 

The gap is modelled by a π-network circuit, where Cs and Cp are 

the equivalent series gap capacitance and shunt gap capacitance 

of the radiating gap. Two fringing capacitances Ce are 

connected between the ends of the driven patch and the 

parasitic patches. In this model, all the radiation resistances of 

each section have been sum up to one resistor. Due to the 

differential fed method, an equivalent electric wall at the 

central line divides this model into two identical sections. 

Accordingly, a shunt series resonant circuit can be extracted 

from the parasitic patches which is marked with red-dashed 

rectangle circle. The impedance Zn1 of the circuit can be given 

by (1)  

1

1
tan

tan

1p

n p

e
p

+j θ
pjωCc

+
θp

+
ωCc

Z

Z Z
j CZ 

                     (1) 

TABLE I 
PARAMETERS OF THE PROPOSED FILTERING ANTENNA 

Length L1 L2 L3 L4 L5 L6 L7 

Value 

(mm) 
1.87 2.07 1.2 0.65 2.27 0.71 1.28 

Length L8 L9 L10 Lp1 Lp2 Lcross W1 

Value 

(mm) 
0.87 0.6 1.55 3.5 1.02 1.75 1.8 

Length W2 W3 Wp1 Wp2 Wf1 Wf2 Wf3 

Value 
(mm) 

0.38 0.75 1.6 1.06 0.13 0.45 0.32 

Length Wf4 Ws1 Ws2 Ws3 Wcross Wg R1 

Value 

(mm) 
0.2 0.3 0.1 0.18 0.15 7 0.2 

Length R2 R3      

Value 
(mm) 

0.4 0.6      
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Fig. 3. Top views of different reference antennas. (a) Design I. (b) Design II. (c) 

Design III.  

 

 
Fig. 4. Simulated realized gains of different reference antennas. 
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Fig. 5. The equivalent circuit model for reference Design I.  

 

 
Fig. 6. Simulated realized gains of reference Design I for different Ws1.  
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where ω is the angular frequency, Zp is the characteristic 

impedance of one pair parasitic patches, θp = βWp denotes the 

electric length of one pair parasitic patches and the capacitor Cc 

= 2Cs + Cp. Obviously, a series resonance can be obtained with 

the condition Zn1 = 0 which can be approximately written as (2) 

if Zpω >> 1. 

( )

2 2
1

arctan arctan
c e p c e

p

p c ep c e

C C Z C C

Z C CZ C C
θ





 




               (2) 

On this condition, the parasitic patches can be equivalent to be a 

bandstop circuit and thus generate radiation Null 1. The 

frequency of Null 1 is given as 

1

1 1 1
+

2 tanNull Z C Cp p c e
f

 

 
  
 

                        (3) 

According to (3), Null 1 can be independently tuned by the 

slot width Ws (which controls the central capacitor Cs). As 

observed in Fig. 6, Null 1 shifts clearly from 30.5 to 32.5 GHz 

while Ws is increased from 0.1 to 0.3 mm. This is reasonable 

because the central capacitor Cs is decreased. 

2) Analysis of radiation Null 2 

Next, to investigate the generative mechanism of Null 2, the 

current distribution on the driven patch of reference Design II is 

illustrated in Fig 7. As a contrast, the current distribution at the 

central operating frequency 27 GHz is first depicted in Fig. 7(a). 

It can be seen that the current mainly concentrates on the center 

of the cross-shaped patch, leading to efficient radiation at 27 

GHz. While at the frequency 22 GHz of Null 2, as shown in Fig. 

7(b), less current distributes on the center of the cross-shaped 

driven patch and most of the current is confined around the 

shorted patches. In addition, the current path along the two 

perpendicular sides of each shorted patch exhibits a 

half-wavelength resonance, thus generating the radiation null. 
Fig. 8 shows the tuning of Null 2. It can be observed that the 

frequency of Null 2 shifts from 23.75 to 20.5 GHz while Wp1 

increases from 1.5 to 1.7 mm. This is reasonable because the 

current length along the edges of each shorted patch is 

increased. Therefore, by tuning the sizes of the shorted patches, 

Null 2 can be individually controlled, and the frequency can be 

estimated by (4). 

2
14

Null
p eff

c
f

W



                                                 (4) 

where c is the speed of light in vacuum, εeff represents the 

effective dielectric constant of the substrate.  

3) Analysis of radiation Null 3 

Then, to demonstrate the mechanism of radiation Null 3 in 

reference Design III, a transmission-line equivalent circuit can 

be given in Fig. 9. The cross strip is represented as an 

open-circuited transmission line (the influence of parasitic 

patches is eliminated for brevity). Two fringing capacitances 

Cle are connected between the ends of the driven patch and the 

cross strip. Accordingly, a shunt series resonant circuit can be 

approximately extracted from the linear strip marked with 

red-dashed rectangle circle. The impedance Zn3 can be given by 

(5)  

tan
2

1
n3 lc
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θlcj +Z Z
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                          (5) 
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(a)                                                    (b) 

Fig. 7. The surface current distributions on the driven patch of reference Design 

II at (a) the central operating frequency 27 GHz and (b) the frequency 22 GHz 

of Null 2. 
 

 
Fig. 8. Simulated realized gains of reference Design II for different Wp1. 
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Fig. 9. The equivalent circuit model for reference Design III. 

 

 
Fig. 10. Simulated realized gains of reference Design III for different Lcross. 
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where ω is the angular frequency, Zlc is the characteristic 

impedance of the linear strip, θlc = βLcross denotes the electric 

length of the linear strip. Also, if the fringing capacitance Cle is 

negligible or ωCle << 1, the condition Zn3 = 0 can be simplified 

as  

2 cross
lc eff

Null3

L
θ =   


                             (6) 

Then the resonance frequency can be given by 

3
2

Null
cross eff

c
f

L 
                                 (7) 

At the resonant frequency, the cross strip is equivalent to a 

bandstop circuit thus suppressing the radiation of the driven 

patch. According to (7), radiation Null 3 can be controlled by 

the length of the linear strip Lcross. As observed in Fig. 10, Null 

3 shifts clearly from 38 to 34 GHz while Lcross is increased from 

1.5 to 2.3 mm.  

C. The effect of the central shorting via 

Finally, the differential networks are added to reference 

Design III, and the proposed antenna is obtained. However, it is 

found that the rejection level of the lower stopband deteriorates 

at around 20 GHz because of a weak resonance, as shown in Fig. 

11 (see the black solid line). To solve this problem, a shorting 

via is loaded at the central point of the driven patch. With 

reference to the red dash line in Fig. 11(a), the weak resonance 

is suppressed and the rejection level at 20 GHz is improved. 

Also, the radiation pattern shrinks overall at 20 GHz with the 

central via loaded. In order to illustrate this phenomenon, the 

current distributions on the driven patch are shown in Fig. 12. It 

can be seen that without the central via, the current distribution 

is asymmetry because the phase difference of the differential 

feeding network is no longer 180 degrees but only about 100 

degrees. When adding the central via, a relatively symmetrical 

current distribution is obtained, as shown in Fig. 12(b). In this 

case, more current is confined to the four slots between the 

cross-shaped patch and the shorted patches. Consequently, a 

better suppression is achieved at 20 GHz. 

III. ANTENNA IMPLEMENTATION 

A. Design Guideline 

Base on the above discussions, a design guideline for the 

dual-polarized filtering patch antenna is summarized as 

follows. 

1) Firstly, use four square planar parasitic patches and a 

cross-shaped driven patch to design a differential-fed 

dual-polarized stacked patch antenna. Set the initial 

dimension of the driven patch as 0.5 × 0.5 λ0
2 (λ0 denotes the 

guided wavelength in the substrate at the central frequency 

of the passband). In addition, set the initial side-length of 

each parasitic patch as 0.25λ0.  

2) Secondly, tune the width (Ws1) of the slot between the four 

parasitic patches to adjust the first desired upper-stopband 

radiation null. 

3) Thirdly, add four shorted patches into the inner corners of 

the cross-shaped driven patch. Set the initial side-length of 

each shorted patch as 0.25λNull2 (λNull2 denotes the guided 

wavelength in the substrate at the frequency of the desired 

                           (a)                                                           (b) 

 
Fig. 11. (a) Simulated realized gains of the proposed antenna. (b) Simulated 

patterns of the proposed antenna at 20 GHz. 
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Fig. 12. The current distribution on the driven patch of the proposed antenna at 

the weak resonant frequency 20 GHz. (a) Without the central via. (b) With the 

central via. 
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Fig. 13. Prototype of the proposed dual-polarized filtering antenna. 
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Fig. 14. The antenna measurement setup. 
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lower stopband radiation null), and tune it to obtain the 

desired lower stopband radiation null. 

4) Fourthly, introduce a cross-shaped strip between the four 

parasitic patches. Set the initial length of the cross-shaped 

strip as 0.5λNull3 (λNull3 denotes the guided wavelength in the 

substrate at the frequency of the second desired 

upper-stopband radiation null), and tune it to obtain the 

desired second desired upper-stopband radiation null. 

5) Finally, refine each parameter to optimize the design for 

obtaining good impedance matching and required 

bandwidth. 

B. Experiment 

For verification, the proposed multilayer dual-polarized 

filtering patch antenna is designed and fabricated with the 

standard PCB process. The fabricated prototype photograph is 

demonstrated in Fig. 13. It should be mentioned that in this 

design, the coplanar waveguide (CPW) feeding structure is 

employed to adapt to the prospective RFIC connection. Fig. 14 

shows the antenna measurement setup. The Cascade Microtech 

ground-signal-ground (GSG) RF probe with 450 um pitch is 

used to contact the CPW line feeding port, and only one port 

can be tested at a time, which means the measurement of |S21| is 

not realizable. A rotating arm with RX horn antenna is used to 

measure the radiation patterns of the prototype. However, the 

testing angle in the YoZ plane is limited to the range of 0 − 230 

degrees because that the rotating arm is blocked by the AUT 

sample holder. Therefore, the measured radiation patterns in 

this plane is not complete and the results in the range of 230 − 

360 degrees are not obtainable. 

The simulated and measured S-parameters of the two ports 

are illustrated in Fig. 15(a), showing good agreement. As 

observed, the center operating frequency of this antenna is 27 

GHz and the impedance bandwidths (|S11| < −10 dB) measured 

at both ports are 20% (24.25−29.5 GHz). In addition, the 

simulated |S21| is lower than −35 dB across the entire passband. 

The simulated and measured boresight gains are shown in 

Fig. 15(b). With reference to the figure, the average measured 

in-band gain is 5.2 dBi, while the average simulated in-band 

gain is 6.6 dBi. The gain reduction between the simulated and 

measured results are mainly due to the following factors: 1) the 

insertion loss of the RF probe; 2) the uncertainty of the material 

property at 27 GHz; 3) the resistive losses of the metallic vias; 4) 

the fabrication and measurement errors. The gain drops quickly 

to below −10 dB at 23 GHz and 33 GHz respectively, which 

exhibits sharp roll-off rates at the upper and lower band-edges. 

In the stopband, the radiation suppression level is 16 dB in 

simulation and 13 dB in measurement. Owing to the symmetry 

of the structure, the realized gains of the two ports are nearly 

the same with each other, which is to be expected.  

Fig. 16 shows the measured and simulated radiation patterns 

of the dual-polarized prototype at the central frequency 27 GHz. 

Similar broadside radiation patterns are obtained at both ports, 

as expected. At the boresight direction, the co-polarized fields 

are stronger than the cross-polarized counterparts by more than 

30 dB in simulation and 20 dB in measurement. Besides, the 

simulated and measured 3-dB HPBWs are 75° and 76° in the 

E-plane, while given by 78° and 82° in the H-plane. The 

patterns at other frequencies have also been studied, and they 

 
(a) 

 

 

 
(b) 

 
Fig. 15. (a) Simulated and measured S-parameters of the prototype. (b) 

Simulated and measured realized gains of the prototype. 
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Fig. 16. Simulated and measured patterns of the prototype. (a) Port 1. (b) Port 2. 
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are found quite stable across the entire passband. 

C.  Comparison 

To address the advantages of the proposed design, a 

comparison with the previous mm-Wave filtering antennas is 

tabulated in Table II. It can be observed that the proposed 

filtering antenna possesses a much wider impedance bandwidth 

(20%) than the existing mm-Wave filtering antennas (1.56% in 

[12], 1.2% in [13], 5% in [11], 2.94% in [24] and 1.6% in [14]). 

In addition, a more compact size is achieved in the proposed 

antenna (the overall size of the proposed antenna is 0.63 × 0.63 

× 0.089 λc
3, and the size of the radiating patches is 0.4 × 0.4 λc

2), 

which is more suitable for array applications. Most importantly, 

it should be mentioned that three radiation nulls can be 

independently controlled by tuning respective parameters of the 

proposed antenna, without requiring extra filtering circuit. 

Therefore, the proposed dual-polarized antenna is able to 

reduce the cost and space of the RF frontend system.  

IV. CONCLUSION 

In this paper, a novel dual-polarized filtering antenna 

operating in the 5G mm-Wave band (24.25−29.5 GHz) has 

been investigated. The generative mechanism of the filtering 

response has been studied. It has been shown that three 

radiation nulls can be introduced and individually tuned just by 

properly designing the parameters of the antenna, exhibiting 

high design freedom. With standard PCB process, a low-cost 

prototype has been fabricated and tested. The prototype shows 

a compact size, a wide bandwidth and a sharp roll-off rate at the 

edge of passband. These merits make the proposed antenna a 

good candidate as an element for 5G mm-Wave 

massive-MIMO applications. 
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